JPH07122291A - Storage battery, manufacture of the same, and retainer for the same - Google Patents

Storage battery, manufacture of the same, and retainer for the same

Info

Publication number
JPH07122291A
JPH07122291A JP5270191A JP27019193A JPH07122291A JP H07122291 A JPH07122291 A JP H07122291A JP 5270191 A JP5270191 A JP 5270191A JP 27019193 A JP27019193 A JP 27019193A JP H07122291 A JPH07122291 A JP H07122291A
Authority
JP
Japan
Prior art keywords
retainer
storage battery
electrode plate
thermal expansion
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5270191A
Other languages
Japanese (ja)
Inventor
Yuriko Yamane
由里子 山根
Masayuki Terada
正幸 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP5270191A priority Critical patent/JPH07122291A/en
Publication of JPH07122291A publication Critical patent/JPH07122291A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent the deterioration of elastic force of a retainer due to impregnation of an electrolyte and prolong an electric discharging cycle lifetime. CONSTITUTION:A thermally expansible microcapsule made of a vinylidene chloride copolymer, inside of which hydrocarbon having a low boiling point is sealed, is held by a retainer made of mainly glass fiber in a wholly dispersed manner. An electrode plate group using the retainer is contained inside a battery jar, and then, an electrolyte is impregnated in the retainer. Thereafter, the electrode plate group is heated so as to expand the thermally expansible microcapsule.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄電池、蓄電池の製造
方法及び蓄電池用リテーナに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage battery, a storage battery manufacturing method, and a storage battery retainer.

【0002】[0002]

【従来の技術】密閉形鉛蓄電池等の蓄電池では、電解液
をリテーナに含浸させるとともに、電槽に収納した極板
群に対して電槽の壁部または電槽内に配置した加圧スペ
ーサ手段により、極板群の積層方向に群加圧を加えてい
る。極板群に群加圧を加えると、極板表面は、電槽の壁
部またはリテーナに押し付けられることになる。これに
よって蓄電池に充放電が繰り返されて活物質が膨張収縮
することにより起こる活物質の軟化及び集電体からの脱
落を防止するとともに、極板とリテーナとの界面に隙間
ができるのを防止して極板とリテーナとの界面における
電解液の成層化を防いでいる。
2. Description of the Related Art In a storage battery such as a sealed lead-acid battery, a retainer is impregnated with an electrolytic solution, and a pressure spacer means arranged on the wall of the battery case or in the battery container with respect to an electrode plate group housed in the battery case. Thus, group pressure is applied in the stacking direction of the electrode plates. When group pressure is applied to the electrode plate group, the surface of the electrode plate is pressed against the wall of the battery case or the retainer. This prevents the active material from softening and falling off from the current collector due to expansion and contraction of the active material due to repeated charging and discharging of the storage battery, and also prevents a gap from being formed at the interface between the electrode plate and the retainer. Prevents the electrolyte from being stratified at the interface between the electrode plate and the retainer.

【0003】[0003]

【発明が解決しようとする課題】しかしながら極板群を
電槽内に収納した後にリテーナに電解液を含浸させる
と、リテーナを形成するガラス繊維等の繊維相互間の摩
擦力が電解液により減少する。そのためにリテーナの弾
性が低下して、極板に対する加圧力が減少するという問
題があった。極板に対する加圧力が減少すると、活物質
の軟化及び集電体からの脱落が発生し易くなり、また極
板とリテーナとの界面部において電解液の成層化も起こ
り易くなって、蓄電池の充放電サイクル寿命特性が低下
する。
However, when the retainer is impregnated with the electrolytic solution after the electrode group is housed in the battery case, the frictional force between the fibers such as the glass fibers forming the retainer is reduced by the electrolytic solution. . Therefore, there is a problem in that the elasticity of the retainer is reduced and the pressure applied to the electrode plate is reduced. When the pressure applied to the electrode plate is reduced, the active material is likely to soften and fall off from the current collector, and the electrolyte is likely to be stratified at the interface between the electrode plate and the retainer, so that the storage battery is charged. Discharge cycle life characteristics are reduced.

【0004】本発明の目的は、電解液を含浸したリテー
ナの弾性力の低下を防いで、充放電サイクル寿命を延ば
すことができる蓄電池を提供することにある。
An object of the present invention is to provide a storage battery capable of extending the charge / discharge cycle life by preventing the retainer impregnated with an electrolytic solution from lowering its elastic force.

