JPH0424142Y2 - - Google Patents

Info

Publication number
JPH0424142Y2
JPH0424142Y2 JP6371886U JP6371886U JPH0424142Y2 JP H0424142 Y2 JPH0424142 Y2 JP H0424142Y2 JP 6371886 U JP6371886 U JP 6371886U JP 6371886 U JP6371886 U JP 6371886U JP H0424142 Y2 JPH0424142 Y2 JP H0424142Y2
Authority
JP
Japan
Prior art keywords
intake
combustion chamber
fuel
passage
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6371886U
Other languages
Japanese (ja)
Other versions
JPS62175266U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6371886U priority Critical patent/JPH0424142Y2/ja
Publication of JPS62175266U publication Critical patent/JPS62175266U/ja
Application granted granted Critical
Publication of JPH0424142Y2 publication Critical patent/JPH0424142Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はエンジンの吸気装置、特に吸気通路が
第1吸気通路と第2吸気通路とで構成されている
と共に、2つの吸気弁が吸気流方向に略直列に配
置された燃料噴射式エンジンの吸気装置に関す
る。
[Detailed description of the invention] (Field of industrial application) The present invention is an engine intake system, in particular, an intake passage is composed of a first intake passage and a second intake passage, and two intake valves are arranged to The present invention relates to an intake device for a fuel injection engine that is arranged substantially in series in the direction of the fuel injection engine.

(従来の技術) エンジンの吸気装置として、例えば実開昭57−
186624号公報に示されているように、2つの吸気
弁とこれらの吸気弁によつて夫々開閉される第
1、第2吸気通路とを備えると共に、一方の第2
吸気通路にエンジンの低負荷時には閉じ且つ高負
荷時には開く制御弁を設けたものがある。これ
は、吸入空気量の少ないエンジンの低負荷時に上
記第1吸気通路のみから吸気を燃焼室に供給する
ことにより、燃焼室内に該吸気によるスワールを
形成して、該燃料の着火後における火炎の伝播を
促進し、これにより低負荷時の燃焼性を向上させ
ると共に、高出力が要求されるエンジンの高負荷
時には、上記第1、第2吸気通路の両者から吸気
を供給することにより所要の吸気充填量を確保し
得るようにしたものである。
(Prior art) As an engine intake device, for example,
As shown in Publication No. 186624, it is equipped with two intake valves and a first and second intake passage that are respectively opened and closed by these intake valves, and one of the second intake passages.
Some engines are equipped with a control valve in the intake passage that closes when the engine is under low load and opens when the engine is under high load. This is achieved by supplying intake air to the combustion chamber only from the first intake passage during low load of the engine with a small amount of intake air, thereby forming a swirl by the intake air in the combustion chamber, which reduces the flame after the fuel is ignited. Promotes propagation, thereby improving combustibility at low loads. At the same time, at high loads of engines that require high output, the required intake air is supplied from both the first and second intake passages. This is to ensure the amount of filling.

また、吸気弁及びこれに対応する吸気通路を
各々2つずつ備えた上記のようなエンジンには、
更に、その2つの吸気弁を吸気流方向に略直列に
配置したもの、言い換えれば、第1、第2吸気通
路の燃焼室への各開口部を吸気流方向に互いに略
直列に配設したものがあるが、その場合、吸気流
方向に対し下流側の吸気弁により開閉される通路
が上記スワール生成用の第1吸気通路とされ、そ
の上流側の吸気弁により開閉される通路が上記制
御弁を有する第2吸気通路とされる。このように
2つの吸気通路の燃焼室への各開口部ないし2つ
の吸気弁を吸気流方向に略直列に配置した場合
は、第1吸気通路の下流部を上記スワールの形成
にとつて更に好ましい形状(吸気を燃焼室の接線
方向から該室内に導入し得る形状)にすることが
できるので、2つの吸気弁を吸気流方向に並列に
配置した場合(上記公報参照)に比べてスワール
を一層強化することが可能となる。
In addition, the above-mentioned engine is equipped with two intake valves and two corresponding intake passages.
Furthermore, the two intake valves are arranged substantially in series in the direction of intake flow, in other words, the openings of the first and second intake passages to the combustion chamber are arranged substantially in series with each other in the direction of intake flow. In that case, the passage opened and closed by the intake valve on the downstream side with respect to the intake flow direction is the first intake passage for generating swirl, and the passage opened and closed by the intake valve on the upstream side is the control valve. The second intake passage has a second intake passage. In this way, when the openings of the two intake passages to the combustion chamber or the two intake valves are arranged substantially in series in the intake flow direction, it is more preferable for the downstream portion of the first intake passage to form the swirl. (a shape that allows intake air to be introduced into the combustion chamber from the tangential direction), the swirl can be further improved compared to when two intake valves are arranged in parallel in the intake air flow direction (see the above publication). It becomes possible to strengthen it.

一方、エンジンの吸気装置には燃焼室への燃料
供給手段として燃料噴射弁が設置されることがあ
るが、該噴射弁の燃料噴射時期に関しては、各気
筒の作動サイクルに無関係に噴射する方式と、各
気筒毎に燃料噴射弁を備えて当該気筒の例えば吸
気行程終了時に燃料を噴射する方式(タイムドイ
ンジエクシヨン方式)とがあり、後者の方式によ
れば、各気筒への燃料供給状態が均一化される利
点がある。
On the other hand, a fuel injection valve is sometimes installed in the intake system of an engine as a means of supplying fuel to the combustion chamber, but regarding the fuel injection timing of the injection valve, there is a method in which fuel is injected regardless of the operating cycle of each cylinder. There is a method (timed injection method) in which each cylinder is equipped with a fuel injection valve and fuel is injected, for example, at the end of the intake stroke of that cylinder.According to the latter method, the state of fuel supply to each cylinder is This has the advantage of being uniform.

