JPH0712313B2 - How to decompose fats and oils - Google Patents

How to decompose fats and oils

Info

Publication number
JPH0712313B2
JPH0712313B2 JP61262003A JP26200386A JPH0712313B2 JP H0712313 B2 JPH0712313 B2 JP H0712313B2 JP 61262003 A JP61262003 A JP 61262003A JP 26200386 A JP26200386 A JP 26200386A JP H0712313 B2 JPH0712313 B2 JP H0712313B2
Authority
JP
Japan
Prior art keywords
lipase
reaction
alcohol
oil
oils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61262003A
Other languages
Japanese (ja)
Other versions
JPS63116697A (en
Inventor
純孝 國生
昭 角田
晴夫 町田
慎二郎 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meito Sangyo KK
Original Assignee
Meito Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meito Sangyo KK filed Critical Meito Sangyo KK
Priority to JP61262003A priority Critical patent/JPH0712313B2/en
Publication of JPS63116697A publication Critical patent/JPS63116697A/en
Publication of JPH0712313B2 publication Critical patent/JPH0712313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は油脂の分解方法、更に詳しくは特定量の水の存
在下に於いて、油脂とアルコールを含む反応系に微生物
高分子量アルカリ性リパーゼを作用させて短時間に高い
分解率で脂肪酸アルコールエステルとグリセリンに分解
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for decomposing fats and oils, and more specifically, in the presence of a specific amount of water, a microbial high molecular weight alkaline lipase is added to a reaction system containing fats and oils and alcohol. The present invention relates to a method of causing a fatty acid alcohol ester and glycerin to decompose in a short time with a high decomposition rate.

〔従来の技術〕[Conventional technology]

油脂の化学的分解方法は色々あるが、実用化されている
のは、アルカリによる鹸化分解法、水と高温高圧下に分
解するコルゲート.エメリー法、無水メタノールと触媒
の存在下に加熱分解するメタノリシス法などがその主な
ものである。
There are various chemical decomposition methods for fats and oils, but the ones that have been put into practical use are the saponification decomposition method with an alkali and the corrugate that decomposes under high temperature and high pressure with water. The main ones are the emery method and the methanolysis method which decomposes by heating in the presence of anhydrous methanol and a catalyst.

近年、リパーゼを用いる油脂の加水分解方法が省エネル
ギーの観点から研究されている。酵素法による油脂の加
水分解反応に於ける水の役割りとしては、直接反応に関
与する一成分として、又は酵素の溶媒として、又は油脂
の分散溶媒として働いている。しかし、水は油脂を分散
することは出来ても溶解することは出来ない為に加水分
解速度は反応時の界面面積が主な律束要因となり、その
為、特に反応後期に於いて酵素活性の十分な能力が発揮
出来ず、反応速度は著しく低下する。そこで、高い加水
分解率を得る為には長い分解時間を要したり、本来必要
の無い多量の酵素を必要とすると言った問題があって、
必ずしも満足な経済効果が得られてはいない。
In recent years, a method for hydrolyzing fats and oils using lipase has been studied from the viewpoint of energy saving. Regarding the role of water in the hydrolysis reaction of fats and oils by the enzymatic method, it acts as a component directly involved in the reaction, as a solvent for enzymes, or as a dispersion solvent for fats and oils. However, since water can disperse oils and fats but cannot dissolve it, the rate of hydrolysis is mainly determined by the interfacial area during the reaction. Inability to exert sufficient ability, the reaction rate decreases significantly. Therefore, in order to obtain a high hydrolysis rate, there is a problem that it takes a long decomposition time or that a large amount of enzyme which is not originally necessary is required.
The economic effect is not always satisfactory.

この様な欠点を補う方法として油脂の分散を容易にする
目的から小林らは水とイソオクタン等の非極性有機溶媒
との二相系での分解を検討している(醗酵工学.,63,439
(1985))。
Kobayashi et al. Are studying decomposition in a two-phase system of water and a non-polar organic solvent such as isooctane for the purpose of facilitating the dispersion of fats and oils as a method of compensating for such defects (Fermentation Engineering., 63, 439).
(1985)).

その結果、有機溶媒無添加系に比べて分解率はかなり改
善されたが、依然、油脂を溶解する有機溶媒相と酵素を
溶解する水相との二相系である為、撹拌に因って界面面
積を維持しなくてはならず、所要反応時間、酵素の有効
利用などなお実用化には問題もある。反応系にアルコー
ルを使用した例としては、水の非存在下にアルコールを
用いアルコリシス反応を行なうことを特徴とする方法
(特開昭60−78587号)が知られている。上記特開昭60
−78587号の出願公告公報において、従来のアルコリシ
ス反応は水の存在下にアルコールと油脂のアルコリシス
反応が行なわれているが、反応系に於ける水の存在は脂
肪酸エステル生成率や純度の低下をまぬがれ得ないとし
て、石原ら(Chem.Pharm.Bull,23,3266(1975))の報
告を挙げ、水の非存在下にアルコリシス反応を行なうこ
とによって初めてこの様な問題を防止できると述べてい
る。
As a result, the decomposition rate was considerably improved compared to the system without organic solvent addition, but since it is a two-phase system consisting of an organic solvent phase that dissolves fats and oils and an aqueous phase that dissolves enzymes, The interface area must be maintained, and there are problems in practical use such as required reaction time and effective use of enzymes. As an example of using alcohol in the reaction system, there is known a method characterized by carrying out an alcoholysis reaction using alcohol in the absence of water (JP-A-60-78587). Japanese Patent Laid-Open No. 60
In the official publication of the application of −78587, in the conventional alcoholysis reaction, the alcoholysis reaction of alcohol and fats and oils is carried out in the presence of water, but the presence of water in the reaction system lowers the fatty acid ester production rate and the purity. Ishihara et al. (Chem.Pharm.Bull, 23,3266 (1975)) cites that such problems cannot be prevented, and states that such problems can be prevented only by carrying out the alcoholysis reaction in the absence of water. .