【0005】[0005]

【課題を解決するための手段】請求項1の発明では、正
極板と負極板とをリテーナを介して積層してなる極板群
が積層方向に加圧された状態で電槽内に収納されている
蓄電池を対象にする。本発明で用いるリテーナは、電槽
内に挿入した後にリテーナの少なくとも厚み方向に体積
膨張を起こす体積膨張材が全体的に分散された構造を有
している。体積膨張材は、極板群を電槽に入れた後の条
件の変化(電解液に触れることや、温度が上げられるこ
と等)によって体積膨張を起こす材料によって形成され
ていればよく、その形態は繊維状でもまた粒子状でもよ
い。
According to a first aspect of the invention, an electrode plate group formed by stacking a positive electrode plate and a negative electrode plate via a retainer is housed in a battery case while being pressed in the stacking direction. Target storage battery. The retainer used in the present invention has a structure in which a volume expansion material that causes volume expansion in at least the thickness direction of the retainer after being inserted into the battery case is dispersed as a whole. The volume expansion material may be formed of a material that causes volume expansion due to changes in conditions after the electrode group is put in the battery case (touching the electrolyte, raising the temperature, etc.). May be fibrous or particulate.

【0006】請求項2の発明では、体積膨張材を耐電解
液性を有し且つ加熱されると体積膨張を起こす熱膨張形
体積膨張材により構成する。
According to the second aspect of the present invention, the volume expansion material is made of a thermal expansion type volume expansion material which has electrolytic solution resistance and causes volume expansion when heated.

【0007】請求項3の発明では、リテーナをガラス繊
維を主体として構成し、熱膨張形体積膨張材をガラス繊
維にバインダを介して保持される熱膨張形マイクロカプ
セルにより形成する。熱膨張形マイクロカプセルとは、
加熱されると膨張可能になる材料によって形成されたマ
イクロカプセルの中に、熱膨張材料を封じ込めた構造を
有するものである。マイクロカプセルの材料は、耐電解
液性を有して膨張後も形を維持できる程度の強度を示す
ものであれば、どのようなものでもよい。またカプセル
内に封じ込めておく熱膨張材は、マイクロカプセルから
出たとしても電解液の性質に悪影響を与えないものであ
ればなどのようなものでもよい。
According to the third aspect of the present invention, the retainer is composed mainly of glass fibers, and the thermal expansion type volume expansion material is formed by the thermal expansion type microcapsules held by the glass fibers via the binder. What is thermal expansion type microcapsule?
It has a structure in which a thermally expandable material is enclosed in a microcapsule formed of a material that can expand when heated. Any material may be used as the material of the microcapsule as long as it has resistance to the electrolytic solution and exhibits strength sufficient to maintain the shape after expansion. The thermal expansion material to be contained in the capsule may be any one as long as it does not adversely affect the properties of the electrolytic solution even if it comes out of the microcapsule.

【0008】請求項4の発明では、熱膨張形マイクロカ
プセルを塩化ビニリデン共重合物からなるマイクロカプ
セルの内部に低沸点炭化水素を含ませて構成する。
According to the invention of claim 4, the heat-expansion type microcapsule is constituted by including a low boiling point hydrocarbon in the inside of the microcapsule made of a vinylidene chloride copolymer.

【0009】請求項5の発明では、熱膨張形マイクロカ
プセルの含有量を0.64〜0.80重量%とする。
According to the invention of claim 5, the content of the thermal expansion type microcapsules is set to 0.64 to 0.80% by weight.

【0010】請求項6の発明は、蓄電池の製造方法を改
良の対象とする。本発明では、耐電解液性を有し且つ加
熱されると体積膨張を起こす熱膨張形体積膨張材が全体
的に分散されているリテーナを用いて極板群を構成す
る。その後、極板群を熱膨張形体積膨張材が十分に膨張
するまで加熱する。電解液の含浸は、極板群を加熱する
前または後のいずれに行ってもよい。
The invention of claim 6 is directed to an improvement of a method of manufacturing a storage battery. In the present invention, the electrode plate group is configured by using the retainer having the electrolytic solution resistance and in which the thermal expansion type volumetric expansion material that causes volumetric expansion when heated is entirely dispersed. Then, the electrode plate group is heated until the thermal expansion type volumetric expansion material is sufficiently expanded. The impregnation with the electrolytic solution may be performed either before or after the electrode group is heated.