更に、近年においては、エンジンの燃費性能や
排気性能を一層向上させるため、上記の如き吸気
方式及び燃料供給方式の採用に加えて、稀薄燃焼
化の試みが行われている。これは、燃焼室内にお
ける混合気を成層化させて、該燃焼室上部におけ
る点火プラグの周辺に比較的リツチ(燃料の濃度
が大きい状態)な混合気を遍在させることによ
り、良好な着火性を確保しながら混合気全体とし
ての空燃比をリーン(燃料の濃度が小さい状態)
化させることを目的とするものである。これによ
れば、燃費が低減され且つ排気中の有害成分の含
有量が減少されることになるが、この稀薄燃焼化
に際しては、点火プラグによる着火時にその周辺
に燃料を遍在させておく必要上、燃料噴射方式と
して上記のタイムドインジエクシヨン方式が用い
られることになる。
Furthermore, in recent years, in order to further improve the fuel efficiency and exhaust performance of engines, in addition to adopting the above-mentioned intake system and fuel supply system, attempts have been made to achieve lean combustion. This stratifies the air-fuel mixture in the combustion chamber so that a relatively rich air-fuel mixture (with a high fuel concentration) is omnipresent around the spark plug in the upper part of the combustion chamber, thereby achieving good ignition performance. Maintaining a lean air-fuel ratio as a whole while ensuring a lean air-fuel ratio (a state in which the fuel concentration is low)
The purpose is to make the According to this, fuel consumption will be reduced and the content of harmful components in the exhaust will be reduced, but in order to achieve lean combustion, it is necessary to have fuel omnipresent around the spark plug when it is ignited. First, the above-mentioned timed injection method is used as the fuel injection method.

(考案が解決しようとする問題点) ところで、2つの吸気弁が吸気流方向に略直列
に配置された上記のようなエンジン、特に燃料噴
射式ガソリンエンジンにおいて、例えば混合気の
成層化や燃焼安定性の向上、更には高負荷時にお
ける燃料のミキシング性の向上を達成しようとし
た場合、燃焼室に所定量の燃料を良好な気化霧化
状態で素早く供給し得る位置に燃料噴射弁を配置
する必要があるが、この点に関しては該噴射弁の
設置位置に応じて夫々次のような問題がある。
(Problems to be solved by the invention) By the way, in the above-mentioned engine in which two intake valves are arranged approximately in series in the direction of intake airflow, especially in a fuel-injected gasoline engine, problems such as stratification of the air-fuel mixture and combustion stabilization may occur. In order to improve fuel efficiency and improve fuel mixing performance under high loads, the fuel injector should be placed in a position where it can quickly supply a predetermined amount of fuel to the combustion chamber in a good vaporized atomization state. However, in this regard, the following problems arise depending on the installation position of the injection valve.

即ち、吸気流方向に対し下流側の吸気弁によつ
て開閉されるスワール生成用の第1吸気通路側に
燃料噴射弁を配置した場合には、燃料噴霧は該通
路の比較的曲率の大きい下流部分を通過しなけれ
ばならないので、その間に該燃料噴霧が第1吸気
通路の内壁面等に衝突して拡散され、或いは該壁
面に付着することになり、その結果、燃焼室内へ
の燃料供給時期や供給状態が不安定となつて該燃
焼室内における混合気の成層化が困難になる等の
問題が生じる。しかも、この場合、例えエンジン
の低負荷時における成層化が可能となつても燃料
は上記第1吸気通路側からしか燃焼室内に導入さ
れないので、第1、第2吸気通路の両通路から燃
焼室内に吸気が導入されるエンジンの高負荷時に
は燃焼室内における燃料分布の不均一化が生じ、
言い換えれば特に高負荷時に必要とされる燃料の
ミキシングが十分に行われない嫌いがある。
That is, when a fuel injection valve is disposed on the side of the first intake passage for swirl generation, which is opened and closed by an intake valve on the downstream side with respect to the intake flow direction, the fuel spray is directed to the downstream side of the passage where the curvature is relatively large. During this period, the fuel spray collides with the inner wall surface of the first intake passage and is dispersed or adheres to the wall surface, and as a result, the timing of fuel supply into the combustion chamber is delayed. Problems arise, such as the supply state becoming unstable and stratification of the air-fuel mixture within the combustion chamber becoming difficult. Moreover, in this case, even if stratification is possible during low engine load, fuel is introduced into the combustion chamber only from the first intake passage side, so fuel is introduced into the combustion chamber from both the first and second intake passages. When the engine is under high load and intake air is introduced into the combustion chamber, the fuel distribution within the combustion chamber becomes uneven.
In other words, there is a tendency that the fuel cannot be mixed sufficiently, which is required especially at high loads.

一方、このような問題を回避しようとして燃料
噴射弁を第2吸気通路側に設けた場合には、該通
路の制御弁が閉じられている時つまりエンジンの
低負荷時に第2吸気通路内に吸気流が殆んど存在
しないので、噴射弁から噴射された燃料の気化霧
化状態が悪くなるのである。
On the other hand, if the fuel injection valve is installed on the second intake passage side in an attempt to avoid such problems, when the control valve of the passage is closed, that is, when the engine is under low load, the intake air flows into the second intake passage. Since there is almost no flow, the vaporization and atomization state of the fuel injected from the injection valve deteriorates.

また、上記タイムドインジエクシヨン方式の燃
料噴射に限られることなく、噴射燃料の吸気通路
内壁面への付着のために加速時において、できる
だけ応答性よく噴射燃料を燃焼室に導くことがで
きず、また、減速時、スロツトルバルブを閉じた
際に生じる吸気通路内の負圧により吸気通路内壁
面に付着した燃料が一気に燃料室内に入り、これ
が未燃焼成分として排出されるといつた問題が生
じる恐れがある。
In addition, this is not limited to the above-mentioned timed injection fuel injection method, but due to the adhesion of the injected fuel to the inner wall surface of the intake passage, the injected fuel cannot be guided to the combustion chamber as responsively as possible during acceleration. Additionally, during deceleration, when the throttle valve is closed, the negative pressure in the intake passage creates a problem in which fuel adhering to the inner wall of the intake passage enters the fuel chamber all at once, and is discharged as unburned components. There is a possibility that this may occur.