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、本願発明者らの研究に拠ればアルコリシ
ル反応における水の役割は重要であり、多すぎても脂肪
酸エステル生成率が低下したり、二相系エマルジョンに
なりリパーゼの反応効率が低下して良くないが、逆に非
存在下に於いてもリパーゼの活性発現が阻害されアルコ
リシス反応は低下、若しくは反応を停止し、必ずしも満
足な結果は得られないことが分った。
However, according to the research conducted by the inventors of the present application, the role of water in the alcoholysil reaction is important, and if the amount of water is too large, the fatty acid ester production rate may decrease, or the reaction efficiency of lipase may decrease due to a two-phase emulsion. However, on the contrary, it was found that even in the absence of the lipase, the expression of lipase activity was inhibited and the alcoholysis reaction was reduced, or the reaction was stopped, and satisfactory results were not always obtained.

本発明は上記欠点を解消し、油脂を短時間に高い分解率
で脂肪酸エステルに分解する方法を提供することを目的
とする。
An object of the present invention is to solve the above-mentioned drawbacks and to provide a method for decomposing fats and oils into fatty acid esters in a short time with a high decomposition rate.

〔問題点を解決する為の手段〕[Means for solving problems]

そこで、本発明者らは効率的な油脂のアルコリシス反応
に必要な水の量に就いて種々検討した結果、0.02%以上
〜3.0%以下の水の存在下に油脂と、置換基を有してい
てもよいC1〜C22の飽和、又は不飽和の一級又は二級ア
ルコールとを、アルコール(但し、第三級アルコールを
除く)以外の有機溶媒の存在、又は非存在下に微生物高
分子量アルカリ性リパーゼを作用させ、油脂を分解させ
ることにより、上記欠点を解決出来ることを発見し本発
明を完成させた。即ち、本発明は均一系を保ち得る範囲
であって、しかもアルコリシス反応を最も効率良く進め
るのに必要な水の存在下に油脂とアルコールに微生物高
分子量アルカリ性リパーゼを作用し油脂を短時間に効率
良く脂肪酸エステルとグリセリンとに分解する方法であ
る。
Therefore, the present inventors have variously studied the amount of water necessary for the efficient alcoholysis reaction of fats and oils, and have a fat and oil in the presence of 0.02% to 3.0% of water and a substituent. C 1 -C 22 saturated or unsaturated primary or secondary alcohols and organic solvents other than alcohols (excluding tertiary alcohols) in the presence or absence of organic solvents, microbial high molecular weight alkaline The present invention has been completed by discovering that the above-mentioned drawbacks can be solved by causing lipase to act to decompose fats and oils. That is, the present invention is a range in which a homogeneous system can be maintained, and in addition, a microbial high molecular weight alkaline lipase acts on fats and oils and alcohol in the presence of water necessary for the alcoholysis reaction to proceed most efficiently, and the fats and oils can be efficiently treated in a short time. It is a method that often decomposes into fatty acid ester and glycerin.

以下、本発明に就いて詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明の方法は、油脂と、置換基を有していてもよいC1
〜C22の飽和、又は不飽和の一級又は二級アルコール若
しくは必要に応じてこれらとアルコール(但し、第三級
アルコールを除く)以外の有機溶媒との共存下に微生物
高分子量アルカリ性リパーゼを作用させて油脂を脂肪酸
エステルとグリセリンに分解するに際して0.02%以上〜
3.0%以下の水の存在下に於いて行なわれる。この水の
量であれば反応系は均一を保ち得る範囲であり、若し原
料や生成物の一部が反応系に於いて不溶性物となる場合
には反応系に適当な有機溶媒を選択して用いることで問
題を解消出来る。アルコリシス反応に於ける水は反応を
円滑に進める為の触媒的働きをしていると思われ、その
役割は重要であり、水の量が0.02%以下の条件に於いて
は油脂とアルコールの脂肪酸の交換は著しく阻害され
る。この点に関して実験例を示して説明する。
The method of the present invention comprises a fat and an optionally substituted C 1
Saturation -C 22, or unsaturated primary or secondary alcohol or optionally in an alcohol (however, tertiary excluding alcohol) these to act a microorganism high molecular weight alkaline lipase in the presence of a non-organic solvent 0.02% or more when decomposing fats and oils into fatty acid esters and glycerin
It is carried out in the presence of water of 3.0% or less. With this amount of water, the reaction system can be maintained in a uniform range, and if some of the raw materials and products become insoluble substances in the reaction system, select an appropriate organic solvent for the reaction system. Can be used to solve the problem. Water in the alcoholysis reaction seems to act as a catalyst for the smooth progress of the reaction, and its role is important, and when the amount of water is 0.02% or less, the fatty acids of oils and alcohols Exchange is significantly hindered. This point will be described with reference to experimental examples.

実験例1 オリーブ油3g、1−ブタノール3gを共栓付き試験管に取
り、微生物高分子量アルカリ性リパーゼであるリパーゼ
PL−679(名糖産業、70000u/g)、リパーゼAL(名糖産
業、15000u/g)、微生物高分子量アルカリ性リパーゼで
ないリパーゼOF(名糖産業、360000u/g)、リパーゼM
−AP20(天野製薬、20000u/g)、リパーゼAP6(天野製
薬、6000u/g)、タリパーゼ(田辺製薬、6000u/g)、パ
ンクレアチン(和光純薬、2000u/g)のリパーゼ粉末0.1
gを加え、水が0〜50%(反応系全体に対する%、カー
ルフィッシャー法で測定)になるようにモレキュラーシ
ーブス3Aで脱水するかもしくは水を加え、37℃で24時間
振とう反応させ、後記実施例1に記載したようにして脂
肪酸1−ブタノールエステル生成率を測定した。その結
果を表1に示す。
Experimental Example 1 Olive oil (3 g) and 1-butanol (3 g) were placed in a test tube with a stopper, and lipase which is a microbial high molecular weight alkaline lipase
PL-679 (Meito Sangyo, 70000u / g), Lipase AL (Meito Sangyo, 15000u / g), Microbial High Molecular Weight Alkaline Lipase OF (Meito Sangyo, 360,000u / g), Lipase M
-AP20 (Amano Pharmaceutical, 20000u / g), Lipase AP6 (Amano Pharmaceutical, 6000u / g), Talipase (Tanabe Pharmaceutical, 6000u / g), Pancreatin (Wako Pure Chemicals, 2000u / g) lipase powder 0.1
Add g and dehydrate with Molecular Sieves 3A so that the water content will be 0 to 50% (% based on the total reaction system, measured by Karl Fischer method) or add water and shake react at 37 ° C for 24 hours. The fatty acid 1-butanol ester production rate was measured as described in Example 1. The results are shown in Table 1.