【0011】請求項7の発明は、蓄電池用リテーナを対
象としており、本発明ではガラス繊維を主体としてリテ
ーナを構成し、リテーナ中に熱膨張形マイクロカプセル
を全体的に含有させる。
A seventh aspect of the present invention is directed to a retainer for a storage battery. In the present invention, the retainer is mainly composed of glass fiber, and the thermal expansion type microcapsule is entirely contained in the retainer.

【0012】[0012]

【作用】請求項1の発明によれば、リテーナに電解液が
含浸してリテーナを形成する繊維相互間の摩擦力が減少
しても、リテーナを電槽内に挿入した後にリテーナ内に
分散した体積膨張材が膨張してリテーナが厚み方向に体
積膨張するため、リテーナの厚みの減少を防止すること
ができ、極板に対するリテーナの加圧力の減少を防ぐこ
とができる。特に本発明のようにリテーナが厚み方向に
膨張すると、極板群の内部に群加圧の加圧源が配置され
た状態になるため、極板群の積層方向外側から加圧スペ
ーサのみによって群加圧を加える場合と比べて、各極板
に対してリテーナを全体的に且つ確実に密着させること
が可能になる。
According to the present invention, even if the retainer is impregnated with the electrolytic solution and the frictional force between the fibers forming the retainer is reduced, the retainer is dispersed in the retainer after being inserted into the battery case. Since the volume expansion material expands and the retainer expands in the thickness direction, it is possible to prevent a decrease in the thickness of the retainer and a decrease in the pressure applied by the retainer to the electrode plate. In particular, when the retainer expands in the thickness direction as in the present invention, a pressure source for group pressure is arranged inside the electrode plate group. Compared with the case where pressure is applied, the retainer can be brought into close contact with each electrode plate as a whole and reliably.

【0013】また本発明によると、群加圧を発生するた
めに必ずしも加圧スペーサを用いる必要がなくなるた
め、電槽への極板群の挿入が容易でない大型電池に本発
明を適用する場合には、リテーナの厚みをある程度薄く
して電槽挿入前の極板群の積層方向の厚みを薄くしてお
けば、極板群の電槽内への挿入が容易になる。そして極
板群を電槽内に挿入した後に、体積膨張材を膨張させて
リテーナを厚み方向に体積膨張させれば、必要な群加圧
を得ることができる。
Further, according to the present invention, since it is not always necessary to use the pressure spacer to generate the group pressure, when the present invention is applied to a large battery in which it is not easy to insert the electrode plate group into the battery case. If the retainer is made thin to some extent to reduce the thickness of the electrode plate group in the stacking direction before insertion into the battery case, the electrode plate group can be easily inserted into the battery case. Then, after inserting the electrode plate group into the battery case, the volume expanding material is expanded and the retainer is volume expanded in the thickness direction, so that necessary group pressurization can be obtained.

【0014】請求項2の発明のように、体積膨張材とし
て耐電解液性を有し且つ加熱されると体積膨張を起こす
熱膨張形体積膨張材を用いると、リテーナを電槽内に挿
入した後に体積膨張材を加熱するだけで、リテーナの厚
みの減少と極板に対するリテーナの加圧力の減少を防ぐ
ことができる。
According to the second aspect of the present invention, when the thermal expansion type volume expansion material having electrolytic solution resistance and causing volume expansion when heated is used as the volume expansion material, the retainer is inserted into the battery case. By only heating the volume expansion material later, it is possible to prevent the thickness of the retainer from decreasing and the pressing force of the retainer against the electrode plate from decreasing.

【0015】請求項3の発明のように、リテーナをガラ
ス繊維を主体として構成し、熱膨張形体積膨張材をガラ
ス繊維にバインダを介して保持された熱膨張形マイクロ
カプセルにより形成すると、熱膨張形体積膨張材を比較
的容易にリテーナ全体に分散させることができる。そし
てマイクロカプセルの材質とマイクロカプセル内に封じ
込める熱膨張材の材質と量とを適宜に選択することによ
り、所望の熱膨張量を簡単に得ることができる。
According to the invention of claim 3, when the retainer is composed mainly of glass fibers and the thermal expansion type volume expansion material is formed by the thermal expansion type microcapsules held in the glass fibers via the binder, the thermal expansion is performed. The shaped volume expansion material can be dispersed over the retainer relatively easily. Then, a desired thermal expansion amount can be easily obtained by appropriately selecting the material of the microcapsule and the material and amount of the thermal expansion material contained in the microcapsule.

