JPH0712723Y2 - Hydraulic servo valve - Google Patents

Hydraulic servo valve

Info

Publication number
JPH0712723Y2
JPH0712723Y2 JP1988126817U JP12681788U JPH0712723Y2 JP H0712723 Y2 JPH0712723 Y2 JP H0712723Y2 JP 1988126817 U JP1988126817 U JP 1988126817U JP 12681788 U JP12681788 U JP 12681788U JP H0712723 Y2 JPH0712723 Y2 JP H0712723Y2
Authority
JP
Japan
Prior art keywords
spool
land
servo valve
hydraulic servo
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988126817U
Other languages
Japanese (ja)
Other versions
JPH0247404U (en
Inventor
典宏 葛生
秀郎 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
Original Assignee
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nireco Corp filed Critical Nireco Corp
Priority to JP1988126817U priority Critical patent/JPH0712723Y2/en
Publication of JPH0247404U publication Critical patent/JPH0247404U/ja
Application granted granted Critical
Publication of JPH0712723Y2 publication Critical patent/JPH0712723Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は電気または空気信号により連続制御を行う油圧
サーボ弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a hydraulic servo valve for continuous control by an electric or pneumatic signal.

〔従来の技術〕[Conventional technology]

従来の油圧サーボ弁においてスプールの偏心による流体
固着力を減少せしめるための対策として、以下の対策が
挙げられる。
In the conventional hydraulic servo valve, the following measures can be taken as measures for reducing the fluid fixing force due to the eccentricity of the spool.

1)スプール,スリーブの真円度,真直度等の加工寸法
の精度を上げる。
1) Increase the accuracy of machining dimensions such as roundness and straightness of spools and sleeves.

2)スプール面仕上げ精度を上げる。2) Increase the finish accuracy of the spool surface.

3)圧油ランド,両端ランドに油溝を入れる。3) Add oil grooves to the pressure oil land and both end lands.

4)スプールを振動させる(ディザ)。4) Vibrate the spool (dither).

5)スプールとスリーブのスキマを大きくする。5) Increase the clearance between the spool and sleeve.

6)圧油ランドにテーパを設ける。6) Provide a taper on the pressure oil land.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

空気圧力又は電磁力によって直接スプールを作動させる
油圧サーボ弁においては、スプール作動力が数百gf〜数
kgfに対し油圧によるスプールをスリーブに押しつけよ
うとする力(固着させようとする力)は、数十kgfであ
る。
In the hydraulic servo valve that directly operates the spool by air pressure or electromagnetic force, the spool operating force is several hundred gf to several
The force of pushing the spool by hydraulic pressure against the kgf (the force of fixing the spool) is several tens of kgf.

その為、スプールを僅かな力で動かすには油膜切れが起
こらずスリーブとスプール間の油膜の厚さを常時確保
し、流体固着力を減少させる必要がある。即ち、油圧力
によって起こるスプールの片寄り,偏心が起こらないよ
うにする必要がある。
Therefore, in order to move the spool with a small force, it is necessary to always secure the thickness of the oil film between the sleeve and the spool without causing the oil film to run out and to reduce the fluid fixing force. That is, it is necessary to prevent the deviation of the spool and the eccentricity caused by the hydraulic pressure from occurring.

しかるに前記従来技術の諸対策では、スプール及びスリ
ーブの真円度,真直度等の加工精度を向上させることに
限界があり、かつコスト高はさけられないものであると
ともにスプール面の仕上げ精度を向上させても差程の効
果はみられなかった。
However, the above-mentioned measures of the prior art have a limit in improving the machining accuracy such as the roundness and straightness of the spool and the sleeve, and the cost is inevitable, and the finishing accuracy of the spool surface is improved. Even if it was done, the effect of the difference was not seen.

またディザ(スプールを振動させる)は効果があるもの
の、振動させるための脈動装置が必要であり、装置コス
トが高くなり、スプールとスリーブの隙間を大きくとる
ことは効果的であっても油のリーク量が増加し、しか
も、不平衡油圧がかかることは改善されないので、スプ
ールはスリーブの一部に押しつけられることは避けられ
なくて、油膜切れが起こる可能性は残されている。又圧
油ランドにテーパを設けることは加工精度を必要とし、
コスト高になるなど、いずれの場合にも従来の諸対策は
抜本的な解決策にはならなかった。
Although dithering (vibrating the spool) is effective, it requires a pulsating device to vibrate, which increases the cost of the device. Even if it is effective to take a large clearance between the spool and the sleeve, the oil leaks. Since the volume is increased and the unbalanced hydraulic pressure is not improved, it is inevitable that the spool is pressed against a part of the sleeve, and there is a possibility that the oil film will be lost. Also, providing a taper on the pressure oil land requires machining accuracy,
In all cases, the conventional measures did not provide a drastic solution, such as increased cost.