また、上記した燃料の吸気通路内壁面への付着
や応答遅れを防止するためには、上記第1又は第
2吸気通路の最下流部つまりシリンダヘツドにお
ける吸気ポートの燃焼室への開口部近傍に燃料噴
射弁を配置すればよいが、当該設置部の温度や配
管等の面で問題があり、実際には殆んど不可能で
ある。
In addition, in order to prevent the above-mentioned fuel from adhering to the inner wall surface of the intake passage and delay in response, it is necessary to install a Although it would be possible to arrange a fuel injection valve, there are problems with the temperature of the installation part, piping, etc., and it is almost impossible in practice.

(問題点を解決するための手段) 本考案はエンジンの吸気装置、特に2つの吸気
弁が吸気流方向に略直列に配置されている燃料噴
射式エンジンの吸気装置に関する上記のような実
情に対処するもので、この種の吸気装置として、
噴射燃料の吸気通路内壁面への付着を防止し得る
ことに加えて、エンジンの応答性や燃焼安定性更
には高負荷時における燃料のミキシング性を向上
させることができる装置を提供することを目的と
するものであり、この目的達成のため次のように
構成したことを特徴とする。
(Means for Solving the Problems) The present invention addresses the above-mentioned actual situation regarding the intake system of an engine, particularly the intake system of a fuel injection type engine in which two intake valves are arranged substantially in series in the direction of intake air flow. As this type of intake device,
The purpose of the present invention is to provide a device that can not only prevent injected fuel from adhering to the inner wall surface of the intake passage, but also improve engine response, combustion stability, and fuel mixing performance under high loads. In order to achieve this purpose, it is characterized by the following structure.

即ち、本考案に係るエンジンの吸気装置は、2
つの吸気弁が吸気流方向に略直列に配置されてい
ると共に、吸気流方向に対し下流側の吸気弁によ
り開閉される第1吸気通路と、上流側の吸気弁に
より開閉される第2吸気通路とを有し、且つ第2
吸気通路にエンジンの低負荷時に閉じる制御弁が
設けられたエンジンにおいて、上記第1吸気通路
と第2吸気通路の制御弁下流部とを連通させる連
通路を設けると共に、2つの噴口部を有する燃料
噴射弁を上記第1吸気通路側に配置したことを特
徴とする。その場合、該噴射弁における一方の噴
口部の燃料噴射方向を上記第1吸気通路の燃焼室
への開口部方向に、また他方の噴口部の燃料噴射
方向を上記連通路を介して第2吸気通路の燃焼室
への開口部方向に夫々設定する。
That is, the engine intake system according to the present invention has two
Two intake valves are arranged approximately in series in the intake flow direction, and a first intake passage is opened and closed by an intake valve on the downstream side with respect to the intake flow direction, and a second intake passage is opened and closed by an intake valve on the upstream side with respect to the intake flow direction. and a second
In an engine in which an intake passage is provided with a control valve that closes when the engine is under low load, a communication passage is provided for communicating the first intake passage with a downstream part of the control valve in the second intake passage, and the fuel has two injection ports. The present invention is characterized in that the injection valve is arranged on the first intake passage side. In that case, the fuel injection direction of one nozzle part of the injector is directed toward the opening of the first intake passage into the combustion chamber, and the fuel injection direction of the other nozzle part is directed to the second intake passage through the communication passage. They are respectively set in the direction of the opening of the passage into the combustion chamber.

(作用) 上記の構成によれば、2つの噴口部を有する燃
料噴射弁が第1吸気通路側に配置され且つその一
方の噴口部の燃料噴射方向が該第1吸気通路の燃
焼室への開口部に、他方の噴口部の燃料噴射方向
が第1、第2吸気通路間の連通路を介して第2吸
気通路の燃焼室への開口部に夫々向けられている
ので、吸気行程中の所定の時期に該噴射弁から燃
料が噴射されると、燃料噴霧は上記両通路の壁面
に付着することなく速やかに燃焼室上部に導入さ
れることになる。その場合、第1吸気通路側と第
2吸気通路側の2方向から燃料が燃焼室に導入さ
れるので、いずれか一方の通路側から燃料を燃焼
室に供給する場合に比べて、該燃焼室への燃料導
入が行われ易くなり、その結果、エンジンの応答
性が向上されると共に、更に上記両吸気通路の燃
焼室への開口部が吸気流方向に略直列に配置され
ていることによるスワールの強化と相俟つて燃焼
が安定して行われるようになる。また、吸気が上
記両吸気通路から燃焼室に導入されるエンジンの
高負荷時には、それらの吸気によつて燃料が燃焼
室上部に導入された後更に燃焼室全体に拡散され
るため、該燃料ないし混合気のミキシングが良好
に行われることになる。
(Function) According to the above configuration, the fuel injection valve having two nozzle ports is disposed on the first intake passage side, and the fuel injection direction of one of the nozzle ports is directed toward the opening of the first intake passage to the combustion chamber. In addition, since the fuel injection direction of the other injection port is directed to the opening of the second intake passage to the combustion chamber via the communication passage between the first and second intake passages, When fuel is injected from the injection valve at the timing of , the fuel spray is quickly introduced into the upper part of the combustion chamber without adhering to the walls of both passages. In that case, since fuel is introduced into the combustion chamber from two directions, the first intake passage side and the second intake passage side, the combustion chamber is As a result, the response of the engine is improved, and the swirl is also improved because the openings of both intake passages to the combustion chamber are arranged approximately in series in the intake air flow direction. Combined with the strengthening of the fuel, combustion will become more stable. Furthermore, when the engine is under high load when intake air is introduced into the combustion chamber from both intake passages, the fuel is introduced into the upper part of the combustion chamber and then further diffused throughout the combustion chamber. This results in good mixing of the air-fuel mixture.