【0016】請求項4の発明のように、熱膨張形マイク
ロカプセルを塩化ビニリデン共重合物からなるマイクロ
カプセルの内部に低沸点炭化水素を含ませて構成する
と、加熱により内部の低沸点炭化水素が体積膨張して熱
膨張形マイクロカプセルが膨張する。そして熱膨張形マ
イクロカプセルがある程度まで膨張すると低沸点炭化水
素は塩化ビニリデン共重合物からなる殻壁を通してマイ
クロカプセル外部に抜け出る。低沸点炭化水素は比較的
体積膨張率が高いので、本発明によれば低い加熱温度で
熱膨張形マイクロカプセルを大きく膨張させることがで
きる。
According to the invention of claim 4, when the thermal expansion type microcapsule is constituted by including a low boiling point hydrocarbon in the inside of the microcapsule made of a vinylidene chloride copolymer, the low boiling point hydrocarbon inside is heated by heating. The thermally expanded microcapsule expands due to volume expansion. When the thermally expanded microcapsule expands to a certain extent, the low boiling point hydrocarbons escape to the outside of the microcapsule through the shell wall made of vinylidene chloride copolymer. Since the low boiling point hydrocarbon has a relatively high volume expansion coefficient, according to the present invention, the thermal expansion type microcapsule can be largely expanded at a low heating temperature.

【0017】請求項5の発明のように、塩化ビニリデン
共重合物からなるマイクロカプセルの内部に低沸点炭化
水素を含ませてなる熱膨張形マイクロカプセルを用いる
場合に、その含有量を0.64〜0.80重量%とする
と、リテーナを適度な範囲で厚み方向に膨脹させること
ができる。
When thermal expansion microcapsules containing a low boiling point hydrocarbon inside the microcapsules of vinylidene chloride copolymer are used as in the invention of claim 5, the content is 0.64. When it is set to 0.80% by weight, the retainer can be expanded in the thickness direction within an appropriate range.

【0018】請求項6の発明において、リテーナに電解
液を含浸させた後に、加熱をする場合には、電解液と一
緒に熱膨張形体積膨張材が加熱されるため、急激に熱膨
張を起こすことがなく、膨張量の調整が容易である。熱
膨張形体積膨張材を膨張させた後に、リテーナに電解液
を含浸させと、電解液の注入作業を1回で済ませること
ができる。加熱前に電解液を注入する場合には、予め膨
張を考慮して電解液の注入量を少なくしておくため、加
熱作業後に電解液の量を調整するための作業が必要にな
る。
In the sixth aspect of the invention, when the retainer is impregnated with the electrolytic solution and then heated, the thermal expansion type volumetric expansion material is heated together with the electrolytic solution, so that the thermal expansion rapidly occurs. And the amount of expansion is easy to adjust. When the retainer is impregnated with the electrolytic solution after the thermal expansion type volumetric expansion material is expanded, the injection operation of the electrolytic solution can be completed only once. In the case of injecting the electrolytic solution before heating, the injection amount of the electrolytic solution is reduced in advance in consideration of expansion, so that the operation for adjusting the amount of the electrolytic solution is required after the heating operation.

【0019】[0019]

【実施例】以下、本発明の一実施例を詳細に説明する。
本実施例の蓄電池は次のようにして作った。まず低沸点
炭化水素を内部に含む塩化ビニリデン共重合物よりなる
平均粒径10〜20μm の耐電解液性を有する熱膨張性
マイクロカプセル0.72重量%と、アクリル系バイン
ダー2重量%と、平均径0.7μm で平均長さ5mmのガ
ラス繊維97.28重量%とを混合抄紙した後に、これ
を乾燥して、厚み2.0mm、密度2g/cm3 、気孔率8
5%のリテーナを作った。なお本実施例では熱膨張性マ
イクロカプセルとして松本油脂製薬株式会社からマツモ
トマイクロスフェア−シリーズの製品名で販売されてい
るものを用いた。熱膨張性マイクロカプセルの含有量
は、必要な膨張量に応じて適宜に定めればよい。本実施
例のように、熱膨張性マイクロカプセルの含有量を0.
64〜0.80重量%とすれば、加圧スペーサを用いな
くても十分な加圧力を得ることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below.
The storage battery of this example was manufactured as follows. First, 0.72% by weight of heat-expandable microcapsules made of vinylidene chloride copolymer containing a low boiling point hydrocarbon and having an average particle size of 10 to 20 μm and having an electrolytic solution resistance, and 2% by weight of an acrylic binder, on average. After mixing 97.28% by weight of glass fiber having a diameter of 0.7 μm and an average length of 5 mm with paper, the paper is dried to obtain a thickness of 2.0 mm, a density of 2 g / cm 3 , and a porosity of 8
I made a 5% retainer. In this example, as the thermally expandable microcapsules, those sold by Matsumoto Yushi-Seiyaku Co., Ltd. under the product name of Matsumoto Microsphere series were used. The content of the heat-expandable microcapsules may be appropriately determined according to the required expansion amount. As in this example, the content of the heat-expandable microcapsules was set to 0.
If it is 64 to 0.80% by weight, sufficient pressing force can be obtained without using a pressure spacer.