因って本考案はこれらの欠点を抜本的に解決し得る油圧
サーボ弁の提供を目的とするものである。
Therefore, the object of the present invention is to provide a hydraulic servo valve capable of fundamentally solving these drawbacks.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案の油圧サーボ弁は、空気圧力または電磁力によっ
て直接スプールを作動させる油圧サーボ弁において、複
数ランド形スプールとスリーブとの隙間を両端ランド部
におけるより圧油ランド部において若干広く構成したこ
とを特徴とする。
The hydraulic servo valve of the present invention is a hydraulic servo valve in which a spool is directly actuated by air pressure or electromagnetic force, in which the gap between the multi-land spool and the sleeve is slightly wider in the pressure oil land portion than in both end land portions. Characterize.

しかして油圧によるスプールをスリーブに押しつけよう
とする力は、第1図および第2図において、元油圧
(P0)が、スプールにかかる面積の不平衡によるだけで
なく圧油ランドとスリーブ間のスキマを通り、戻り側
(T)にリークする時の油圧分布の不平衡によって発生
する。
Therefore, the force to press the spool against the sleeve due to the hydraulic pressure is not only due to the imbalance of the original hydraulic pressure (P 0 ) in FIGS. 1 and 2 but also between the pressure oil land and the sleeve. It is caused by the imbalance of hydraulic pressure distribution when leaking to the return side (T) through the gap.

すなわち、スリーブのセンターに対しスプールが偏心し
た場合、偏心した側のスキマ内の圧力低下により、より
偏心させようとする力が圧油ランド部に発生する。その
力は、スプールとスリーブ接触時に最大値を取る。又圧
油ランド部の長さ(l)に対しても比例する(尚、第1
図においてl=l1−l0) 油リーク量は、スプール軸径とスリーブ穴径の差(ハメ
アイ寸法)が同一条件であっても、スプール,スリーブ
接触時(最大偏心)に対し、スプールがスリーブセンタ
にある場合の方が1/2.5となる。(ストークス領域では
油量はスキマの3乗に比例) 因って本考案は具体的には、両端ランド部の直径と圧油
ランド部の直径に数μm〜数十μmの径差を設け、(圧
油ランド部の直径が小さい)両端ランド部とスリーブを
軸受(ガイド)として、力を受ける圧油ランド部の偏心
量を制限する構造とし問題点の解決を計ったものであ
る。
That is, when the spool is eccentric with respect to the center of the sleeve, the pressure in the clearance on the eccentric side causes a force to be further eccentrically generated in the pressure oil land portion due to the pressure drop. The force takes a maximum value when the spool and the sleeve are in contact with each other. It is also proportional to the length (l) of the pressure oil land (the first
In the figure, l = l 1 −l 0 ) Even if the difference between the spool shaft diameter and the sleeve hole diameter (saddle eye size) is the same, the amount of oil leakage is larger when the spool and the sleeve are in contact (maximum eccentricity). It is 1 / 2.5 when it is in the sleeve center. (In the Stokes region, the amount of oil is proportional to the cube of the clearance.) Therefore, the present invention specifically provides a diameter difference of several μm to several tens of μm between the diameter of the land at both ends and the diameter of the pressure oil land. The problem is solved by using a structure in which both end lands (the diameter of the pressure oil land portion is small) and the sleeve are used as bearings (guides) to limit the amount of eccentricity of the pressure oil land portion that receives a force.

〔実施例〕〔Example〕

以下本考案油圧サーボ弁の実施例を図面とともに説明す
る。
An embodiment of the hydraulic servo valve of the present invention will be described below with reference to the drawings.

第1図は4ランドスプールの側面図、第2図はスリーブ
に4ランドスプールを装入した状態の側断面図を示す。
FIG. 1 is a side view of the 4-land spool, and FIG. 2 is a side sectional view of the 4-land spool with the sleeve loaded with the 4-land spool.

かかる第1図及び第2図に示す如く、両端ランド部1の
直径と圧油ランド部2の直径に数μm〜数十μmの径差
を設け、スリーブ3との隙間が両端ランド部1より圧油
ランド部2のほうが広くなるように構成している。
As shown in FIGS. 1 and 2, a diameter difference of several μm to several tens of μm is provided between the diameters of the land portions 1 at both ends and the diameter of the pressure oil land portion 2 so that the gap between the sleeve 3 and the land portion 1 at both ends is larger than that at the land portions 1 at both ends. The pressure oil land portion 2 is configured to be wider.