上記実験例1の実験結果からわかるように、本発明にお
いて、前記反応系に存在させる水の量は反応系に対して
遊離水として0.02%以上〜3.0%以下、好ましくは0.02
%以上〜1.0%以下、特に好ましくは0.02%以上〜0.6%
以下であることが好ましい。水の量が3%を越えると均
一相が壊れたりアルコリシス反応が低下するので好まし
くない。又、逆に0.02%以下の水の量でも反応は低下し
てしまい好ましくない。
As can be seen from the experimental results of Experimental Example 1 above, in the present invention, the amount of water present in the reaction system is 0.02% to 3.0% as free water in the reaction system, preferably 0.02% or less.
% To 1.0%, particularly preferably 0.02% to 0.6%
The following is preferable. When the amount of water exceeds 3%, the homogeneous phase is broken or the alcoholysis reaction is deteriorated, which is not preferable. On the contrary, even if the amount of water is 0.02% or less, the reaction is deteriorated, which is not preferable.

本発明に用いるリパーゼは、微生物高分子量アルカリ性
リパーゼ、好ましくは分子量が10万以上、至適pHが8.0
以上の菌体外リパーゼ、であればその起源は何でもよく
任意のものを使用できるが、その様なリパーゼとして、
例えばアクロモバクター(Achromobacter)属に属する
名糖AL−865号菌(微工研菌寄第1213号)の生産するリ
パーゼ(特公昭49−32080号公報)(以下リパーゼALと
言う)、アルカリゲネス(Alcaligenes)属に属する名
糖PL−266号(微工研菌寄第3187号)の生産するリパー
ゼ(特公昭58−36953号公報)(以下リパーゼPL−266と
言う)、同じくアルカリゲネス属に属する名糖PL−679
号(微公研菌寄与第3783号)の生産するリパーゼ(特開
昭60−15312)(以下リパーゼPL−679と言う)等のリパ
ーゼを具体例として挙げることができる。また、シュー
ドモナス・ニトロレデューセンス・バライエティ・サー
モトレランス(Pseudomonas nitroreducens var.thormo
−tolerans)の生産するリパーゼ(特公昭56−28516
号)も同様に使用することができると考えられる。これ
らのリパーゼは分子内結合水を多く保有していると思わ
れる高分子量蛋白からなり、しかも至適pHがアルカリ側
にあることを特徴とするリパーゼであって、これらの性
質が油脂とアルコールのアルコリシス反応を効率良く短
時間に進行させる上で特に優れた性質となっていること
が推定される。又このことが有機溶媒に対する高い安定
性にも関係しているものと思われ、この点についても実
験例を示して以下に説明する。
The lipase used in the present invention is a microbial high molecular weight alkaline lipase, preferably having a molecular weight of 100,000 or more, and an optimum pH of 8.0.
The above-mentioned extracellular lipase, as long as it has any origin, any one can be used, but as such a lipase,
For example, a lipase (Japanese Patent Publication No. Sho 49-32080) (hereinafter referred to as lipase AL) produced by a name sugar AL-865 bacterium belonging to the genus Achromobacter (Ministry of Industrial Science and Technology No. 1213) (hereinafter referred to as Lipase AL), Alcaligenes ( Lipase (Japanese Patent Publication No. Sho 58-36953) (hereinafter referred to as Lipase PL-266) produced by the name sugar PL-266 (Ministry of Industrial Science and Technology No. 3187) belonging to the genus Alcaligenes, also a name belonging to the genus Alcaligenes Sugar PL-679
As specific examples, lipases such as lipase (Japanese Unexamined Patent Publication No. 60-15312) (hereinafter referred to as lipase PL-679) produced by No. 3 (Shin Koken Bacterial Contribution No. 3783) can be mentioned. In addition, Pseudomonas nitroreducens var.thormo
-Tolerans produced lipase (Japanese Patent Publication No. 56-28516)
Issue) could be used as well. These lipases are high-molecular-weight proteins that are thought to have a large amount of intramolecularly bound water, and are characterized by having an optimum pH on the alkaline side. It is presumed that the properties are particularly excellent for efficiently carrying out the alcoholysis reaction in a short time. This is also considered to be related to high stability against organic solvents, and this point will be described below with reference to experimental examples.

実験例2 微生物高分子量アルカリ性リパーゼであるリパーゼPL−
679(名糖産業、70000u/g)、リパーゼAL(名糖産業、1
5000u/g)、微生物高分子量アルカリ性リパーゼでない
リパーゼOF(名糖産業、360000u/g)、リパーゼM−AP2
0(天野製薬、20000u/g)、リパーゼAP6(天野製薬、60
00u/g)、タリパーゼ(田辺製薬、6000u/g)、パンクレ
アチン(和光純薬、2000u/g)のリパーゼ粉末25mgずつ
を各7ml栓付き遠心管に取り、これに各種有機溶媒、即
ちn−ヘキサン、石油エーテル、アセトン、第3級ブタ
ノール、水を各2ml加え、充分撹拌し、37℃で24時間振
とうし、残存活性をリバーセ活性測定法により測定し
た。リパーゼ活性の測定は、リパーゼPL−679とパンク
レアチンについては国生らの方法(Agric.Biol.Chem.,4
6,1159,1982)リパーゼALについては国生らの方法(油
化学、23,98,1974)リパーゼOFについては山田らの方法
(日農化誌,36,860,1962)、その他のリパーゼについ
ては福本らの方法(J.Gen.Appl.Microbiol.,,353,196
3)で行った。その結果を第2表に示す。
Experimental Example 2 Lipase PL- which is a microbial high molecular weight alkaline lipase
679 (Meito Industry, 70000u / g), Lipase AL (Meito Industry, 1
5000u / g), microbial high molecular weight alkaline lipase non-lipase OF (Meito Sangyo, 360,000u / g), Lipase M-AP2
0 (Amano, 20000u / g), Lipase AP6 (Amano, 60
00u / g), Talipase (Tanabe Seiyaku, 6000u / g), Pancreatin (Wako Pure Chemicals, 2000u / g), 25mg each of lipase powder, was placed in a centrifuge tube with a 7ml stopper. Hexane, petroleum ether, acetone, tertiary butanol, and water (2 ml each) were added, thoroughly stirred, and shaken at 37 ° C. for 24 hours, and the residual activity was measured by the Reverse activity measuring method. The lipase activity was determined by the method of Kokusei et al. (Agric.Biol.Chem., 4) for lipase PL-679 and pancreatin.
6, 1159,1982) Kokusho's method for lipase AL (oil chemistry, 23, 98,1974) Yamada et al method for lipase OF (day Noka Journal, 36, 860,1962), and other lipase Fukumoto's method (J.Gen.Appl.Microbiol., 9 , 353,196
I went in 3). The results are shown in Table 2.