【0020】次に110mm×150mm×4mmの寸法を有
する正極板3枚と、110mm×150mm×2mmの寸法を
有する負極板4枚とをこのリテーナを介して積層して極
板群を作り、この極板群を積層方向に45 kg/dm2 の圧
力で該極板群を加圧する電槽に挿入した。次に電槽内に
比重1.320の硫酸からなる電解液300mlを注液し
て、リテーナに電解液を含浸させた。そして極板群を、
恒温槽を用いて80℃で5分間加熱して放電容量(10
時間率)38Ahの密閉形鉛蓄電池を完成した。極板群
を加熱するにはオーブン等の他の加熱機器を用いること
もできる。極板群を加熱すると熱膨張性マイクロカプセ
ルは発泡により約50倍に体積膨張して中空のマイクロ
バルーンとなり、内部の低沸点炭化水素はカプセル外部
に除放される。これによりリテーナ内部及びリテーナと
極板との間が部分的に中空のマイクロバルーンとなった
熱膨張性マイクロカプセルで満たされる。
Next, three positive electrode plates each having a size of 110 mm × 150 mm × 4 mm and four negative electrode plates each having a size of 110 mm × 150 mm × 2 mm are laminated through this retainer to form an electrode plate group. The electrode plate group was inserted in a battery case for pressurizing the electrode plate group at a pressure of 45 kg / dm 2 in the stacking direction. Next, 300 ml of an electrolytic solution consisting of sulfuric acid having a specific gravity of 1.320 was poured into the container to impregnate the retainer with the electrolytic solution. And the electrode plate group,
Heat at 80 ° C for 5 minutes in a constant temperature bath and discharge capacity (10
A sealed lead acid battery with a rate of 38 Ah was completed. Other heating equipment such as an oven may be used to heat the electrode plate group. When the electrode plate group is heated, the heat-expandable microcapsules expand in volume about 50 times due to foaming to become hollow microballoons, and the low boiling hydrocarbons inside are released to the outside of the capsules. As a result, the inside of the retainer and the space between the retainer and the electrode plate are filled with the thermally expandable microcapsules that are partially hollow microballoons.

【0021】次にリテーナへの熱膨張性マイクロカプセ
ルの含有量を変え、その他は本実施例と同じ構造を有す
る蓄電池を作り、熱膨張性マイクロカプセルの含有量と
電解液注液後の群加圧力との関係を調べた。図1はその
測定結果を示している。一般に蓄電池における適正な群
加圧は40〜50kg/dm2 とされている。これより蓄電
池の群加圧を適正範囲にするには熱膨張性マイクロカプ
セルの含有量を0.64〜0.80重量%にすればよい
のが判る。熱膨張性マイクロカプセルの含有量が0.6
4重量%を下回ると十分な加圧力を得ることができない
ため、蓄電池の寿命特性が低下する。また熱膨張マイク
ロカプセルの含有量が0.80重量%を超えると、加圧
力が大きくなり過ぎて、リテーナ及び極板中の電解液含
有量が減少するため、蓄電池の初期容量が低下する。
Next, the content of the heat-expandable microcapsules in the retainer was changed, and a storage battery having the same structure as that of this example except for the above was prepared. The relationship with pressure was investigated. FIG. 1 shows the measurement result. Generally, the proper group pressurization in a storage battery is set to 40 to 50 kg / dm 2 . From this, it is understood that the content of the heat-expandable microcapsules may be set to 0.64 to 0.80% by weight in order to make the group pressurization of the storage battery within an appropriate range. The content of heat-expandable microcapsules is 0.6
If it is less than 4% by weight, a sufficient pressing force cannot be obtained, so that the life characteristics of the storage battery deteriorate. When the content of the thermal expansion microcapsules exceeds 0.80% by weight, the pressing force becomes too large and the content of the electrolytic solution in the retainer and the electrode plate decreases, so that the initial capacity of the storage battery decreases.

【0022】次に、本実施例の蓄電池と従来の蓄電池と
に0.25CAで2時間放電した後に0.1CAで6時
間充電する充放電を繰り返し、25サイクル毎に0.2
5CAで終止電圧1.7Vになるまで放電して、各電池
のサイクル寿命特性を測定した。なお初期容量の50%
の容量に低下したときを蓄電池の寿命とした。また従来
の蓄電池はリテーナに熱膨張性マイクロカプセルを含有
させず、その他は本実施例の蓄電池と同じ方法で製造し
たもの(極板群挿入時の群加圧は45kg/dm2)を用い
た。図2はその測定結果を示している。本図より本実施
例の蓄電池は従来の蓄電池に比べて150サイクル程寿
命が延びているのが判る。また各電池の350サイクル
時の電槽内上下の電解液比重差を測定したところ本実施
例の蓄電池では0.089であり、従来の蓄電池では
0.120であった。これより本実施例の蓄電池は従来
の蓄電池に比べて電解液の成層化も抑制できるのが判
る。
Next, the storage battery of this example and the conventional storage battery were repeatedly charged and discharged by discharging at 0.25 CA for 2 hours and then at 0.1 CA for 6 hours.
The battery was discharged at 5 CA until the final voltage reached 1.7 V, and the cycle life characteristics of each battery were measured. 50% of the initial capacity
The life of the storage battery was defined as the capacity of the storage battery. In addition, the conventional storage battery did not contain the heat-expandable microcapsules in the retainer, and the others were manufactured by the same method as the storage battery of this embodiment (group pressure when inserting the electrode plate group was 45 kg / dm 2 ). . FIG. 2 shows the measurement result. From this figure, it can be seen that the storage battery of this embodiment has a life extended by about 150 cycles as compared with the conventional storage battery. Further, when the difference in specific gravity between the upper and lower electrolytes in the battery case was measured for 350 cycles of each battery, it was 0.089 for the storage battery of this example and 0.120 for the conventional storage battery. From this, it is understood that the storage battery of the present embodiment can suppress stratification of the electrolytic solution as compared with the conventional storage battery.

【0023】[0023]

【発明の効果】請求項1の発明によれば、リテーナに電
解液が含浸してリテーナを形成する繊維相互間の摩擦力
が減少しても、リテーナを電槽内に挿入した後にリテー
ナ内に分散した体積膨張材が膨張してリテーナが厚み方
向に体積膨張するため、リテーナの厚みの減少を防止す
ることができ、極板に対するリテーナの加圧力の減少を
防ぐことができる。そのため本発明によれば、活物質の
脱落や電解液の成層化を抑制して、サイクル寿命の延び
る蓄電池を得ることができる。
According to the first aspect of the present invention, even if the frictional force between the fibers forming the retainer is reduced by impregnating the retainer with the electrolytic solution, the retainer is inserted into the retainer after being inserted into the battery case. Since the dispersed volume expansion material expands and the retainer expands in the thickness direction, a decrease in the thickness of the retainer can be prevented, and a decrease in the pressure applied by the retainer to the electrode plate can be prevented. Therefore, according to the present invention, it is possible to obtain a storage battery having extended cycle life by suppressing dropping of the active material and stratification of the electrolytic solution.

【0024】請求項2の発明によれば、体積膨張材とし
て耐電解液性を有し且つ加熱されると体積膨張を起こす
熱膨張形体積膨張材を用いるので、リテーナを電槽内に
挿入した後に体積膨張材を加熱するだけで、極板に対す
る加圧力の減少を防ぐことができる利点がある。
According to the second aspect of the present invention, since the thermal expansion type volume expansion material which is resistant to the electrolytic solution and causes volume expansion when heated is used as the volume expansion material, the retainer is inserted in the battery case. Only by heating the volume expansion material later, there is an advantage that the reduction of the pressure applied to the electrode plate can be prevented.