従って、かかる本考案油圧サーボ弁の構成によれば第2
図に示す如く両端ランド部1とスリーブ3を軸受(ガイ
ド)として、力を受ける圧油ランド部2の偏心量を制限
して、スプール90をスリーブ3に押しつける力を大幅に
減少させている。
Therefore, according to the construction of the hydraulic servo valve of the present invention, the second
As shown in the figure, the land 1 on both ends and the sleeve 3 are used as bearings (guides) to limit the amount of eccentricity of the pressure oil land 2 that receives the force, and the force for pressing the spool 90 against the sleeve 3 is greatly reduced.

第2図中A及びBは油圧シリンダーを操作するための油
圧回路を示すものである。
2A and 2B show hydraulic circuits for operating the hydraulic cylinders.

また第2図に示す如く元油圧回路(P0)から、戻り油回
路(T)に流れるリーク量5は、圧油ランド部2の偏心
量を小さくすることにより、減少する。
Further, as shown in FIG. 2, the leak amount 5 flowing from the original hydraulic circuit (P 0 ) to the return oil circuit (T) is reduced by reducing the eccentricity amount of the pressure oil land portion 2.

さらに第1図に示す圧油ランド部2に幅広油溝l0を構成
することにより、ランド長さを溝なしのときの長さl1
り(l1−l0)と短くし、スプール90がスリーブ3に押し
つけられる力を減少させている。また、両端ランド部1
とスリーブ3の間で軸受ガイドをするが、この部分は第
2図に示すように戻り油回路(T)の外側にあるので油
圧により押し付けられる力は生じない。
Further, by forming a wide oil groove l 0 in the pressure oil land portion 2 shown in FIG. 1, the land length is made shorter (l 1 −l 0 ) than the length l 1 without the groove, and the spool 90 Reduces the force pressed against the sleeve 3. In addition, both ends land 1
The bearing is guided between the sleeve 3 and the sleeve 3. Since this portion is outside the return oil circuit (T) as shown in FIG. 2, a force pressed by the hydraulic pressure does not occur.

第3図は本考案油圧サーボ弁を電気油圧サーボ弁に適用
した実施例を示す側面図で、永久磁石7に電磁コイル8
を装着し、電磁コイル8の励磁力により、スプール90を
作動させる構造となっている。零調スプリング9と対向
スプリング10によって、無励磁時のバランスをとってい
る。
FIG. 3 is a side view showing an embodiment in which the hydraulic servo valve of the present invention is applied to an electrohydraulic servo valve, in which a permanent magnet 7 and an electromagnetic coil 8 are provided.
Is mounted and the spool 90 is operated by the exciting force of the electromagnetic coil 8. The zero-adjustment spring 9 and the opposing spring 10 provide balance during non-excitation.

第4図は本考案油圧サーボ弁を空気油圧サーボ弁に適用
した実施例を示す側面図で、ダイアフラム11によって制
御用空気圧の変化によりスプール90を作動させる。尚、
以上の実施例では、4ランドスプールの場合の実施例を
示したが、その他の3ランドスプール、あるいは5ラン
ドスプール等にも同効作用を以て適用し得る。
FIG. 4 is a side view showing an embodiment in which the hydraulic servo valve of the present invention is applied to an air hydraulic servo valve, in which the spool 90 is operated by the diaphragm 11 by changing the control air pressure. still,
In the above embodiment, the embodiment in which the 4-land spool is used is shown, but the same effect can be applied to other 3-land spool, 5-land spool or the like.

信号空気圧力又は信号電源を微少に増減したときにスプ
ールが動き始める不感帯は、元油圧(P0)にほぼ比例す
る。本考案を適用しない製品に対し、前記実施例を適用
した製品は、実験によれば不感帯はほぼ10分の1であ
り、著しく改善された。なおスプールに側面からかかる
不平衡力を近似計算した結果も実験同様10分の1程度で
ある。
The dead zone in which the spool starts to move when the signal air pressure or the signal power source is slightly increased or decreased is almost proportional to the original hydraulic pressure (P 0 ). As compared with the product to which the present invention is not applied, the product to which the above-described embodiment is applied has been experimentally shown to have a dead zone of about 1/10, which is a significant improvement. The result of the approximate calculation of the unbalanced force applied to the spool from the side surface is about 1/10 as in the experiment.