反応に用いるリパーゼは精製品でも粗製品でもよく、粉
末や、顆粒状の乾燥酵素として使用する。又、DEAE等の
イオン交換樹脂やセライト、ベントナイト、キトサン等
に固定化した乾燥酵素であってもよい。リパーゼの使用
量には制限は無いが、例えば油脂1g当り約1,000〜100,0
00単位、好ましくは2,000〜50,000単位程度の酵素量を
挙げることが出来る。
The lipase used in the reaction may be a purified product or a crude product, and is used as a powder or granular dry enzyme. Further, it may be a dry enzyme immobilized on an ion exchange resin such as DEAE, celite, bentonite, chitosan or the like. The amount of lipase used is not limited, but for example, about 1,000 to 100,0 per 1 g of oil and fat.
The amount of enzyme may be about 00 units, preferably about 2,000 to 50,000 units.

酵素を担体に固定化して使用する場合、その比活性は高
い方が反応効率も高くなるので好ましく、例えば、1,00
0〜300,000単位/g、程度の固定化酵素を挙げることが出
来る。
When the enzyme is immobilized on a carrier and used, the higher the specific activity, the higher the reaction efficiency, which is preferable.
Immobilized enzymes of about 0 to 300,000 units / g can be mentioned.

反応溶媒としては、反応に用いるアルコールが同時に反
応系溶媒としても使用出来る場合が最も理想的である
が、基質や生成物がアルコールに不溶性で均一相が得ら
れない場合にはアルコール(但し、第三級アルコールを
除く)以外の有機溶媒を反応溶媒として用いる。この際
には、反応を阻害しない有機溶媒を選んで使用する限り
何を用いてもよいが、例えばn−ヘプタン、n−ペンタ
ン、n−ヘキサン、石油エーテル、イソオクタン、等の
ごとき脂肪酸炭化水素類;シクロペンタン、シクロヘキ
サン、シクロブタン、などのごとき脂環式炭化水素類;
ベンゼン、トルエン、キシレン、フェノール、等のごと
き芳香族炭化水素類;アセトン、メチルイソブチルケト
ン、などのごときケトン類;アセトニトリル、などのご
とき含窒素溶媒類;ジメチルエーテル、ジエチルエーテ
ル、ジイソプロピルエーテル、ジオキサンなどのごとき
エーテル類;四塩化炭素、クロロホルム、塩化メチレ
ン、などのごときハロゲン化炭化水素類;第3級ブチル
アルコール、第3級アミルアルコール、ジアセトンアル
コール、のごとき第3級アルコール類などを例示するこ
とが出来る。溶媒は単独、又は2種以上混合して使用し
てもよい。使用量は、用いる溶媒、基質の種類や濃度に
よっても左右されるが、反応温度で流動性のある均一相
を保ち、反応が良く進む程度に添加するのが望ましく、
添加量に制限はないが、例えば反応系の10〜90%(v/
v)の範囲を示すことが出来る。基質によっては上記し
た様な溶媒の添加に因って無添加よりも反応が促進され
ることもある。
As a reaction solvent, it is most ideal that the alcohol used in the reaction can be used as a reaction solvent at the same time, but if the substrate or product is insoluble in alcohol and a homogeneous phase cannot be obtained, the alcohol (however, An organic solvent other than the tertiary alcohol is used as a reaction solvent. At this time, any organic solvent may be used as long as an organic solvent which does not inhibit the reaction is selected and used. For example, fatty acid hydrocarbons such as n-heptane, n-pentane, n-hexane, petroleum ether, isooctane, etc. Alicyclic hydrocarbons such as cyclopentane, cyclohexane, cyclobutane, etc .;
Aromatic hydrocarbons such as benzene, toluene, xylene, phenol; ketones such as acetone and methyl isobutyl ketone; nitrogen-containing solvents such as acetonitrile; dimethyl ether, diethyl ether, diisopropyl ether, dioxane, etc. Examples include ethers such as; carbon tetrachloride, chloroform, methylene chloride, and other halogenated hydrocarbons; tertiary butyl alcohol, tertiary amyl alcohol, diacetone alcohol, and other tertiary alcohols. Can be done. You may use a solvent individually or in mixture of 2 or more types. The amount to be used depends on the solvent used, the type and concentration of the substrate, but it is desirable to add it in such a degree that the reaction proceeds well and the fluidized homogeneous phase is maintained.
There is no limit to the amount added, but for example, 10 to 90% (v /
The range of v) can be shown. Depending on the substrate, the reaction may be promoted as compared with the case where no solvent is added due to the addition of the solvent as described above.

本発明で反応に用いられる原料油脂は天然の動物油脂、
植物油脂、及び加工油脂等が用いられ、天然樹脂として
は例えば牛脂、豚脂、乳脂、魚油、ヤシ油、パーム油、
パーム核油、オリーブ油、大豆油、綿実油、菜種油、コ
ーン油、サフラワー油、コプラ油、ヤシ油、米油、ゴマ
油、アマニ油、ヒマシ油、ヒマワリ油、落花生油、など
が、加工油脂としては、例えば、硬化牛脂、硬化豚脂、
ショートニング、等があり、その他廃油、高酸化油脂な
ども用いることが出来る。
The raw material fat used in the reaction in the present invention is a natural animal fat,
Vegetable fats and oils, processed fats and oils are used, and examples of natural resins include beef tallow, lard, milk fat, fish oil, coconut oil, palm oil,
Palm kernel oil, olive oil, soybean oil, cottonseed oil, rapeseed oil, corn oil, safflower oil, copra oil, coconut oil, rice oil, sesame oil, linseed oil, castor oil, sunflower oil, peanut oil, etc. , For example, hardened beef tallow, hardened lard,
There is shortening, etc., and waste oil, highly oxidized fats and oils can also be used.

又、本発明に於いて油脂と反応させるアルコールとして
は、置換基を有していてもよい炭素C1〜C22の一級、又
は二級アルコールが用いられる。
In addition, in the present invention, as the alcohol to be reacted with the fat or oil, primary or secondary alcohols having carbon atoms of C 1 to C 22 which may have a substituent are used.