(実施例) 以下、本考案の実施例を図面に基いて説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1,2図に示すようにエンジン1は、シリン
ダブロツク2に形成されたシリンダボア2aと、
該ボア2a内に嵌挿されたピストン3の上面と、
シリンダブロツク2の上方に取付けられたシリン
ダヘツド4の下面とで構成された燃焼室5を有す
ると共に、上記シリンダヘツド4には、その一方
の側面4aから燃焼室5に通じる第1及び第2の
2つの吸気ポート61及び62と、他方の側面4b
から燃焼室5に通じる1つの排気ポート7とが設
けられている。これらのポート61,62,7は、
シリンダヘツド4の下面における燃焼室上面に
夫々開口されているが、その場合、吸気流の方向
に沿つて第1吸気ポート61の燃焼室側開口部61
aが第2吸気ポート62の燃焼室側開口部62aの
下流側に位置するように両ポート開口部61a,
2aが互いに直列に配置されている。
As shown in FIGS. 1 and 2, the engine 1 includes a cylinder bore 2a formed in a cylinder block 2,
The upper surface of the piston 3 inserted into the bore 2a,
It has a combustion chamber 5 formed by the lower surface of a cylinder head 4 mounted above the cylinder block 2, and the cylinder head 4 has first and second combustion chambers communicating with the combustion chamber 5 from one side surface 4a. Two intake ports 6 1 and 6 2 and the other side 4b
One exhaust port 7 leading from the combustion chamber 5 to the combustion chamber 5 is provided. These ports 6 1 , 6 2 , 7 are
They are opened at the upper surface of the combustion chamber on the lower surface of the cylinder head 4, but in that case, the combustion chamber side opening 6 1 of the first intake port 6 1 extends along the direction of the intake air flow.
Both port openings 6 1 a, so that a is located downstream of the combustion chamber side opening 6 2 a of the second intake port 6 2
6 2 a are arranged in series with each other.

そして、シリンダヘツド4には、これら各ポー
ト61,62,7の燃焼室5への開口部61a,62
a,7aに夫々装着されたバルブシート8,8,
9に対して密接離反して、これらの開口部を夫々
開閉する第1、第2吸気弁101,102及び排気
弁11が備えられていると共に、該シリンダヘツ
ド4の上部にはこれらの弁101,102,11を
開閉駆動する動弁機構12が配備されている。こ
の動弁機構12は、シリンダヘツド4の上部中央
にシリンダ列方向に配設されて図示しないクラン
クシヤフトにより回転駆動されるカム軸13と、
ロツカアーム軸14,15に夫々揺動自在に支持
された吸気弁用ロツカアーム16,17及び図示
しない排気弁用ロツカアームとで構成されてい
る。そして、吸気弁用ロツカアーム16,17
は、一端が上記カム軸13に設けられた2個の吸
気カム13a,13aに、他端が上記第1、第2
吸気弁101,102のステム上端に夫々対設さ
れ、また排気弁用ロツカアームは、一端がカム軸
13に設けられた排気カム13bに他端が上記排
気弁11のステム上端に夫々対設されて、カム軸
13の回転によりこれらの吸気弁101,102
び排気弁11がバルブスプリング18,19(排
気弁11用のバルブスプリングは図示せず)に抗
して夫々所定の時期に開動されるようになつてい
る。
The cylinder head 4 has openings 6 1 a, 6 2 for each of these ports 6 1 , 6 2 , 7 to the combustion chamber 5 .
Valve seats 8, 8, attached to a, 7 a , respectively
First and second intake valves 10 1 , 10 2 and an exhaust valve 11 are provided in close separation from the cylinder head 9 to open and close these openings, respectively. A valve mechanism 12 is provided that drives the valves 10 1 , 10 2 , and 11 to open and close. The valve mechanism 12 includes a camshaft 13 disposed in the upper center of the cylinder head 4 in the cylinder row direction and rotationally driven by a crankshaft (not shown);
It is composed of intake valve rocker arms 16 and 17 that are swingably supported by rocker arm shafts 14 and 15, respectively, and an exhaust valve rocker arm (not shown). And intake valve rocker arms 16, 17
One end is connected to the two intake cams 13a, 13a provided on the camshaft 13, and the other end is connected to the first and second intake cams 13a, 13a, respectively.
The exhaust valve rocker arms have one end disposed opposite to the upper ends of the stems of the intake valves 10 1 and 10 2 , and one end of which is disposed opposite to the exhaust cam 13 b provided on the camshaft 13 , and the other end opposed to the upper end of the stem of the exhaust valve 11 . The rotation of the camshaft 13 causes the intake valves 10 1 , 10 2 and the exhaust valve 11 to move against the valve springs 18 and 19 (the valve spring for the exhaust valve 11 is not shown) at a predetermined time. It is starting to be opened.

また、シリンダヘツド4には、例えば排気ポー
ト7側の側部上方から燃焼室上面の中央部に通じ
るプラグ挿入孔4cが設けられていると共に、該
孔4cに点火プラグ20が装着され、その先端の
着火部20aが上記燃焼室上面における各ポート
1,62,7の開口部に囲まれた位置から燃焼室
5内へ突出されている。
Further, the cylinder head 4 is provided with a plug insertion hole 4c that communicates, for example, from the upper side of the exhaust port 7 side to the center of the upper surface of the combustion chamber. An ignition part 20a projects into the combustion chamber 5 from a position surrounded by the openings of the ports 6 1 , 6 2 , and 7 on the upper surface of the combustion chamber.