【0025】請求項3の発明によれば、リテーナをガラ
ス繊維を主体として構成し、熱膨張形体積膨張材をガラ
ス繊維にバインダを介して保持された熱膨張形マイクロ
カプセルにより形成するので、熱膨張形体積膨張材を比
較的容易にリテーナ全体に分散させることができる利点
が有る。
According to the third aspect of the present invention, the retainer is composed mainly of glass fibers, and the thermal expansion type volume expansion material is formed by the thermal expansion type microcapsules held in the glass fibers via the binder. There is an advantage that the expansion type volume expansion material can be dispersed over the retainer relatively easily.

【0026】請求項4の発明によれば、熱膨張形マイク
ロカプセルを塩化ビニリデン共重合物からなるマイクロ
カプセルの内部に低沸点炭化水素を含ませて構成するの
で、低い加熱温度で熱膨張形マイクロカプセルを大きく
膨張させることができる。
According to the invention of claim 4, the thermal expansion type microcapsules are constituted by including a low boiling point hydrocarbon in the inside of the microcapsules made of a vinylidene chloride copolymer, and therefore, the thermal expansion type microcapsules at a low heating temperature. Capsules can be greatly expanded.

【0027】請求項5の発明によれば、熱膨張形マイク
ロカプセルの含有量を0.64〜0.80重量%とする
ことにより、加圧スペーサを用いなくても十分な加圧力
を得ることができる利点がある。
According to the invention of claim 5, the content of the thermal expansion type microcapsules is set to 0.64 to 0.80% by weight, so that sufficient pressing force can be obtained without using a pressure spacer. There is an advantage that can be.

【0028】請求項6の発明によれば、加熱作業だけで
リテーナの厚みの減少の防止と極板に対する加圧力を所
望の圧力に簡単に調整できる利点がある。
According to the invention of claim 6, there is an advantage that the thickness of the retainer can be prevented from being reduced and the pressure applied to the electrode plate can be easily adjusted to a desired pressure only by the heating operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 熱膨張性マイクロカプセルの含有量と電解液
注液後の群加圧力との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the content of heat-expandable microcapsules and the group pressure after injection of an electrolytic solution.

【図2】 試験に用いた電池のサイクル寿命特性を示す
図である。
FIG. 2 is a diagram showing cycle life characteristics of a battery used in a test.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正極板と負極板とをリテーナを介して積
層してなる極板群が積層方向に加圧された状態で電槽内
に収納されている蓄電池であって、 前記リテーナは前記電槽内に挿入された後に前記リテー
ナの少なくとも厚み方向に体積膨張を起こす体積膨張材
が全体的に分散された構造を有していることを特徴とす
る蓄電池。
1. A storage battery in which an electrode plate group in which a positive electrode plate and a negative electrode plate are laminated via a retainer is housed in a battery case under pressure in the stacking direction, wherein the retainer is A storage battery having a structure in which a volume expansion material that causes volume expansion in at least a thickness direction of the retainer after being inserted into a battery case is dispersed as a whole.
【請求項2】 前記体積膨張材は、耐電解液性を有し且
つ加熱されると体積膨張を起こす熱膨張形体積膨張材か
らなる請求項1に記載の蓄電池。
2. The storage battery according to claim 1, wherein the volume expansion material is a thermal expansion type volume expansion material that has electrolytic solution resistance and that expands in volume when heated.
【請求項3】 前記リテーナはガラス繊維を主体として
構成され、前記熱膨張形体積膨張材は前記ガラス繊維に
バインダを介して保持された熱膨張形マイクロカプセル
からなる請求項2に記載の蓄電池。
3. The storage battery according to claim 2, wherein the retainer is composed mainly of glass fiber, and the thermal expansion type volumetric expansion material is a thermal expansion type microcapsule held by the glass fiber via a binder.
【請求項4】 前記熱膨張形マイクロカプセルは、塩化
ビニリデン共重合物からなるマイクロカプセルの内部に
低沸点炭化水素を含んで構成されている請求項3に記載
の蓄電池。
4. The storage battery according to claim 3, wherein the thermally expandable microcapsules include a low boiling point hydrocarbon inside the microcapsules made of a vinylidene chloride copolymer.
【請求項5】 前記熱膨張形マイクロカプセルの含有量
が、0.64〜0.80重量%である請求項4に記載の
蓄電池。
5. The storage battery according to claim 4, wherein the content of the thermal expansion microcapsules is 0.64 to 0.80% by weight.
【請求項6】 耐電解液性を有し且つ加熱されると体積
膨張を起こす熱膨張形体積膨張材が全体的に分散されて
いるリテーナを用いて極板群を構成し、 その後前記極板群を前記熱膨張形体積膨張材が十分に膨
張するまで加熱し、 前記極板群を電槽に収納した後で前記極板群を加熱する
前または後に電解液を前記リテーナに含浸させることを
特徴とする蓄電池の製造方法。
6. An electrode plate group is formed by using a retainer that has an electrolytic solution resistance and in which a thermal expansion type volume expansion material that expands in volume when heated is dispersed, and then the electrode plate group is formed. The group is heated until the thermal expansion type volume expansion material is sufficiently expanded, and after impregnating the retainer with an electrolyte solution before or after heating the electrode group after the electrode group is housed in a battery case. A method of manufacturing a storage battery having a feature.
【請求項7】 ガラス繊維を主体として構成され、熱膨
張形マイクロカプセルを全体的に含有する蓄電池用リテ
ーナ。
7. A retainer for a storage battery, which is composed mainly of glass fibers and which contains thermal expansion microcapsules as a whole.
JP5270191A 1993-10-28 1993-10-28 Storage battery, manufacture of the same, and retainer for the same Withdrawn JPH07122291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5270191A JPH07122291A (en) 1993-10-28 1993-10-28 Storage battery, manufacture of the same, and retainer for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5270191A JPH07122291A (en) 1993-10-28 1993-10-28 Storage battery, manufacture of the same, and retainer for the same

Publications (1)

Publication Number Publication Date
JPH07122291A true JPH07122291A (en) 1995-05-12

Family

ID=17482797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5270191A Withdrawn JPH07122291A (en) 1993-10-28 1993-10-28 Storage battery, manufacture of the same, and retainer for the same

Country Status (1)

Country Link
JP (1) JPH07122291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1596448A1 (en) * 2003-02-18 2005-11-16 Nippon Sheet Glass Company, Limited Separator for storage battery, storage battery, and method for manufacturing storage battery
JP2011146222A (en) * 2010-01-14 2011-07-28 Shin Kobe Electric Mach Co Ltd Battery pack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1596448A1 (en) * 2003-02-18 2005-11-16 Nippon Sheet Glass Company, Limited Separator for storage battery, storage battery, and method for manufacturing storage battery
EP1596448A4 (en) * 2003-02-18 2008-04-30 Nippon Sheet Glass Co Ltd Separator for storage battery, storage battery, and method for manufacturing storage battery
US7767333B2 (en) 2003-02-18 2010-08-03 Nippon Sheet Glass Company, Limited Separator for storage battery, storage battery and method of producing storage battery
JP2011146222A (en) * 2010-01-14 2011-07-28 Shin Kobe Electric Mach Co Ltd Battery pack

Similar Documents

Publication Publication Date Title
US5554464A (en) Honeycomb battery separator
US5728331A (en) Method of preparing a battery separator
US3625765A (en) Production of battery electrode
US3493434A (en) Zinc electrode
CN100394631C (en) Separator for storage battery, storage battery, and method of producing storage battery
JPH07122291A (en) Storage battery, manufacture of the same, and retainer for the same
US4631241A (en) Retainer type lead-acid battery
JP2004055323A (en) Control valve type lead-acid battery
JP4332783B2 (en) Sealed lead acid battery
JP3555177B2 (en) Sealed lead-acid battery
JPH0794206A (en) Sealed type lead-acid battery
JPS5882472A (en) Lead storage battery and manufacture thereof
JPS6048869B2 (en) battery electrode
JP3042027B2 (en) Sealed lead-acid battery
JP2629258B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS6211466B2 (en)
US4304270A (en) Process for manufacturing of battery plates
JPS601757A (en) Manufacture of sealed lead storage battery
JPH03246871A (en) Manufacture of sealed lead-acid battery
JPH0883624A (en) Sealed storage battery
JP3266918B2 (en) Sealed lead-acid battery
JPS59114759A (en) Manufacture of positive plate for lead storage battery
JP2001266858A (en) Negative electrode for alkaline battery and its manufacturing method
JPH04141961A (en) Gastight lead storage battery
JPH05326011A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130