一級アルコールの具体例としては、メタノール、エタノ
ール、1−プロパノール、アリルアルコール、プロパル
ギルアルコール、1−ブタノール、イソブタノール、1
−ペンタノール、2−メチル−1−ブタノール、イソペ
ンチルアルコール、ネオペンチルアルコール、1−ヘキ
サノール、2−メチル−1−ペンタノール、2−エチル
−1−ブタノール、1−ヘプタノール、1−オクタノー
ル、2−エチル−1−ヘキサノール、1−ノナノール、
3,5,5−トリメチル−1−ヘキサノール、パントテニー
ルアルコール、1−デカノール、ゲラニオール、1−ウ
ンデカノール、1−ドデカノール、ファルネソール、フ
ィトール、ヘキサデカノール、オレイルアルコール、1
−オクタデカノール、1−エイコサノール、1−ドコサ
ノール、などが挙げられ、置換基を持つものとしてフェ
ニル基を有するものとしては例えば、ベンジルアルコー
ル、β−フェネチルアルコール、ケイ皮アルコール、ク
ロロベンジルアルコール、p−アミノフェネチルアルコ
ール、ヒドロキシエチルアニリン、置換基としてナフチ
ル基を有するものとしては例えば2−ナフタリンエタノ
ール、置換基としてフルフリル基を有するものとしては
例えばフルフリルアルコール、テトラヒドロフルフリル
アルコール、置換基としてヒドロキシ基を有するものと
しては例えばエチレングリコール、1,4−ブタンジオー
ル、1,6−ヘキサンジオール、1,10−デカンジオール、
1,16−ヘキサデカンジオール、ペンタエリスリトール、
ポリエチレングリコール、置換基としてアミノ基を有す
るものとしては例えば2−アミノエタノール、2−(ジ
エチルアミノ)エタノール、5−アミノ−1−ペンタノ
ール、6−アミノ−1−ヘキサノール、置換基としてハ
ロゲンを有するものとしては例えば、3−クロロ−1,2
−プロパンジオール、6−クロロ−1−ヘキサノール、
置換基としてチエニル基を有するものとしては例えば2
−チエニルエタノール、置換基としてピリジル基を有す
るものとしては例えば2−ビリジンエタノール、2−ピ
リジンプロパノール、ピリドキシン、置換基としてピペ
ラジル基を有するものとしては例えば1−ピペラジンエ
タノール、置換基としてピラン基を有するものとしては
例えばピペロニルアルコール、置換基としてフタルイミ
ド基を有するものとしては例えばフタルイミドエタノー
ル、置換基としてモルホリル基を有するものとしては例
えば1−モルホリンエタノール、置換基としてピロルジ
ル基を有するものとしては例えば1−ピロリジンエタノ
ール、1−ピロリドンエタノール、置換基としてイミダ
ゾール基を有するものとしては例えばチアミンなどが挙
げられる。
Specific examples of the primary alcohol include methanol, ethanol, 1-propanol, allyl alcohol, propargyl alcohol, 1-butanol, isobutanol, 1
-Pentanol, 2-methyl-1-butanol, isopentyl alcohol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-ethyl-1-butanol, 1-heptanol, 1-octanol, 2 -Ethyl-1-hexanol, 1-nonanol,
3,5,5-Trimethyl-1-hexanol, pantothenyl alcohol, 1-decanol, geraniol, 1-undecanol, 1-dodecanol, farnesol, phytol, hexadecanol, oleyl alcohol, 1
-Octadecanol, 1-eicosanol, 1-docosanol, and the like, and examples of those having a phenyl group as a substituent include benzyl alcohol, β-phenethyl alcohol, cinnamic alcohol, chlorobenzyl alcohol, p. -Aminophenethyl alcohol, hydroxyethylaniline, 2-naphthalene ethanol having a naphthyl group as a substituent, furfuryl alcohol, tetrahydrofurfuryl alcohol having a furfuryl group as a substituent, and a hydroxy group as a substituent Examples of those having ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,10-decanediol,
1,16-hexadecanediol, pentaerythritol,
Polyethylene glycol, those having an amino group as a substituent include 2-aminoethanol, 2- (diethylamino) ethanol, 5-amino-1-pentanol, 6-amino-1-hexanol, those having a halogen as a substituent For example, 3-chloro-1,2
-Propanediol, 6-chloro-1-hexanol,
Examples of compounds having a thienyl group as a substituent include 2
-Thienylethanol, those having a pyridyl group as a substituent, for example, 2-viridine ethanol, 2-pyridinepropanol, pyridoxine, those having a piperazyl group as a substituent, for example, 1-piperazine ethanol, having a pyran group as a substituent Examples thereof include piperonyl alcohol, examples of those having a phthalimido group as a substituent are, for example, phthalimidoethanol, examples of those having a morpholyl group as a substituent are, for example, 1-morpholine ethanol, and examples of those having a pyrroldil group as a substituent are, for example. Examples of 1-pyrrolidine ethanol, 1-pyrrolidone ethanol, and those having an imidazole group as a substituent include thiamine.

次に、二級アルコールの具体例としては、例えば2−プ
ロパノール、2−ブタノール、2−ペンタノール、2−
ヘキサノール、3−ヘキサノール、2−ヘプタノール、
2−オクタノール、2−ノナノール、2−デカノール、
2−ウンデカノール、2−トリデカノール、2−テトラ
デカノール、4−メチル−2−ペンタノール、などが挙
げられる。又、置換基としてシクロ環を有するものとし
ては例えばシクロブタノール、シクロヘキサノール、シ
クロオクタノール、置換基としてステロール基を有する
ものとしては、例えばコレステロール、、エルゴステロ
ール、置換基としてフェニル基を有するものとしては例
えば1−フェニルエタノール、などが挙げられるがアル
コールの種類に制限はない。
Next, specific examples of the secondary alcohol include, for example, 2-propanol, 2-butanol, 2-pentanol and 2-
Hexanol, 3-hexanol, 2-heptanol,
2-octanol, 2-nonanol, 2-decanol,
2-undecanol, 2-tridecanol, 2-tetradecanol, 4-methyl-2-pentanol and the like can be mentioned. Further, as those having a cyclo ring as a substituent, for example, cyclobutanol, cyclohexanol, cyclooctanol, as those having a sterol group as a substituent, for example, cholesterol, ergosterol, as those having a phenyl group as a substituent, For example, 1-phenylethanol and the like can be mentioned, but the kind of alcohol is not limited.