〔考案の効果〕[Effect of device]

以上の説明から明らかな通り、本考案油圧サーボ弁によ
れば、圧油ランド部の径をスプールランド部の径よりも
僅かに小さく加工するというきわめて簡単な手段で、圧
油ランド部とスプールの隙間を維持し、スプールがスリ
ーブに押し付けられる力を小さくできる。また、小孔加
工が不要のため、塵が孔に詰まることもない。これによ
り安価でしかも性能の安定した油圧サーボ弁を提供する
ことができる。
As is clear from the above description, according to the hydraulic servo valve of the present invention, the diameter of the pressure oil land portion is slightly smaller than the diameter of the spool land portion. The clearance can be maintained and the force with which the spool is pressed against the sleeve can be reduced. Further, since the small hole processing is unnecessary, dust will not be clogged in the holes. This makes it possible to provide a hydraulic servo valve that is inexpensive and has stable performance.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案油圧サーボ弁における4ランドスプー
ルの側面図、 第2図は、本考案油圧サーボ弁の一実施例を示す側断面
図、 第3図は、本考案油圧サーボ弁を電気油圧サーボ弁に適
用した場合の実施例を示す側断面図、 第4図は、本考案油圧サーボ弁を空気油圧サーボ弁に適
用した場合の実施例を示す側面図、 1…両端ランド部 2…圧力ランド部 3…スリーブ 90…スプール
FIG. 1 is a side view of a 4-land spool of the hydraulic servo valve of the present invention, FIG. 2 is a side sectional view showing an embodiment of the hydraulic servo valve of the present invention, and FIG. 3 is an electric diagram of the hydraulic servo valve of the present invention. FIG. 4 is a side sectional view showing an embodiment when applied to a hydraulic servo valve, and FIG. 4 is a side view showing an embodiment when the hydraulic servo valve of the present invention is applied to an air-hydraulic servo valve. Pressure land 3… Sleeve 90… Spool

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】空気圧力または電磁力によって直接スプー
ルを作動させる油圧サーボ弁において、シリンダへの接
続ポートと圧油及び戻油ポートの間の油路を開閉する圧
油ランド部の径をスプール両端のランド部の径よりも僅
かに小さく加工することにより複数ランド形スプールと
スリーブとの隙間を両端ランド部におけるより圧油ラン
ド部において若干広く構成したことを特徴とする油圧サ
ーボ弁。
1. In a hydraulic servo valve for directly operating a spool by air pressure or electromagnetic force, a diameter of a pressure oil land portion for opening and closing an oil passage between a connection port to a cylinder and a pressure oil and a return oil port is set to both ends of the spool. The hydraulic servo valve is characterized in that the gap between the plural land type spools and the sleeve is made slightly wider in the pressure oil land portion than in the land portions at both ends by processing the diameter slightly smaller than the diameter of the land portion.
JP1988126817U 1988-09-28 1988-09-28 Hydraulic servo valve Expired - Lifetime JPH0712723Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988126817U JPH0712723Y2 (en) 1988-09-28 1988-09-28 Hydraulic servo valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988126817U JPH0712723Y2 (en) 1988-09-28 1988-09-28 Hydraulic servo valve

Publications (2)

Publication Number Publication Date
JPH0247404U JPH0247404U (en) 1990-03-30
JPH0712723Y2 true JPH0712723Y2 (en) 1995-03-29

Family

ID=31378681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988126817U Expired - Lifetime JPH0712723Y2 (en) 1988-09-28 1988-09-28 Hydraulic servo valve

Country Status (1)

Country Link
JP (1) JPH0712723Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113154086B (en) * 2020-12-30 2023-01-17 中航工业南京伺服控制***有限公司 Double-system three-section split type slide valve pair and control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645027A (en) * 1979-09-20 1981-04-24 Chiyou Lsi Gijutsu Kenkyu Kumiai Electron beam lithography

Also Published As

Publication number Publication date
JPH0247404U (en) 1990-03-30

Similar Documents

Publication Publication Date Title
TWI267602B (en) Hydraulic valve
WO1994011640A1 (en) Magnetorheological valve and devices incorporating magnetorheological elements
DE102006056417A1 (en) linear compressor
JPH0712723Y2 (en) Hydraulic servo valve
JPS58142172U (en) Brake hydraulic pressure control valve
JPH08177899A (en) Brake device for hydraulic motor
US6561597B1 (en) Electromagnetically driving part
JP5165446B2 (en) solenoid valve
JP3267077B2 (en) Check valve
JP7060682B2 (en) Brake fluid pressure control device
JP2810631B2 (en) Hydrostatic gas bearing device
JPH0720461Y2 (en) solenoid valve
JP2001041242A (en) Static pressure gas bearing device
JPH083794Y2 (en) Horizontally installed solenoid control spool valve
JP2968415B2 (en) Static pressure constant pressure proportional control valve type static pressure device
JPH044259Y2 (en)
JPH0615290Y2 (en) Electromagnetic proportional pressure reducing valve
JPH071562Y2 (en) solenoid valve
JP2799750B2 (en) solenoid valve
JPH0732962Y2 (en) Rotless dress cylinder
JP3062786B2 (en) Spool valve
JPH11166656A (en) Solenoid valve
JP2003074512A (en) Linear guide air cylinder
JPS5988598U (en) metering type distribution valve
JPH044258Y2 (en)