一方、上記シリンダヘツド4の両側面4a,4
bには、第1、第2内部通路211,212を有す
る吸気マニホルド21と内部通路22aを有する
排気マニホルド22とが夫々接続され、吸気マニ
ホルド21の第1内部通路211と上記第1吸気
ポート61とで構成されて吸気を燃焼室5に供給
する第1吸気通路231と、第2内部通路212
第2吸気ポート62とで構成されて同じく吸気を
燃焼室5に供給する第2吸気通路232と、上記
排気マニホルド22の内部通路22aと排気ポー
ト7とで構成されて燃焼室5内で発生する排気ガ
スを外部に導く排気通路24とが設けられてい
る。その場合、上記2つの第1、第2吸気通路2
1,232のうち第1吸気通路231がエンジン
1の低負荷領域から高負荷領域に至る全領域で吸
気を燃焼室5に供給するスワール生成用の吸気通
路とされている。また、上記吸気マニホルド21
における第2内部通路212の下流部には、当該
エンジン1の低負荷時に閉じ且つ高負荷時に開く
制御弁25が設置されて、エンジン1の高負荷時
には上記両吸気通路231,232から吸気を燃焼
室5に供給し得るように構成されている。
On the other hand, both sides 4a, 4 of the cylinder head 4
An intake manifold 21 having first and second internal passages 21 1 and 21 2 and an exhaust manifold 22 having an internal passage 22a are connected to b, respectively, and the first internal passage 21 1 of the intake manifold 21 and the first A first intake passage 23 1 is composed of an intake port 6 1 and supplies intake air to the combustion chamber 5, and a first intake passage 23 1 is composed of a second internal passage 21 2 and a second intake port 6 2 and supplies intake air to the combustion chamber 5. A second intake passage 23 2 is provided, and an exhaust passage 24 is formed of the internal passage 22 a of the exhaust manifold 22 and the exhaust port 7 and guides exhaust gas generated within the combustion chamber 5 to the outside. In that case, the two first and second intake passages 2
Among the intake passages 3 1 and 23 2 , the first intake passage 23 1 is an intake passage for generating a swirl that supplies intake air to the combustion chamber 5 in the entire range from a low load region to a high load region of the engine 1. In addition, the intake manifold 21
A control valve 25 that closes when the engine 1 is under low load and opens when the engine 1 is under high load is installed at the downstream side of the second internal passage 21 2 . It is configured so that intake air can be supplied to the combustion chamber 5.

然して、このエンジン1においては、シリンダ
ヘツド4における上記第1、第2吸気ポート61
2間の隔壁4dに、第1吸気通路231と第2吸
気通路232の制御弁25の下流部とを連通させ
る連通路4eが設けられていると共に、燃焼室5
に所定の2方向から燃料を噴射供給する燃料噴射
弁26が第1吸気通路231側の側部に装着され
ている。この燃料噴射弁26は、第3図に示すよ
うにその先端部に第1、第2の2つの噴口部26
a,26bを有し、そのうちの第1噴口部26a
の燃料噴射方向が上記第1吸気ポート61の燃焼
室側開口部61aの方向に、また第2噴口部26
bの燃料噴射方向が上記連通路4eを介して第2
吸気ポート62の燃焼室側開口部62aの方向に
夫々設定されている。
However, in this engine 1, the first and second intake ports 6 1 in the cylinder head 4,
A communication passage 4e that communicates the first intake passage 23 1 and the downstream part of the control valve 25 of the second intake passage 23 2 is provided in the partition wall 4 d between the combustion chambers 5 and 6 2 .
A fuel injection valve 26 for injecting and supplying fuel from two predetermined directions is attached to the side of the first intake passage 231 . As shown in FIG. 3, this fuel injection valve 26 has two nozzle ports 26 at its tip, a first and a second nozzle.
a, 26b, of which the first nozzle part 26a
The fuel injection direction is in the direction of the combustion chamber side opening 6 1 a of the first intake port 6 1 and in the direction of the second injection port 26
The fuel injection direction of b is the second through the communication path 4e.
They are respectively set in the direction of the combustion chamber side opening 6 2 a of the intake port 6 2 .

次に、この実施例の作用を説明する。 Next, the operation of this embodiment will be explained.

先ず、エンジン1の低負荷時においては、第2
吸気通路232における制御弁25が閉じている
ので、第1、第2吸気弁101,102が開く吸気
行程時に、吸気は第1吸気通路231のみから第
1吸気ポート61の燃焼室側開口部61aを通つて
燃焼室5に供給されることになる。その場合に、
燃焼室5内でスワールが効率良く生成されるよう
に該第1吸気ポート61は比較的水平方向に延設
されて燃焼室5の接線方向から該室5に連通され
ているので、上記第1吸気通路231からの吸気
により燃焼室5内に第2図に示す方向のスワール
Aが形成されることになる。また、エンジン1の
高負荷時には上記制御弁25が開くので、吸気は
第1吸気通路231と第2吸気通路232の両者か
ら第1、第2吸気ポート61,62を通つて燃焼室
5に供給されることになり、従つて所要の出力を
得るのに必要な多量の吸気が燃焼室5に供給され
ることになる。
First, when the engine 1 is under low load, the second
Since the control valve 25 in the intake passage 23 2 is closed, during the intake stroke when the first and second intake valves 10 1 and 10 2 open, intake air flows only from the first intake passage 23 1 to the first intake port 6 1 for combustion. It is supplied to the combustion chamber 5 through the chamber side opening 6 1 a. In that case,
In order to efficiently generate swirl within the combustion chamber 5, the first intake port 61 extends relatively horizontally and communicates with the combustion chamber 5 from a tangential direction. Swirl A in the direction shown in FIG. 2 is formed in the combustion chamber 5 by the intake air from the intake passage 23 1 . Furthermore, when the engine 1 is under high load, the control valve 25 opens, so that the intake air is combusted from both the first intake passage 23 1 and the second intake passage 23 2 through the first and second intake ports 6 1 and 6 2 . Therefore, a large amount of intake air necessary to obtain the required power is supplied to the combustion chamber 5.

そして、いずれの場合にも、吸気行程の終了時
には燃料噴射弁26から燃料が噴射されて燃焼室
5内に混合気が生成されると共に、圧縮行程から
膨張行程への移行時には点火プラグ20が点火さ
れ、これにより上記混合気が着火されて燃焼が行
われることになる。
In either case, at the end of the intake stroke, fuel is injected from the fuel injection valve 26 to generate an air-fuel mixture in the combustion chamber 5, and at the same time, at the transition from the compression stroke to the expansion stroke, the spark plug 20 ignites. As a result, the air-fuel mixture is ignited and combustion occurs.

然して、上記燃料噴射弁26は上記第1吸気通
路231側に配置されて、その先端に第1、第2
噴口部26a,26bを有しており、その一方の
第1噴口部26aの燃料噴射方向が第1吸気ポー
ト61の燃焼室側開口部61aの方向に、また他方
の第2噴口部26bの燃料噴射方向が両吸気通路
231,232間の連通路4eを介して第2吸気ポ
ート62の燃焼室側開口部62aの方向に夫々設定
されているので、吸気弁101,102が開いてい
る吸気行程の終了時に該噴射弁26から上記の2
方向に燃料が噴射されると、第2図に示すように
燃料噴霧B1,B2はポート内壁面等に付着するこ
となく、第1吸気ポート61の開口部61aにおけ
るバルブシート8及び第2吸気ポート62の開口
部62aにおけるバルブシート8と第1吸気弁1
1及び第2吸気弁102との間を通つて燃焼室5
の上部、即ち点火プラグ着火部20aの両側近傍
に速やかに噴射供給されることになる。そのた
め、エンジン1の応答性が向上すると共に、これ
ら2方向から噴射供給された燃料噴霧B1,B2
点火プラグ20の着火部周辺にリツチな状態で遍
在することになつて、燃焼室5内で混合気が良好
に成層化されることになる。従つて、吸気量に対
して燃料噴射量を相対的に少なくしても、上記点
火プラグ20による混合気の着火が良好に行わ
れ、これに伴つて混合気全体としての空燃比をリ
ーン化させることが可能となる。そして、このよ
うにして混合気が着火されると、特にエンジン1
の低負荷時には、燃焼室5内に形成されているス
ワールAにより火炎が該燃焼室5内の全領域に速
やかに伝播され、低負荷時における燃焼状態が改
善されることになる。
The fuel injection valve 26 is arranged on the side of the first intake passage 231 , and has first and second valves at its tip.
The fuel injection direction of the first injection port 26a is in the direction of the combustion chamber side opening 61a of the first intake port 61, and the fuel injection direction of the first injection port 26a is in the direction of the combustion chamber side opening 61a of the first intake port 61 , and the fuel injection direction of the second injection port 26a is directed toward the combustion chamber side opening 61a of the first intake port 61. 26b is set in the direction of the combustion chamber side opening 6 2 a of the second intake port 6 2 via the communication passage 4 e between both intake passages 23 1 and 23 2 , so that the intake valve 10 At the end of the intake stroke when 1 and 10 2 are open, the above 2
When the fuel is injected in the direction shown in FIG . and the valve seat 8 and the first intake valve 1 at the opening 6 2 a of the second intake port 6 2
0 1 and the second intake valve 10 2 to the combustion chamber 5.
The fuel is immediately injected and supplied to the upper part of the spark plug ignition part 20a, that is, near both sides of the spark plug ignition part 20a. Therefore, the responsiveness of the engine 1 is improved, and the fuel sprays B 1 and B 2 injected and supplied from these two directions are omnipresent in a rich state around the ignition part of the spark plug 20, and the combustion chamber 5, the air-fuel mixture is well stratified. Therefore, even if the fuel injection amount is relatively small with respect to the intake air amount, the air-fuel mixture is successfully ignited by the spark plug 20, thereby making the air-fuel ratio of the air-fuel mixture as a whole leaner. becomes possible. When the air-fuel mixture is ignited in this way, especially the engine 1
When the load is low, the flame is quickly propagated to the entire area within the combustion chamber 5 due to the swirl A formed in the combustion chamber 5, and the combustion state during the low load is improved.

また、上記の場合、第2図に示すように燃料噴
射弁26の第2噴口部26bから噴射される燃料
噴霧B2は燃焼室5の略中央部を指向するので、
該室5の中央部における点火プラグ20の着火部
近傍に集中的に分布されるようになり、混合気の
成層化ないし着火性が一層向上されることにな
る。
Furthermore, in the above case, as shown in FIG. 2, the fuel spray B 2 injected from the second injection port 26b of the fuel injection valve 26 is directed toward the approximate center of the combustion chamber 5, so that
The fuel is distributed intensively near the ignition part of the spark plug 20 in the center of the chamber 5, and the stratification and ignitability of the air-fuel mixture are further improved.

一方、エンジン1の高負荷時においては、上記
第2吸気通路232の制御弁25が開かれて該通
路232と第1吸気通路231の両通路から燃焼室
5に吸気が導入されるので、上記2方向の燃料噴
霧B1,B2のうち第1噴口部26aから噴射され
た燃料噴霧B1は上記の低負荷時と同様に燃焼室
5の上部に導入されるが、第2噴口部26bから
噴射された燃料噴霧B2は第2吸気通路232から
の吸気流(第1吸気通路231からの吸気流に比
べて垂直方向の成分が大きい)に乗つて燃焼室5
の室内全体に拡散され、その結果、燃料が燃焼室
5内で均一に分布されることになる。従つて、こ
の場合は混合気の成層化というよりもむしろ燃料
のミキシング性が向上されることになる。
On the other hand, when the engine 1 is under high load, the control valve 25 of the second intake passage 23 2 is opened and intake air is introduced into the combustion chamber 5 from both the passage 23 2 and the first intake passage 23 1 . Therefore, among the fuel sprays B 1 and B 2 in the two directions, the fuel spray B 1 injected from the first nozzle part 26a is introduced into the upper part of the combustion chamber 5 as in the case of low load, but the second The fuel spray B 2 injected from the nozzle part 26 b rides on the intake air flow from the second intake passage 23 2 (which has a larger vertical component than the intake air flow from the first intake passage 23 1 ) and enters the combustion chamber 5.
As a result, the fuel is evenly distributed within the combustion chamber 5. Therefore, in this case, the mixing performance of the fuel is improved rather than the stratification of the air-fuel mixture.

尚、第4図は本考案の他の実施例を示すもので
あるが、この第2実施例の場合は上記第1実施例
の場合とは異なり、第2吸気通路232′の燃焼室
5′への開口部62a′の位置が第1吸気通路23
′の燃焼室5′への開口部61a′に対してシリンダ
列方向における排気弁11′側に若干変位されて
いる。そして、この実施例においても、上記実施
例と同様に、上記各吸気通路231′,232′の燃
焼室側開口部61a′,62a′を夫々開閉する第1、
第2吸気弁101′,102′が設けられ、且つ第2
吸気通路232′に低負荷時に該通路を閉じる制御
弁25′が備えられていると共に、第1吸気通路
231′と第2吸気通路232′の制御弁下流側とを
連通させる連通路4e′が両吸気通路間の隔壁4
d′に形成されており、更には第1吸気通路23
′側に2つの噴口部を有する燃料噴射弁26′が
配置されて、その一方の噴口部の燃料噴射方向が
上記第1吸気通路231′の燃焼室側開口部61
a′の方向に、また他方の噴口部の燃料噴射方向が
上記連通路4e′を介して第2吸気通路232′の燃
焼室側開口部62a′に夫々向けられている。従つ
て、この実施例においても、噴射燃料の壁面への
付着防止や燃焼安定性への改善等が達成される
が、この場合は特に第2吸気通路232′の燃焼室
側開口部62a′の位置をシリンダ列方向に沿つて
燃焼室中央側へ上記のように変位させた分だけ、
高負荷時における燃料のミキシング性が向上され
ることになる。
It should be noted that FIG. 4 shows another embodiment of the present invention, and in the case of this second embodiment, unlike the case of the first embodiment, the combustion chamber 5 of the second intake passage 23 2 ' The opening 6 2 a' to the first intake passage 23
1 ' is slightly displaced toward the exhaust valve 11' side in the cylinder row direction with respect to the opening 61a ' to the combustion chamber 5'. Also in this embodiment, as in the above embodiment, the first and second openings 6 1 a' and 6 2 a' on the combustion chamber side of the intake passages 23 1 ′ and 23 2 ′ are opened and closed, respectively.
A second intake valve 10 1 ′, 10 2 ′ is provided, and a second intake valve 10 1 ′, 10 2 ′ is provided.
The intake passage 23 2 ′ is provided with a control valve 25 ′ that closes the passage when the load is low, and a communication passage that communicates the first intake passage 23 1 ′ and the downstream side of the control valve of the second intake passage 23 2 ′ is provided. 4e' is the partition wall 4 between both intake passages
d', and furthermore, the first intake passage 23
A fuel injection valve 26' having two nozzle ports is disposed on the 1 ' side, and the fuel injection direction of one of the nozzle ports is directed toward the combustion chamber side opening 61 of the first intake passage 231 '.
a', and the fuel injection direction of the other injection port is directed to the combustion chamber side opening 6 2 a' of the second intake passage 23 2 ' via the communication passage 4e'. Therefore, in this embodiment as well, it is possible to prevent the injected fuel from adhering to the wall surface and to improve combustion stability, but in this case, the combustion chamber side opening 6 2 of the second intake passage 23 2 ′ is particularly affected. By the amount by which the position of a′ is displaced toward the center of the combustion chamber along the cylinder row direction as described above,
This will improve fuel mixing performance during high loads.

(考案の効果) 以上のように本考案によれば、2つの吸気弁が
吸気流方向に略直列に配置されていると共に、吸
気流方向に対して下流側の吸気弁により開閉され
る第1吸気通路と、上流側の吸気弁により開閉さ
れ且つエンジンの低負荷時に閉じる制御弁が備え
られた第2吸気通路とを有する燃料噴射式エンジ
ンにおいて、上記第1吸気通路と第2吸気通路の
制御弁下流部とを連通する連通路が形成され、且
つ2つの噴口部を有する燃料噴射弁が上記第1吸
気通路側に備えられて、その一方の噴口部からは
第1吸気通路の燃焼室側開口部の方向に向けて、
また他方の噴口部からは上記連通路を介して第2
吸気通路の燃焼室側開口部に向けて夫々燃料が噴
射されることになる。そのため、両吸気通路の燃
焼室開口部が吸気流方向に略直列に配置されてい
るにも拘らず、燃料が両吸気通路の内壁面に付着
することなく燃焼室内に速やかに導入されること
になり、その結果、当該エンジンの応答性や燃焼
安定性が向上されると共に、特に両吸気通路から
燃焼室に吸気が導入される高負荷時には燃料のミ
キシングが良好に行われるようになる。
(Effects of the invention) As described above, according to the invention, two intake valves are arranged substantially in series in the intake flow direction, and the first intake valve is opened and closed by the intake valve on the downstream side with respect to the intake flow direction. Control of the first intake passage and the second intake passage in a fuel injection engine having an intake passage and a second intake passage provided with a control valve that is opened and closed by an upstream intake valve and closed when the engine is under low load. A fuel injection valve is provided on the first intake passage side, in which a communication passage is formed to communicate with the downstream part of the valve, and the fuel injection valve has two nozzle openings, and from one of the nozzle openings, the fuel injection valve is connected to the combustion chamber side of the first intake passage. towards the opening,
Further, from the other nozzle part, a second
Fuel is injected toward the combustion chamber side opening of the intake passage. Therefore, even though the combustion chamber openings of both intake passages are arranged approximately in series in the intake air flow direction, fuel is quickly introduced into the combustion chamber without adhering to the inner wall surfaces of both intake passages. As a result, the responsiveness and combustion stability of the engine are improved, and fuel mixing becomes better, especially at high loads when intake air is introduced into the combustion chamber from both intake passages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本考案の第1実施例を示すもの
で、第1図はエンジンにおける燃焼室周辺を示す
シリンダヘツドの縦断面図、第2図は該シリンダ
ヘツドの吸、排気ポートに沿つて切断した横断平
面図、第3図は燃料噴射弁の先端部を示す拡大断
面図である。また、第4図は第2実施例を示すも
のでシリンダヘツドの要部横断平面図である。 4e,4e′……連通路、5,5′……燃焼室、
1a,61a′……第1吸気通路の燃焼室側開口
部、62a,62a′……第2吸気通路の燃焼室側開
口部、101,101′……下流側吸気弁(第1吸
気弁)、102,102′……上流側吸気弁(第2吸
気弁)、231,231′……第1吸気通路、232
232′……第2吸気通路、26,26′……燃料
噴射弁、26a……一方の噴口部(第1噴口部)、
26b……他方の噴口部(第2噴口部)。
Figures 1 to 3 show a first embodiment of the present invention. Figure 1 is a longitudinal sectional view of a cylinder head showing the vicinity of the combustion chamber in an engine, and Figure 2 is a longitudinal sectional view along the intake and exhaust ports of the cylinder head. FIG. 3 is an enlarged sectional view showing the tip of the fuel injection valve. FIG. 4 shows a second embodiment, and is a cross-sectional plan view of the main part of the cylinder head. 4e, 4e'... Communication path, 5, 5'... Combustion chamber,
6 1 a, 6 1 a'... Opening of the first intake passage on the combustion chamber side, 6 2 a, 6 2 a'... Opening of the second intake passage on the combustion chamber side, 10 1 , 10 1 '... Downstream intake valve (first intake valve), 10 2 , 10 2 ′... Upstream intake valve (second intake valve), 23 1 , 23 1 ′... First intake passage, 23 2 ,
23 2 ′...Second intake passage, 26, 26'...Fuel injection valve, 26a...One nozzle part (first nozzle part),
26b...the other nozzle part (second nozzle part).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 2つの吸気弁が吸気流方向に略直列に配置され
ていると共に、吸気流方向に対し下流側の吸気弁
により開閉される第1吸気通路と、上流側の吸気
弁により開閉される第2吸気通路とを有し、且つ
第2吸気通路にエンジンの低負荷時に閉じる制御
弁が設けられたエンジンにおいて、上記第1吸気
通路と第2吸気通路の制御弁下流部とを連通させ
る連通路を設けると共に、2つの噴口部を有する
燃料噴射弁を上記第1吸気通路側に配置し、該噴
射弁における一方の噴口部の燃料噴射方向を上記
第1吸気通路の燃焼室への開口部方向に、他方の
噴口部の燃料噴射方向を上記連通路を介して第2
吸気通路の燃焼室への開口部方向に夫々設定した
ことを特徴とするエンジンの吸気装置。
Two intake valves are arranged substantially in series in the intake flow direction, and a first intake passage is opened and closed by an intake valve on the downstream side with respect to the intake flow direction, and a second intake passage is opened and closed by an intake valve on the upstream side with respect to the intake flow direction. and a control valve that closes when the load of the engine is low is provided in the second intake passage, in which a communication passage is provided that communicates the first intake passage with a downstream part of the control valve of the second intake passage. At the same time, a fuel injection valve having two injection ports is disposed on the side of the first intake passage, and the fuel injection direction of one injection port of the injection valve is directed toward the opening of the first intake passage into the combustion chamber. The fuel injection direction of the other nozzle port is changed to the second direction through the communication path.
An intake system for an engine, characterized in that each intake passage is set in the direction of an opening toward a combustion chamber.
JP6371886U 1986-04-26 1986-04-26 Expired JPH0424142Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6371886U JPH0424142Y2 (en) 1986-04-26 1986-04-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6371886U JPH0424142Y2 (en) 1986-04-26 1986-04-26

Publications (2)

Publication Number Publication Date
JPS62175266U JPS62175266U (en) 1987-11-07
JPH0424142Y2 true JPH0424142Y2 (en) 1992-06-05

Family

ID=30899206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6371886U Expired JPH0424142Y2 (en) 1986-04-26 1986-04-26

Country Status (1)

Country Link
JP (1) JPH0424142Y2 (en)

Also Published As

Publication number Publication date
JPS62175266U (en) 1987-11-07

Similar Documents

Publication Publication Date Title
EP0694682B1 (en) A spark-ignited direct fuel injection engine
US4958604A (en) Direct fuel injection type spark ignition internal combustion engine
US4779594A (en) Intake system for an internal combustion engine
JPH07119507A (en) Inter-cylinder injection type spark ignition engine
US7021280B2 (en) In-cylinder fuel injection internal-combustion engine
US5529038A (en) Direct injected engine
JP3252196B2 (en) In-cylinder two-stroke engine
JPH08246878A (en) Cylinder injection type spark ignition engine
JPH0424142Y2 (en)
JP2961779B2 (en) Fuel supply device for stratified combustion internal combustion engine
JP3586963B2 (en) Engine intake system
JPS62253956A (en) Intake device for engine
JP2534630B2 (en) Engine intake system
JPH0658104B2 (en) Engine intake system
JPH0343387Y2 (en)
JPH0159434B2 (en)
JP3644199B2 (en) In-cylinder internal combustion engine
JP3060689B2 (en) Direct injection spark ignition engine
JPS62253917A (en) Intake device of engine
JP4082277B2 (en) In-cylinder direct injection CNG engine
KR100203507B1 (en) Direct injection typed gasoline engine
JP2534629B2 (en) Engine intake system
KR100227905B1 (en) Structure of combustion chamber for direct injection typed internal combustion engines
JPH02305319A (en) Combustion chamber structure of engine
JPH07127466A (en) Intake device for engine