油脂とアルコールとを上記した範囲の水の存在下でリパ
ーゼと接触し、油脂を脂肪酸エステルとグリセリンに分
解せしめる為の態様は、適宜選択できる。回分式反応槽
を用いる場合には、粉末状、若しくは、顆粒状の酵素又
は固定化酵素を反応系に添加して撹拌する方法により行
なえばよい。本発明で用いる水の量では酵素は溶解する
ことなく固体として浮遊しているので、反応系から簡単
に回収して繰返し使用することができる。又、充填槽型
反応槽を用いて連続反応する場合には上記した酵素を槽
に充填し反応液を通過、又は循環する方法によって行な
うことができる。
A mode for contacting a fat and oil and an alcohol with a lipase in the presence of water in the above range to decompose the fat and oil into a fatty acid ester and glycerin can be appropriately selected. When a batch-type reaction tank is used, it may be carried out by a method of adding powdery or granular enzyme or immobilized enzyme to the reaction system and stirring. With the amount of water used in the present invention, the enzyme does not dissolve and floats as a solid, so it can be easily recovered from the reaction system and used repeatedly. When a continuous reaction is carried out using a packed tank type reaction tank, it can be carried out by a method of filling the above-mentioned enzyme into the tank and passing or circulating the reaction solution.

反応に於いて基質となる油脂とアルコールの混合比や気
質濃度についても適宜に選択できるが、油脂1モルに対
するアルコールの添加モル数は例えば3〜3,000モル、
好ましくは3〜300モル程度で行なえばよく、その時の
基質濃度としては、約10〜100%を例示できる。又、用
いる油脂、アルコールは数種類混合して反応しても差支
えない。
The mixing ratio of the oil / fat and alcohol as a substrate in the reaction and the gas concentration can be appropriately selected, but the number of moles of alcohol added to 1 mol of the oil / fat is, for example, 3 to 3,000 mol
It may be carried out preferably at about 3 to 300 mol, and the substrate concentration at that time may be about 10 to 100%. In addition, it is possible to mix and react several kinds of fats and oils and alcohols to be used.

反応温度は室温程度でも進行するので普通は特に加熱の
必要はないが、用いる基質や溶媒の融点や沸点、酵素の
作用温度等を考慮し、適当な温度で行なうのが好まし
く、例えば0〜90℃、好ましくは20〜60℃で行なえばよ
い。
The reaction temperature does not particularly need to be heated because it proceeds even at about room temperature, but it is preferable to carry out the reaction at an appropriate temperature in consideration of the melting point and boiling point of the substrate or solvent used, the action temperature of the enzyme, etc. C., preferably 20 to 60.degree. C.

又、反応時間も、適宜選択することができ、例えば3〜
48時間のごとき反応時間を示すことができる。アルコリ
シス反応により生成した脂肪酸エステルは必要に応じて
例えば、蒸溜、溶剤分画等の手段により分離精製するこ
ともできる。
Also, the reaction time can be appropriately selected, for example, from 3 to
A reaction time such as 48 hours can be indicated. The fatty acid ester produced by the alcoholysis reaction can be separated and purified by means such as distillation and solvent fractionation, if necessary.

本発明で得られる各種アルコールの脂肪酸エステルは、
食品工業、酵素工業、繊維工業、医薬品、製紙パルプ工
業、合成ゴム、プラスチック工業、塗料工業、化粧品工
業、石油化学工業、農薬工業、機械工業等の分野におい
て、乳化剤、消泡剤、可溶化剤、潤滑剤、分離剤などと
して用いることができる。又、高級脂肪酸と高級アルコ
ールから成るエステルについては、ワックスとしての用
途もある。
Fatty acid esters of various alcohols obtained in the present invention,
Emulsifiers, defoamers, solubilizers in the fields of food industry, enzyme industry, textile industry, pharmaceuticals, paper pulp industry, synthetic rubber, plastics industry, coating industry, cosmetics industry, petrochemical industry, agrochemical industry, machinery industry, etc. It can be used as a lubricant, a separating agent, or the like. In addition, esters composed of higher fatty acids and higher alcohols are also used as waxes.

〔実施例〕〔Example〕

以下、本発明の実施例を示すが、本発明はこれにより何
等制限されるものではない。
Examples of the present invention will be shown below, but the present invention is not limited thereto.

実施例1 パーム油3g、1−ヘキサノール3gを共栓付き試験管に取
り反応系の水分をカールフィッシャー法で測定し水分が
0.2%になるように水を加えた後、リパーゼPL−679粉末
(70000u/g)200mgを加え37℃で1,3,6,16,24,48,72時間
反応し脂肪酸1−ヘキサノールエステル生成率を測定し
た。その結果を第3表に示す。
Example 1 3 g of palm oil and 3 g of 1-hexanol were placed in a test tube with a stopper, and the water content in the reaction system was measured by the Karl Fischer method.
After adding water to 0.2%, add 200 mg of lipase PL-679 powder (70000u / g) and react at 37 ℃ for 1,3,6,16,24,48,72 hours to produce fatty acid 1-hexanol ester. The rate was measured. The results are shown in Table 3.

尚、脂肪酸アルコールエステル生成率はイアトロスキャ
ンにより求めた。即ち、上記反応液0.05mlを3mlのクロ
ロホルムに溶解し、濾過し不溶物を除いた後1μlをク
ロマロッドS2(ヤトロン社)にスポットしn−ヘキサン
−ジエチルエーテル酢酸(90:10:1v/v)を展開溶媒とし
て約10cm展開しイアトロスキャン(ヤトロン社イアトロ
スキャンTH10)にかけピーク面積比から成分の重量比を
求め、脂肪酸アルコールエステル生成率はグリセライ
ド、脂肪酸、脂肪酸アルコールエステルに対する脂肪酸
アルコールエステルの重量比で表した。
The fatty acid alcohol ester production rate was determined by iatroscan. That is, 0.05 ml of the above reaction solution was dissolved in 3 ml of chloroform, filtered to remove insoluble matter, and 1 μl was spotted on Chromarod S2 (Yatron) to n-hexane-diethyl ether acetic acid (90: 10: 1 v / v). ) Is developed as a developing solvent for about 10 cm and subjected to Iatroscan (Iatroscan TH10 manufactured by Yatron Co., Ltd.) to obtain the weight ratio of the components from the peak area ratio, and the fatty acid alcohol ester production rate is glyceride, fatty acid, fatty acid alcohol ester to fatty acid alcohol ester Expressed as a weight ratio.

第3表の結果から脂肪酸1−ヘキサノールエステル生成
反応は6時間という短時間で終了することがわかる。
From the results in Table 3, it can be seen that the fatty acid 1-hexanol ester formation reaction is completed in a short time of 6 hours.

実施例2 第4表に示す油脂3gと第4表に示すアルコール3gを共栓
付き試験管に取り反応系の水分をカールフィッシャー法
で測定し水分が0.2%になるように水を加えた後、リパ
ーゼPL−679粉末200mgを加え37℃で6時間振とう反応し
脂肪酸アルコールエステル生成率を求めた。その結果を
第4表に示す。
Example 2 After adding 3 g of oils and fats shown in Table 4 and 3 g of alcohols shown in Table 4 to a test tube with a stopper, the water content of the reaction system was measured by the Karl Fischer method, and water was added so that the water content would be 0.2%. , 200 mg of Lipase PL-679 powder was added, and the mixture was shaken at 37 ° C. for 6 hours to determine the fatty acid alcohol ester production rate. The results are shown in Table 4.

第4表の結果からリパーゼPL−679は非常に良く油脂を
分解し脂肪酸アルコールエステルを生成することがわか
る。
The results in Table 4 show that Lipase PL-679 decomposes oil and fat very well to form fatty acid alcohol ester.

実施例3 オリーブ油3gと第5表に示すアルコール3gを共栓付き試
験管に取り反応系の水分をカールフィッシャー法で測定
し水分が0.2%になるように水を加えた後、リパーゼAL
粉末(15000u/g)200mgを加え37℃で6時間振とう反応
し脂肪酸アルコールエステル生成率を求めた。その結果
を第5表に示す。
Example 3 3 g of olive oil and 3 g of alcohol shown in Table 5 were placed in a test tube with a stopper, and the water content of the reaction system was measured by the Karl Fischer method. Water was added so that the water content was 0.2%, and then lipase AL was used.
200 mg of powder (15000 u / g) was added and shake reaction was carried out at 37 ° C. for 6 hours to determine the fatty acid alcohol ester production rate. The results are shown in Table 5.

第5表の結果からリパーゼALは非常に良く油脂を分解し
脂肪酸アルコールエステルを生成することがわかる。
From the results in Table 5, it can be seen that lipase AL decomposes oil and fat very well to form fatty acid alcohol ester.

実施例4 ヤシ油3g、1−ドコサノール3gと第6表に示す有機溶媒
10mlを共栓付き三角フラスコに取り反応系の水分をカー
ルフィッシャー法で測定し水分が0.2%になるように水
を加えた後、リパーゼPL−679粉末200mgを加え37℃で6
時間振とう反応し脂肪酸1−ドコサノールエステル生成
率を求めた。その結果を第6表に示す。
Example 4 3 g of coconut oil, 3 g of 1-docosanol and the organic solvent shown in Table 6
10 ml was placed in an Erlenmeyer flask with a ground stopper and the water content of the reaction system was measured by the Karl Fischer method. Water was added so that the water content would be 0.2%, 200 mg of Lipase PL-679 powder was added, and the mixture was mixed at 37 ° C for 6 hours.
The reaction with time shaking was performed to obtain the fatty acid 1-docosanol ester production rate. The results are shown in Table 6.

次に、ヤシ油の代りにパーム油3gを用いて上記と同様に
行い脂肪酸1−ドコサノールエステル生成量を求めた。
その結果を第6表に示す。
Next, the production amount of fatty acid 1-docosanol ester was determined in the same manner as above using 3 g of palm oil instead of palm oil.
The results are shown in Table 6.

第6表の結果からn−ヘキサンやジエチルエーテルのよ
うな有機溶媒を添加することにより脂肪酸1−ドコサノ
ールエステル生成率が上昇することがわかる。
From the results shown in Table 6, it can be seen that the fatty acid 1-docosanol ester production rate is increased by adding an organic solvent such as n-hexane or diethyl ether.

実施例5 リパーゼPL−679粉末(70000u/g)5gを100mlの水に溶解
し、これにOH型に活性化したDEAEトヨパール(pH9.0に
調整)15gを加え4℃で3時間撹拌しDEAEトヨパールに
リパーゼPL−679を固定化した。遠心分離によりDEAEト
ヨパールを回収した後凍結乾燥しDEAEトヨパール固定化
リパーゼPL−679 15g(20000u/g)を得た。
Example 5 5 g of lipase PL-679 powder (70000u / g) was dissolved in 100 ml of water, 15 g of DEOH Toyopearl (adjusted to pH 9.0) activated to OH type was added thereto, and the mixture was stirred at 4 ° C for 3 hours. Lipase PL-679 was immobilized on Toyopearl. DEAE Toyopearl was recovered by centrifugation and freeze-dried to obtain 15 g (20000u / g) of DEAE Toyopearl-immobilized lipase PL-679.

オリーブ油3gとオレイルアルコール3gを共栓付き試験管
に取り反応系の水分をカールフィッシャー法で測定し水
分が0.2%になるように水を加えた後、DEAEトヨパール
固定化リパーゼPL−679 500mgを加え37℃で6時間振と
う反応し脂肪酸オレイルアルコールエステル生成率を求
めた。反応後遠心分離しDEAEトヨパール固定化リパーゼ
PL−679を回収し、これを上記したと同様の新たな反応
系に加え繰り返し反応を行った結果を第7表に示す。
Take 3 g of olive oil and 3 g of oleyl alcohol in a test tube with a stopper, and measure the water content in the reaction system by Karl Fischer's method.Add water so that the water content will be 0.2%, then add 500 mg of DEAE Toyopearl immobilized lipase PL-679. Shaking reaction was carried out at 37 ° C. for 6 hours to determine the fatty acid oleyl alcohol ester production rate. After reaction, centrifuge and DEAE Toyopearl immobilized lipase
Table 7 shows the results obtained by collecting PL-679, adding it to the same new reaction system as above, and repeating the reaction.

第7表の結果からDEAEトヨパール固定化リパーゼPL−67
9は脂肪酸アルコールエステルを生成するために繰り返
し使用出来ることがわかる。
From the results in Table 7, DEAE Toyopearl immobilized lipase PL-67
It can be seen that 9 can be used repeatedly to produce fatty acid alcohol esters.

〔発明の効果〕〔The invention's effect〕

本発明によれば微生物高分子量アルカリ性リパーゼを用
いたアルコリシル反応に於いて反応系に0.02%〜3.0%
の水を存在させることにより極めて短時間に高い反応率
で、油脂から各種アルコールエステルを得ることができ
る。また、この範囲の水が存在しても酵素は溶解されな
いので酵素を連続して長期に繰返し使用することがで
き、酵素に利用効率が高まる。
According to the present invention, in the Alcolysyl reaction using microbial high molecular weight alkaline lipase, the reaction system contains 0.02% to 3.0%.
By the presence of water, various alcohol esters can be obtained from fats and oils with a high reaction rate in an extremely short time. Further, since the enzyme is not dissolved even in the presence of water in this range, the enzyme can be continuously and repeatedly used for a long time, and the utilization efficiency of the enzyme is enhanced.

更に、本発明では、化学的方法で用いられる様な有毒な
反応触媒や高いエネルギーを必要とせず、温和な条件下
に反応が生起するため、生成する脂肪酸の各種のアルコ
ールエステルは品質の優れた安全性の高いエステルが得
られる。
Further, in the present invention, since a reaction occurs under mild conditions without requiring a toxic reaction catalyst and high energy as used in a chemical method, various alcohol esters of fatty acids produced are excellent in quality. A highly safe ester can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】0.02%以上〜3.0%以下の水存在下に油脂
と、置換基を有していてもよい炭素数C1〜C22の飽和、
又は不飽和の一級又は二級アルコールとを、アルコール
(但し、第三級アルコールを除く)以外の有機溶媒の存
在、又は非存在下で微生物高分子量アルカリ性リパーゼ
を作用させ、油脂を脂肪酸エステルとグリセリンに分解
させることを特徴とする油脂の分解方法。
1. A fat or oil in the presence of 0.02% or more and 3.0% or less of water, and a saturated C 1 to C 22 carbon atom which may have a substituent,
Alternatively, unsaturated primary or secondary alcohols are allowed to act on a microbial high molecular weight alkaline lipase in the presence or absence of an organic solvent other than alcohols (excluding tertiary alcohols) to give oils and fats fatty acid esters and glycerin. A method for decomposing fats and oils, which comprises decomposing into oil.
【請求項2】微生物高分子量アルカリ性リパーゼが分子
量が10万以上であり、至適pHが8.0よりアルカリ側にあ
るリパーゼであることを特徴とする特許請求の範囲第1
項記載の方法。
2. A microbial high molecular weight alkaline lipase having a molecular weight of 100,000 or more and an optimum pH on the alkaline side of 8.0.
Method described in section.
【請求項3】微生物高分子量アルカリ性リパーゼが、ア
ルカリゲネス属又はアクロモバクター属の細菌によって
生産される菌体外リパーゼであることを特徴とする特許
請求の範囲第1又は第2項記載の方法。
3. The method according to claim 1 or 2, wherein the microbial high molecular weight alkaline lipase is an extracellular lipase produced by a bacterium of the genus Alcaligenes or the genus Achromobacter.
JP61262003A 1986-11-05 1986-11-05 How to decompose fats and oils Expired - Fee Related JPH0712313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61262003A JPH0712313B2 (en) 1986-11-05 1986-11-05 How to decompose fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61262003A JPH0712313B2 (en) 1986-11-05 1986-11-05 How to decompose fats and oils

Publications (2)

Publication Number Publication Date
JPS63116697A JPS63116697A (en) 1988-05-20
JPH0712313B2 true JPH0712313B2 (en) 1995-02-15

Family

ID=17369659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61262003A Expired - Fee Related JPH0712313B2 (en) 1986-11-05 1986-11-05 How to decompose fats and oils

Country Status (1)

Country Link
JP (1) JPH0712313B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE181568T1 (en) * 1994-03-31 1999-07-15 Loders Croklaan Bv OILS WITH LOW SATURATED FATTY ACID CONTENT
US7473539B2 (en) 2004-09-20 2009-01-06 Sunho Biodiesel Corporation Methods for producing alkyl esters
WO2015129190A1 (en) * 2014-02-28 2015-09-03 備前化成株式会社 Method for purifying stearidonic acid

Also Published As

Publication number Publication date
JPS63116697A (en) 1988-05-20

Similar Documents

Publication Publication Date Title
Mittelbach Lipase catalyzed alcoholysis of sunflower oil
Hsu et al. Production of alkyl esters from tallow and grease using lipase immobilized in a phyllosilicate sol-gel
Linko et al. Lipase-catalyzed transesterification of rapeseed oil and 2-ethyl-1-hexanol
AU2005200356A1 (en) Methods for producing alkyl esters
JP5072258B2 (en) Oil and fat manufacturing method
Kleiner et al. Native lipase dissolved in hydrophilic green solvents: A versatile 2‐phase reaction system for high yield ester synthesis
Yan et al. Preparation of a crosslinked bioimprinted lipase for enrichment of polyunsaturated fatty acids from fish processing waste
JPH0712313B2 (en) How to decompose fats and oils
JPH0365948B2 (en)
US4855233A (en) Process for carrying out enzymatic reactions in an organic solvent
JPH0552191B2 (en)
Yang et al. Stability of the lipase immobilized on DEAE-Sephadex for continuous lipid hydrolysis in organic solvent
JPS62228290A (en) Substitute fat for cacao butter
KR102011717B1 (en) Method for producing biodiesel using rice bran
JP2923756B2 (en) Method for producing rhamnolipid using ethanol
JPS61293390A (en) Method and apparatus for enzymatic hydrolysis of lipid substance
JPH03103499A (en) Production of highly unsaturated fatty acid monoglyceride
Mestri et al. Effect of moisture on lipase catalysed esterification of geraniol of palmarosa oil in non-aqueous system
CN112029579A (en) Deacidifying method for high-acid-value oil
JPH0582196B2 (en)
JPS62278987A (en) Recovery of enzymatic reaction product
JP3088034B2 (en) Waste oil treatment method and waste oil treatment agent
JP2830072B2 (en) Enzymatic degradation method of synthetic phosphatidylcholine
CN1974783B (en) Biocatalytic process for preparing collagen peptide
JP2886628B2 (en) Method for producing monoacylglycerophospholipid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees