JP2011146222A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2011146222A
JP2011146222A JP2010005550A JP2010005550A JP2011146222A JP 2011146222 A JP2011146222 A JP 2011146222A JP 2010005550 A JP2010005550 A JP 2010005550A JP 2010005550 A JP2010005550 A JP 2010005550A JP 2011146222 A JP2011146222 A JP 2011146222A
Authority
JP
Japan
Prior art keywords
battery
lead
lead storage
terminals
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010005550A
Other languages
Japanese (ja)
Inventor
Yoichi Nomura
洋一 野村
Kazuya Matsuoka
和哉 松岡
Satoshi Kusano
聡 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2010005550A priority Critical patent/JP2011146222A/en
Publication of JP2011146222A publication Critical patent/JP2011146222A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack which suppresses a rise in battery temperature and does not allow the battery temperature to rise over an allowable range in the battery pack for an electric vehicle or the like in which the operating time is going to be extended by carrying out rapid charging in a short time to recover a part of the capacity. <P>SOLUTION: The battery pack houses a plurality of lead-acid batteries 3 in a housing case 4 and serially connects the lead acid batteries 3. The lead-acid battery 3 includes a plurality of positive electrode terminals 2, 2' and negative electrode terminals 1, 1' having the same number as the positive electrode terminals on the upper surface, respectively. The positive electrode terminal 2, 2' and the negative electrode terminal 1, 1' between neighboring lead-acid batteries 3 are connected by an individual connection member for each terminal, and in the lead-acid battery, the battery capacity per one piece of a plurality of terminals having the same polarity is made equal to or less than 300 Ah. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数の鉛蓄電池を収納ケースに収容して使用する組電池に関するものである。   The present invention relates to an assembled battery in which a plurality of lead storage batteries are housed in a storage case.

近年、各種産業界では、地球環境の保護や温暖化を抑制するために、二酸化炭素の排出量を削減する試みが、重要視されている。
フォークリフトなどの産業用車両においても、内燃機関により駆動される、いわゆるエンジン車に対して、燃焼ガスの排出の無い、電池によって駆動される、いわゆる電動車の比率が急速に増加している。
In recent years, various industries have emphasized attempts to reduce carbon dioxide emissions in order to protect the global environment and suppress global warming.
Even in industrial vehicles such as forklifts, the ratio of so-called electric vehicles driven by batteries without exhausting combustion gas is rapidly increasing with respect to so-called engine vehicles driven by internal combustion engines.

しかしながら、エンジン車においては、給油により長時間連続して稼動することが可能であるのにくらべ、電動車の稼働時間は電池の容量によって制限され、長時間を要する充電中は稼動できないという欠点がある。これに対し、短時間に急速充電を実施して容量の一部を回復させ、稼働時間を延長しようとする試みがなされてきた。   However, the engine vehicle has a drawback that the operation time of the electric vehicle is limited by the capacity of the battery and cannot be operated during charging that requires a long time, in comparison with being able to operate continuously for a long time by refueling. is there. On the other hand, attempts have been made to extend the operation time by carrying out rapid charging in a short time to recover a part of the capacity.

電動式フォークリフトには、数十個の鉛蓄電池を鉄製の収納ケースに収容し、鉛蓄電池を直列に接続した組電池が搭載・使用されている。これらの鉛蓄電池は、メンテナンスを容易とするため、全ての鉛蓄電池の上面が組電池の上面となるように配置されるとともに、充電終期における水の電気分解ガスによる電解液の攪拌(いわゆるエアリフト効果)が良好になるように、縦に細長い形状を採用して電解液の成層化による充電不足を回避している。また、価格の安いポリプロピレン製の電槽に極板群を収納している。そのため、細長い形状と剛性に欠ける電槽材質により、正極板、負極板及びセパレータの密着性を維持することが困難である。そこで、これを補うため、数十個の鉛蓄電池は鉄製の収納ケースに密接的に収容され、これにより正極板、負極板及びセパレータの密着性を維持している。収納ケース内の鉛蓄電池は、密接した状態で使用されるために放熱されにくいという問題があった。   An electric forklift is mounted and used with a battery pack in which several tens of lead storage batteries are housed in an iron storage case and the lead storage batteries are connected in series. These lead-acid batteries are arranged so that the upper surface of all the lead-acid batteries becomes the upper surface of the assembled battery for easy maintenance, and stirring of the electrolyte solution by electrolysis gas of water at the end of charging (so-called air lift effect) ) Is adopted in a vertically elongated shape to avoid insufficient charging due to stratification of the electrolyte. In addition, the electrode group is housed in an inexpensive battery case made of polypropylene. Therefore, it is difficult to maintain the adhesion between the positive electrode plate, the negative electrode plate and the separator due to the elongated shape and the battery case material lacking in rigidity. Therefore, in order to compensate for this, several tens of lead storage batteries are closely accommodated in an iron storage case, thereby maintaining the adhesion of the positive electrode plate, the negative electrode plate, and the separator. The lead storage battery in the storage case has a problem that it is difficult to dissipate heat because it is used in a close state.

この対策として、特許文献1には、鉛蓄電池の電槽の側面にリブを形成するとともに、前記リブの周囲に金属箔を貼り付けた鉛蓄電池システムが開示されている。この鉛蓄電池システムは、リブの形成によって鉛蓄電池の電槽周囲に空間を設けて、鉛蓄電池の放熱を良好に行わせようとするものである。   As a countermeasure, Patent Document 1 discloses a lead storage battery system in which a rib is formed on the side surface of a battery case of the lead storage battery and a metal foil is pasted around the rib. In this lead storage battery system, a space is provided around the battery case of the lead storage battery by the formation of ribs, so that heat dissipation of the lead storage battery is performed satisfactorily.

特開2005−19051号公報JP-A-2005-19051

上記組電池の充電は、組電池の正負極端子から引き出されたケーブルを介して直流電力を印加して行う。通常は、0.2CA程度の電流により夜間に充電される。この間、組電池は車体に搭載された状態で充電され、車体は稼動しないのが一般的である。充電操作にとらわれずに車体を稼動するためには、二組以上用意された組電池(スペアバッテリー)を入れ替え、車体からおろした状態で充電する必要がある。   The assembled battery is charged by applying DC power through a cable drawn from the positive and negative terminals of the assembled battery. Usually, it is charged at night with a current of about 0.2 CA. During this time, the assembled battery is generally charged while mounted on the vehicle body, and the vehicle body generally does not operate. In order to operate the vehicle body without being restricted by the charging operation, it is necessary to replace two or more sets of assembled batteries (spare batteries) and charge the battery while it is unloaded from the vehicle body.

車体の長時間稼動を所望する場合には、上記のごとく、スペアバッテリーを用意して積み替えるという方法をとらざるを得ないが、組電池のコストが倍増するほか煩雑な積み替え作業が発生する。また、多少の稼働時間の延長のためにスペアバッテリーを用意することは無駄が多い。
これに対し、短時間に電池容量の一部を回復充電することにより稼働時間を延長することができれば、スペアバッテリーを用意することに比べて、コストや工数の面で非常に大きな効果がある。そのためには、1時間程度の短時間で電池容量の数十パーセントを充電する急速充電が必要となる。
When it is desired to operate the vehicle body for a long time, as described above, a method of preparing and replacing the spare battery is unavoidable, but the cost of the assembled battery is doubled and a complicated reloading operation occurs. Also, it is wasteful to prepare a spare battery to extend the operating time slightly.
On the other hand, if the operation time can be extended by recovering and charging a part of the battery capacity in a short time, there is a great effect in terms of cost and man-hours compared to preparing a spare battery. For that purpose, quick charge which charges several tens percent of battery capacity in a short time of about 1 hour is required.

しかしながら、特許文献1に開示された技術では、急速充電による電池温度の上昇を抑制するには不十分であるという問題があった。
すなわち、電動式フォークリフト等の駆動に際しては、比較的大きな電流の間欠放電となる場合が多く、抵抗発熱により電池温度が上昇することに加え、短時間での急速充電を行った場合には、大電流による連続通電となるため、発熱反応である充電反応熱と抵抗発熱による温度上昇もあり、許容範囲を超えて電池温度が上昇し、電池寿命が低下するという問題があり、場合により電池の故障を生じるという問題があった。
However, the technique disclosed in Patent Document 1 has a problem that it is insufficient to suppress an increase in battery temperature due to rapid charging.
In other words, when driving an electric forklift or the like, intermittent discharge with a relatively large current is often caused, and in addition to the rise in battery temperature due to resistance heat generation, when rapid charging is performed in a short time, a large amount is required. Due to continuous energization with current, there is also a problem of temperature rise due to charge reaction heat, which is an exothermic reaction, and resistance heat generation, and there is a problem that the battery temperature rises beyond the allowable range and the battery life decreases, and in some cases battery failure There was a problem that caused.

本発明は、短時間に急速充電を実施して容量の一部を回復させて稼働時間を延長しようとする電動車両用等の組電池において、電池温度の上昇を抑制し、許容範囲を超えて電池温度が上昇することのない組電池を提供することを目的とする。   The present invention suppresses a rise in battery temperature and exceeds an allowable range in an assembled battery for an electric vehicle or the like that performs rapid charging in a short time to recover a part of the capacity and extend the operation time. An object is to provide an assembled battery in which the battery temperature does not increase.

本発明は、以下のものに関する。
(1)複数の鉛蓄電池を収納ケースに収容し、前記鉛蓄電池を直列に接続してなる組電池であって、前記鉛蓄電池は上面に複数個の正極端子と前記正極端子と同数の負極端子をそれぞれ備え、隣り合う鉛蓄電池間の正極端子と負極端子の接続は、端子毎に個別の接続部材によりなされ、前記鉛蓄電池は、複数の同極性端子の1個あたりの電池容量が300Ah以下である組電池。
(2)項(1)において、鉛蓄電池の上面に備えた正極端子と負極端子は、それぞれ2個である組電池。
(3)項(1)〜(2)のいずれかにおいて、前記鉛蓄電池は、高さ400mm以上である組電池。
(4)項(1)〜(3)のいずれかにおいて、複数の鉛蓄電池を列方向にn個、行方向にm個(n、mはそれぞれ2以上で且つn≧m)で収納ケースに収容し、各鉛蓄電池はその複数の同極性端子が行方向に配列され、列方向に隣り合う鉛蓄電池同士ならびに行方向に隣り合う鉛蓄電池同士は、それぞれ異極性端子が相対するように配列されている組電池。ここで、「鉛蓄電池を列方向にn個、行方向にm個」とは、対応電圧との関係で、直列接続の最初又は最後において鉛蓄電池が欠落し、n個又はm個に満たないことがあることを含む。
(5)項(4)において、列方向の隣り合う鉛蓄電池の異極性端子間は列用接続かんで接続し、列方向末端における行方向に隣り合う鉛蓄電池の異極性端子間は、相対する異極性端子間を行用接続かんで接続するとともに、残りの異極性端子間を接続ケーブルで接続した組電池。
The present invention relates to the following.
(1) An assembled battery in which a plurality of lead storage batteries are housed in a storage case and the lead storage batteries are connected in series, wherein the lead storage battery has a plurality of positive terminals and the same number of negative terminals as the positive terminals. And connecting the positive electrode terminal and the negative electrode terminal between the adjacent lead storage batteries by individual connection members for each terminal, and the lead storage battery has a battery capacity of 300 Ah or less per one of the plurality of same polarity terminals. Some assembled batteries.
(2) The assembled battery according to item (1), wherein the number of positive terminals and negative terminals provided on the upper surface of the lead storage battery is two.
(3) In any one of items (1) to (2), the lead storage battery is a battery pack having a height of 400 mm or more.
(4) In any one of items (1) to (3), a plurality of lead storage batteries are arranged in a storage case with n pieces in the column direction and m pieces in the row direction (n and m are each 2 or more and n ≧ m). Each lead storage battery has a plurality of same polarity terminals arranged in the row direction, and the lead storage batteries adjacent in the column direction and the lead storage batteries adjacent in the row direction are arranged so that the different polarity terminals face each other. Assembled battery. Here, “n lead storage batteries in the column direction and m in the row direction” means that the lead storage battery is missing at the beginning or the end of the series connection and less than n or m in relation to the corresponding voltage. Including that there is.
(5) In the item (4), the different polarity terminals of the lead storage batteries adjacent in the column direction are connected by a column connecting rod, and the opposite polarity terminals of the lead storage batteries adjacent in the row direction at the end of the column direction are opposed to each other. An assembled battery in which different polarity terminals are connected with a connecting rod for connection and the remaining different polarity terminals are connected with a connection cable.

本発明によれば、短時間に急速充電を実施して容量の一部を回復させて稼働時間を延長しようとする電動車両用等の組電池において、電池温度の上昇を抑制し、許容範囲を超えて電池温度が上昇することのない組電池を提供することができる。これにより、短時間で電池容量の数十パーセントを充電する急速充電が可能となり、スペアバッテリーを用意することに比べて、コストや工数を大幅に低減することができる。   According to the present invention, in an assembled battery for an electric vehicle or the like that performs rapid charging in a short time to recover a part of the capacity and extend the operation time, an increase in battery temperature is suppressed, and an allowable range is set. It is possible to provide an assembled battery that does not exceed the battery temperature. As a result, rapid charging that charges several tens of percent of the battery capacity in a short time is possible, and costs and man-hours can be greatly reduced compared to preparing a spare battery.

実施例1の鉛蓄電池を上面からみた説明図である。It is explanatory drawing which looked at the lead acid battery of Example 1 from the upper surface. 比較例1の鉛蓄電池を上面からみた説明図である。It is explanatory drawing which looked at the lead acid battery of the comparative example 1 from the upper surface. 1CA放電試験結果である。It is a 1CA discharge test result. 1CA放電試験結果である。It is a 1CA discharge test result. 実施例1の組電池を上面からみた説明図である。It is explanatory drawing which looked at the assembled battery of Example 1 from the upper surface.

組電池に急速充電を行った場合、以下の要因によって電池温度の上昇を招き、結果的に許容範囲を超えた高温となることがある。
(a)大電流を通電することによる接続かんや端子部における抵抗発熱
(b)後述のごとく細長い極板を使用するため自動車用電池などと比べ抵抗が大きく、極板集電部における抵抗発熱
(c)充電反応は発熱反応であり大電流通電により発熱速度が大きい
(d)鉛蓄電池を密接した状態で配置することにより放熱性が悪い
これらの要因のうち、(b)は電解液の成層化を防止するためには変更することが困難であり、(c)は急速充電に対して付随的に発生するものであるので回避することが困難である。
本発明においては、(a)における抵抗発熱を抑制するとともに、(b)〜(d)の要因により上昇した電池内部の温度すなわち熱を伝熱により、隣り合う鉛蓄電池の異極性端子間の接続部材(接続かん)に導き放熱しようとするものである。
When rapid charging is performed on an assembled battery, the battery temperature may increase due to the following factors, and as a result, the temperature may exceed a permissible range.
(A) Resistance heat generation in the connecting casing and terminal portion by energizing a large current (b) Since a long and narrow electrode plate is used as described later, the resistance is larger than that of an automobile battery and the like, and resistance heat generation in the electrode plate current collector ( c) The charging reaction is an exothermic reaction, and the rate of heat generation is large due to energization with a large current. (d) The heat dissipation is poor due to the close arrangement of lead-acid batteries. Among these factors, (b) is the stratification of the electrolyte. In order to prevent this, it is difficult to change, and (c) is incidentally generated with respect to rapid charging, and is difficult to avoid.
In the present invention, the resistance heat generation in (a) is suppressed, and the internal temperature of the battery, i.e., heat, increased due to the factors (b) to (d), is transferred between the opposite polarity terminals of adjacent lead storage batteries. It is intended to dissipate heat through a member (connection can).

<鉛蓄電池>
本発明にて述べる鉛蓄電池は、上面に複数個の正極端子と前記正極端子と同数の負極端子をそれぞれ備えている。この鉛蓄電池は、複数の同極性端子の1個あたりの電池容量を300Ah以下としている。そのほかは、特に制限されるものではなく、電槽と呼ばれるプラスチック製の容器に、セパレータを挟んで対向する正極と負極が交互に複数枚重ね合わされた極板群と電解液である希硫酸とを収納してなり、通常約2Vの電圧を有するものを使用することができる。
<Lead battery>
The lead-acid battery described in the present invention includes a plurality of positive terminals and the same number of negative terminals as the positive terminals on the upper surface. This lead-acid battery has a battery capacity of 300 Ah or less per one of a plurality of terminals having the same polarity. Other than that, there is no particular limitation, and an electrode plate group in which a plurality of positive and negative electrodes facing each other with a separator interposed therebetween are placed in a plastic container called a battery case, and dilute sulfuric acid that is an electrolyte solution. A housing having a voltage of about 2V can be used.

極板としては、クラッド式、ペースト式又はチュードル式のもの等を用いることができるが、電動式フォークリフト等の産業用車両においては、正極板には耐久性に優れるクラッド式のものを用いることが好ましい。また、鉛蓄電池の形状は、電動式フォークリフト等の産業用車両においては、細長い極板を深い電槽に収納した縦長が好ましい。これは、充電終期の過充電領域における副反応で発生する水の電気分解ガスによるエアリフト効果によって電解液が上下方向に攪拌され、電解液の成層化による電池劣化を防止しやすいからである。   As the electrode plate, a clad type, paste type or tudor type can be used, but in an industrial vehicle such as an electric forklift, a positive electrode plate of a clad type having excellent durability can be used. preferable. Further, the shape of the lead storage battery is preferably a vertically long shape in which an elongated electrode plate is housed in a deep battery case in an industrial vehicle such as an electric forklift. This is because the electrolyte is agitated in the vertical direction by the air lift effect of the water electrolysis gas generated by the side reaction in the overcharge region at the end of charge, and battery deterioration due to stratification of the electrolyte is easily prevented.

鉛蓄電池の充放電反応には電解液である硫酸が関与し、放電時には硫酸が消費され、逆に充電時には硫酸が生成する。充電時の硫酸の生成はミクロ的には100%濃硫酸の生成であり、高比重の硫酸が生成することになる。硫酸の生成速度は充電電流値に依存するが、電流が大きく、生成した硫酸の拡散が間に合わない場合には比重差によって高濃度の硫酸が電槽の下部に移動し、上下に比重差すなわち濃度差が生じる。この現象を成層化と呼んでいる。   In the charge / discharge reaction of the lead-acid battery, sulfuric acid, which is an electrolytic solution, is involved, and sulfuric acid is consumed during discharging, and conversely, sulfuric acid is generated during charging. The production of sulfuric acid at the time of charging is microscopic production of 100% concentrated sulfuric acid, and sulfuric acid with a high specific gravity is produced. The generation rate of sulfuric acid depends on the charging current value, but when the current is large and the diffusion of the generated sulfuric acid is not in time, the high concentration sulfuric acid moves to the lower part of the battery tank due to the specific gravity difference, and the specific gravity difference or concentration There is a difference. This phenomenon is called stratification.

成層化が起こると極板の下部において充電反応が進行しにくくなり、放電生成物である硫酸鉛が不働態化する、いわゆるサルフェーションによって劣化する。
成層化を抑制するためには、充電終期の過充電領域における副反応で発生する水の電気分解ガスによるエアリフト効果によって電解液を上下方向に攪拌することが一般的であるが、大きなエアリフト効果を得るために、細長い極板を深い電槽に収納して用いるのが好ましい。
When stratification occurs, the charging reaction does not easily proceed in the lower part of the electrode plate, and the lead product, which is a discharge product, is deteriorated by so-called sulfation, which is inactivated.
In order to suppress stratification, it is common to stir the electrolyte vertically by the air lift effect of water electrolysis gas generated by side reactions in the overcharge region at the end of charge. In order to obtain this, it is preferable to use an elongated electrode plate accommodated in a deep battery case.

<収納ケース>
収納ケースは、上記の鉛蓄電池を複数収納できるものであれば、特に制限されるものではない。例えば、上方が開口した鉄製の容器(以下、鉄箱と記す)に上記縦長の鉛蓄電池を密接した状態で収納することができる。
プラスチック製の電槽は通常価格が安く耐酸性に優れたポリプロピレン製が用いられるが、剛性が十分ではないため、特に縦長の電槽では、電解液の質量により変形(中央部で膨らむ)し、セパレータを介した極板間の密接状態を維持できない場合が多い。鉄箱内に鉛蓄電池を密接した状態で収容することにより、鉄箱の強度によってセパレータを介した極板間の密接状態が維持される。
<Storage case>
The storage case is not particularly limited as long as it can store a plurality of the above lead storage batteries. For example, the vertically long lead-acid battery can be stored in a close contact state in an iron container (hereinafter referred to as an iron box) having an upper opening.
Plastic battery case is usually made of polypropylene with low price and excellent acid resistance, but because the rigidity is not enough, especially in the case of a vertically long battery case, it deforms due to the mass of the electrolyte (swells in the center), In many cases, it is not possible to maintain the close contact state between the electrode plates via the separator. By accommodating the lead storage battery in a close state in the iron box, the close state between the electrode plates via the separator is maintained depending on the strength of the iron box.

<組電池>
組電池は、所定の出力を得るために複数の鉛蓄電池を直列に接続してなるものであり、その構造や構成は、特に制限されるものではない。例えば、24個の鉛蓄電池を直列に接続して高電圧(48V)の組電池とすることができる。
<Battery assembly>
The assembled battery is formed by connecting a plurality of lead storage batteries in series in order to obtain a predetermined output, and its structure and configuration are not particularly limited. For example, 24 lead-acid batteries can be connected in series to form a high voltage (48V) battery pack.

鉛蓄電池の直列接続は、隣り合う鉛蓄電池間の正極端子と負極端子の接続が、端子毎に個別の接続部材によりなされる。例えば、メガネ状の形状を有する鉛合金製の接続かんの両端の穴を、隣り合う鉛蓄電池の鉛合金製の端子に嵌合し、両者を溶接して接続することができる。このほか、両端に穴の空いた銅板や両端に圧着端子を装着したケーブルをボルトやナットで固着することもできる。本発明では、接続部材とは、上記の接続かん、両端に穴の空いた銅板、両端に圧着端子を装着したケーブル等をいう。   In series connection of lead acid batteries, connection between a positive electrode terminal and a negative electrode terminal between adjacent lead acid batteries is made by an individual connection member for each terminal. For example, the holes at both ends of a lead alloy connection cane having a glasses-like shape can be fitted to the lead alloy terminals of adjacent lead storage batteries, and both can be welded together. In addition, a copper plate with holes at both ends and a cable with crimp terminals attached at both ends can be fixed with bolts or nuts. In the present invention, the connecting member refers to the above-described connecting rod, a copper plate having holes at both ends, a cable having crimp terminals attached to both ends, and the like.

そして、鉛蓄電池の接続は、前述したとおり端子毎に個別の接続部材によりなされるが、1つの鉛蓄電池上面の複数の同極性端子の1個あたりの電池容量を300Ah以下とする。同極性端子の1個あたりの電池容量を300Ah以下とすることにより、大電流を通電することによる接続かんや端子部における抵抗発熱を抑制することができる。また、端子毎に個別の接続部材により接続し、電流の流れる経路を複数確保することにより、電圧特性が改善され、鉛蓄電池の電池容量を実質的に高容量化することができる。当該接続部材1個あたりの電池容量も300Ah以下とする。   The lead storage battery is connected by individual connection members for each terminal as described above, but the battery capacity per one of the plurality of same polarity terminals on the upper surface of one lead storage battery is set to 300 Ah or less. By setting the battery capacity per one terminal of the same polarity to 300 Ah or less, it is possible to suppress the resistance heat generation in the connection canister and the terminal portion caused by energizing a large current. In addition, by connecting each terminal with an individual connection member and securing a plurality of paths through which current flows, the voltage characteristics are improved, and the battery capacity of the lead storage battery can be substantially increased. The battery capacity per connection member is also set to 300 Ah or less.

鉛蓄電池が、複数の同極性端子を有しこれ等端子に個別に接続部材を装着するので、接続部材間に隙間を設けることができ、接続部材における放熱の効果を高めることができる。   Since the lead storage battery has a plurality of terminals of the same polarity and the connection members are individually attached to these terminals, a gap can be provided between the connection members, and the effect of heat dissipation in the connection members can be enhanced.

鉛蓄電池上面に備えた正極端子と負極端子は、電池内部において極板群とをつなぐ部分が酸化性雰囲気にさらされるのが一般的であり、腐食による損傷によって大電流通電時に破断する心配がある。このとき、破断の瞬間に破断部に高電圧が生じスパークが発生して、水の電気分解ガス(爆鳴気)が存在するとこれに引火して爆発事故を起こす心配がある。複数の正極端子と負極端子を備える場合には、ひとつの端子が破断した場合においても破断部に高電圧が生じることが無く爆発事故を起こす心配を回避することができる。例えば、正負極端子をそれぞれ2個とすることができる。   The positive electrode terminal and negative electrode terminal provided on the upper surface of the lead-acid battery are generally exposed to an oxidizing atmosphere at the part connecting the electrode plate group inside the battery, and there is a risk of breaking when a large current is applied due to corrosion damage. . At this time, when a break occurs, a high voltage is generated at the break and sparks are generated, and if there is water electrolysis gas (explosive gas), there is a concern that it may catch fire and cause an explosion. In the case where a plurality of positive terminals and negative terminals are provided, even when one terminal breaks, a high voltage is not generated at the broken portion, and the risk of an explosion accident can be avoided. For example, the number of positive and negative terminals can be two.

電動式フォークリフトにおいては、鉛蓄電池はパワーソースであると共にウエイトバランスの役割を併せ持っており、車体の重心との位置関係が重要である。また、狭い倉庫などにおける旋回性などの作業性から、車体の幅や長さは制約を受ける。前述のように、フォークリフト用鉛蓄電池は縦に細長い形状が一般的であるが、大容量電池では高さの高いものとなり、極板部分の抵抗も大きくなる。本発明は充放電電流の大きな大容量電池において有効であるが、鉛蓄電池が、高さ400mm以上である大容量電池において特に効果が顕著である。   In an electric forklift, the lead storage battery is not only a power source but also a weight balance, and the positional relationship with the center of gravity of the vehicle body is important. In addition, the width and length of the vehicle body are restricted by workability such as turning performance in a narrow warehouse. As described above, the lead-acid storage battery for forklifts generally has a vertically elongated shape, but a large-capacity battery has a high height, and the resistance of the electrode plate portion also increases. The present invention is effective in a large-capacity battery having a large charge / discharge current, but the effect is particularly remarkable in a large-capacity battery having a lead storage battery having a height of 400 mm or more.

個々の鉛蓄電池の内部においては、交互に積層された複数の正極板及び負極板をそれぞれ溶接してストラップと呼ぶ並列接続部分を形成する。ストラップは極板の積層方向と同方向に形成されるため、複数の端子を設ける場合には該積層方向と同方向に同極の端子が並ぶのが一般的である。複数の鉛蓄電池を列方向にn個、行方向にm個(n、mはそれぞれ2以上且つn≧m)で収納ケースに収容した組電池において、極板の積層方向が行方向である場合、各鉛蓄電池はその複数の同極性端子が行方向に配列され、列方向に隣り合う鉛蓄電池同士ならびに行方向に隣り合う鉛蓄電池同士は、それぞれ異極性端子が相対するように配列される。「鉛蓄電池を列方向にn個、行方向にm個」とは、対応電圧との関係で、直列接続の最初又は最後において鉛蓄電池が欠落し、n個又はm個に満たないことがあることを含み、例えば、列方向に5個、行方向に5個で、電圧48V対応の場合は、鉛電池の個数24個となり、直列接続の最初又は最後で1個欠落する。   In each lead acid battery, a plurality of alternately stacked positive and negative electrode plates are welded to form a parallel connection portion called a strap. Since the strap is formed in the same direction as the stacking direction of the electrode plates, when a plurality of terminals are provided, the terminals having the same polarity are generally arranged in the same direction as the stacking direction. In a battery pack in which a plurality of lead storage batteries are accommodated in a storage case with n pieces in the column direction and m pieces in the row direction (n and m are each 2 or more and n ≧ m), the stacking direction of the electrode plates is the row direction Each lead-acid battery has a plurality of same-polarity terminals arranged in the row direction, and the lead-acid batteries adjacent in the column direction and the lead-acid batteries adjacent in the row direction are arranged so that the different polarity terminals face each other. “N lead storage batteries in the column direction and m in the row direction” means that the lead storage battery is missing at the beginning or end of the series connection and may not be n or m in relation to the corresponding voltage. For example, in the case of 5 in the column direction and 5 in the row direction and corresponding to a voltage of 48V, the number of lead batteries is 24, and one is missing at the beginning or end of the series connection.

上記のように配列して、列方向の隣り合う鉛蓄電池の異極性端子間の接続は、端子毎に列用接続かんで接続して複数の接続とすることにより大多数の接続かんが隙間を有して平行に配置され放熱効果が最大になる。列方向末端における行方向に隣り合う鉛蓄電池の異極性端子間は、全ての端子を相対して配置することはできないで、隣接する異極性端子間を行用接続かんで接続するとともに、残りの異極性端子間を接続ケーブルで接続する。このような接続ケーブルによる接続の数を最小にして放熱性を高めるために、n≧mとする。   Arranged as described above, the connection between the different polarity terminals of adjacent lead storage batteries in the column direction is connected to the column connection rod for each terminal to form a plurality of connections, so that the majority of connection rods have gaps. And arranged in parallel to maximize heat dissipation effect. Between the different polarity terminals of lead storage batteries adjacent in the row direction at the column end, all terminals cannot be arranged relative to each other. Connect different polarity terminals with a connection cable. In order to minimize the number of connections by such connection cables and improve heat dissipation, n ≧ m is set.

上記の実施の形態では、鉛蓄電池の上面に正極端子と負極端子をそれぞれ複数個備えたが、正極端子と負極端子をそれぞれ1つ備え、隣り合う鉛蓄電池の接続は、1つの端子に、複数の接続部材を装着することもできる。この場合、鉛蓄電池は、隣り合う鉛蓄電池を接続する接続部材1個あたりの電池容量を300Ah以下とする。正極端子、負極端子それぞれは、複数の接続部材を装着できる十分なスペースを確保する。
さらに、鉛蓄電池の上面に正極端子と負極端子をそれぞれ複数備える場合にも、各端子に複数の接続部材を装着することができる。
In the above embodiment, a plurality of positive terminals and negative terminals are provided on the upper surface of the lead storage battery, but one positive terminal and one negative terminal are provided, and a plurality of adjacent lead storage batteries are connected to one terminal. It is also possible to attach a connecting member. In this case, the lead storage battery has a battery capacity of 300 Ah or less per connection member connecting adjacent lead storage batteries. Each of the positive electrode terminal and the negative electrode terminal secures a sufficient space in which a plurality of connecting members can be mounted.
Further, even when a plurality of positive terminals and negative terminals are provided on the upper surface of the lead storage battery, a plurality of connection members can be attached to each terminal.

以下、図面を用いて、比較例とともに、本発明の実施例を詳細に説明する。   Hereinafter, examples of the present invention will be described in detail together with comparative examples with reference to the drawings.

<実施例1>
一般的な電動式フォークリフト用として用いられる、幅が158mm、長さが144mm、高さが427mmで、2V−400Ah(公称容量)の鉛蓄電池を用いて組電池を構成した。鉛蓄電池の正極板はクラッド式とした。この鉛蓄電池3は、図1に上面図を示すように、負極端子1、1’と正極端子2、2’をそれぞれ2本備えている。
図5は、上記の鉛蓄電池3を一般的な電動式フォークリフト用鉄箱4に収納した状態を示す平面図である。鉛蓄電池3を、鉄箱4に列方向に6個、行方向に4個の計24個が密接した状態で収容している。
各鉛蓄電池3はその複数の同極性端子が行方向に配列され、列方向に隣り合う鉛蓄電池3同士ならびに行方向に隣り合う鉛蓄電池3同士は、それぞれ異極性端子が相対するように配列した組電池である。すなわち、各鉛蓄電池3の正極端子2,2’、負極端子1,1’は、行方向に並んでいる。また、列方向に隣り合う鉛蓄電池3同士は、一方の鉛蓄電池3の正極端子2,2’と他方の鉛蓄電池3の負極端子1,1’が相対しており、行方向に隣り合う鉛蓄電池3同士は、一方の鉛蓄電池3の正極端子と他方の鉛蓄電池3の負極端子が相対している。
<Example 1>
An assembled battery was constructed using a lead storage battery of 2V-400 Ah (nominal capacity) having a width of 158 mm, a length of 144 mm, and a height of 427 mm, which is used for a general electric forklift. The positive electrode plate of the lead storage battery was a clad type. As shown in a top view in FIG. 1, the lead storage battery 3 includes two negative terminals 1, 1 ′ and two positive terminals 2, 2 ′.
FIG. 5 is a plan view showing a state in which the lead storage battery 3 is housed in a general electric forklift iron box 4. A total of 24 lead storage batteries 3 are housed in an iron box 4 in a close state of six in the column direction and four in the row direction.
Each lead-acid battery 3 has a plurality of same-polarity terminals arranged in the row direction, and the lead-acid batteries 3 adjacent to each other in the column direction and the lead-acid batteries 3 adjacent to each other in the row direction are arranged so that the different polarity terminals face each other. It is an assembled battery. That is, the positive terminals 2 and 2 ′ and the negative terminals 1 and 1 ′ of each lead storage battery 3 are arranged in the row direction. Further, between the lead storage batteries 3 adjacent in the column direction, the positive terminals 2, 2 'of one lead storage battery 3 and the negative terminals 1, 1' of the other lead storage battery 3 are opposite to each other, and the lead adjacent in the row direction. In the storage batteries 3, the positive terminal of one lead storage battery 3 and the negative terminal of the other lead storage battery 3 are opposed to each other.

上記において、列方向に隣り合う鉛蓄電池3の相対する2組の異極性端子間を、列用接続かん5,5’で接続している。そして、列方向末端における行方向に隣り合う鉛蓄電池3の異極性端子間は、相対する異極性端子間を行用接続かん6で接続するとともに、残りの異極性端子間を接続ケーブル7で接続している。列用接続かんと行用接続かんは、通常の電動式フォークリフト用組電池で用いられる鉛合金製の接続かんを使用した。また、1セル目と24セル目からは、2個の同極性端子を纏めた外部入出力用ケーブル8,8’を引き出している。   In the above, the two opposite polarity terminals of the lead storage batteries 3 adjacent in the column direction are connected by the column connection rods 5, 5 '. And between the different polarity terminals of the lead storage battery 3 adjacent to each other in the row direction at the end in the column direction, the opposite polarity terminals are connected by the row connection can 6 and the other polarity terminals are connected by the connection cable 7. is doing. As the connecting rod for the row and the connecting rod for the row, a connecting rod made of a lead alloy used in a normal electric forklift assembled battery was used. Further, from the first cell and the 24th cell, external input / output cables 8 and 8 ′ in which two terminals having the same polarity are combined are drawn out.

<比較例1>
組電池を構成する鉛蓄電池3の上面図を図2に示す。負極端子1と正極端子2は、それぞれ1個である。従って、隣り合う鉛蓄電池同士の直列接続は、通常の電動式フォークリフト用組電池で用いられる鉛合金製の接続かんを1本使用した。各鉛蓄電池の上面に備える正極端子と負極端子を1つとする以外は実施例1と同様とした。
<Comparative Example 1>
The top view of the lead storage battery 3 which comprises an assembled battery is shown in FIG. There is one negative terminal 1 and one positive terminal 2. Therefore, one lead alloy connecting rod used in a normal electric forklift assembled battery is used for the series connection between adjacent lead storage batteries. Example 1 was the same as Example 1 except that one positive electrode terminal and one negative electrode terminal were provided on the upper surface of each lead-acid battery.

上記の実施例1及び比較例1の組電池の抵抗発熱の影響を確認するため、次の試験を実施した。すなわち、上記実施例と比較例の組電池状態を再現するために、前記各例に準じて鉛蓄電池を3個直列に接続した組電池を準備した。そして、環境温度25℃で6時間以上静置した後、放電反応熱の影響を受けない1CA放電を実施し、端子電圧及び接続かん温度の経時変化を測定した。その結果を図3、図4に示す。   In order to confirm the influence of the resistance heating of the assembled batteries of Example 1 and Comparative Example 1 described above, the following test was performed. That is, in order to reproduce the assembled battery states of the above examples and comparative examples, an assembled battery in which three lead storage batteries were connected in series was prepared according to each of the above examples. And after leaving still at ambient temperature 25 degreeC for 6 hours or more, 1CA discharge which is not influenced by discharge reaction heat was implemented, and the time-dependent change of terminal voltage and connection temperature was measured. The results are shown in FIGS.

<1CA放電試験結果>
図3から明らかなように、放電中を通じて、実施例1は、比較例1と比較して端子電圧が約0.2V低い。放電電流値は400Aであるから、実施例1は、比較例1と比較して抵抗損失が約80W低いことが理解できる。
また、図4から明らかなように、接続かん温度は、放電開始直後から上昇を初め、約10分後には上昇が緩やかになるが、約36分後の放電終了時まで上昇が続いている。このとき、外気温度は20〜25℃であった。そして、比較例1では、接続かんが約110℃まで上昇しているのに対し、実施例1の到達温度は約45℃であり(比較例1に比べて約55℃の温度差が生じており)、放電時の接続かんの発熱を抑制できることが理解できる。なお、本実施例では、放電による接続かんの発熱を測定したものであるが、充電時には放電時と同様の抵抗発熱による温度上昇に加えて電池内部の充電反応熱による温度上昇が伝熱により重畳される。そのため、充電開始後の急激な温度上昇を経た後の緩やかな温度上昇が続く領域の到達温度がやや高くなるが50℃以上の温度差が生じる点は同様である。
<1CA discharge test results>
As is clear from FIG. 3, the terminal voltage of Example 1 is about 0.2 V lower than that of Comparative Example 1 during discharge. Since the discharge current value is 400 A, it can be understood that the resistance loss of Example 1 is about 80 W lower than that of Comparative Example 1.
Further, as is apparent from FIG. 4, the connection temperature starts to increase immediately after the start of discharge, and gradually increases after about 10 minutes, but continues to increase until the end of discharge after about 36 minutes. At this time, the outside air temperature was 20 to 25 ° C. In the first comparative example, the temperature of the connection can be increased to about 110 ° C., whereas the temperature reached in the first embodiment is about 45 ° C. It can be understood that heat generation of the connection can be suppressed during discharge. In this example, the heat generation of the connection cans due to discharge was measured, but during charging, in addition to the temperature increase due to resistance heat generation similar to that during discharging, the temperature increase due to charge reaction heat inside the battery is superimposed due to heat transfer. Is done. For this reason, the temperature reached in a region where a gradual temperature increase after a rapid temperature increase after the start of charging continues is slightly higher, but the temperature difference of 50 ° C. or more is the same.

1,1’…負極端子
2,2’…正極端子
3…鉛蓄電池
4…鉄箱
5,5’…列用接続かん
6…行用接続かん
7…接続ケーブル
8,8’…外部入出力用ケーブル
DESCRIPTION OF SYMBOLS 1,1 '... Negative electrode terminal 2, 2' ... Positive electrode terminal 3 ... Lead storage battery 4 ... Iron box 5, 5 '... Row connection rod 6 ... Row connection rod 7 ... Connection cable 8, 8' ... External input / output cable

Claims (5)

複数の鉛蓄電池を収納ケースに収容し、前記鉛蓄電池を直列に接続してなる組電池であって、前記鉛蓄電池は上面に複数個の正極端子と前記正極端子と同数の負極端子をそれぞれ備え、隣り合う鉛蓄電池間の正極端子と負極端子の接続は、端子毎に個別の接続部材によりなされ、前記鉛蓄電池は、複数の同極性端子の1個あたりの電池容量が300Ah以下である組電池。   An assembled battery in which a plurality of lead storage batteries are housed in a storage case and the lead storage batteries are connected in series, the lead storage battery having a plurality of positive terminals and the same number of negative terminals as the positive terminals on the upper surface. The connection between the positive electrode terminal and the negative electrode terminal between adjacent lead storage batteries is made by individual connection members for each terminal, and the lead storage battery has a battery capacity of 300 Ah or less per one of a plurality of the same polarity terminals. . 請求項1において、鉛蓄電池の上面に備えた正極端子と負極端子は、それぞれ2個である組電池。   2. The assembled battery according to claim 1, wherein the number of positive terminals and negative terminals provided on the upper surface of the lead storage battery is two. 請求項1〜2のいずれかにおいて、前記鉛蓄電池は、高さ400mm以上である組電池。   3. The assembled battery according to claim 1, wherein the lead storage battery has a height of 400 mm or more. 請求項1〜3のいずれかにおいて、複数の鉛蓄電池を列方向にn個、行方向にm個(n、mはそれぞれ2以上且つn≧m)で収納ケースに収容し、各鉛蓄電池はその複数の同極性端子が行方向に配列され、列方向に隣り合う鉛蓄電池同士ならびに行方向に隣り合う鉛蓄電池同士は、それぞれ異極性端子が相対するように配列されている組電池。   The lead acid battery according to any one of claims 1 to 3, wherein a plurality of lead acid batteries are accommodated in a storage case with n pieces in the column direction and m pieces in the row direction (n and m are each 2 or more and n ≧ m). The assembled battery in which the plurality of same polarity terminals are arranged in the row direction, and the lead storage batteries adjacent in the column direction and the lead storage batteries adjacent in the row direction are arranged so that the different polarity terminals face each other. 請求項4において、列方向の隣り合う鉛蓄電池の異極性端子間は列用接続かんで接続し、列方向末端における行方向に隣り合う鉛蓄電池の異極性端子間は、相対する異極性端子間を行用接続かんで接続するとともに、残りの異極性端子間を接続ケーブルで接続した組電池。   In Claim 4, between the different polarity terminals of the lead storage batteries adjacent in the column direction are connected by a column connecting rod, and between the opposite polarity terminals of the lead storage batteries adjacent in the row direction at the end of the column direction are between the opposite polarity terminals. A battery pack in which the other different polarity terminals are connected with a connection cable.
JP2010005550A 2010-01-14 2010-01-14 Battery pack Pending JP2011146222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005550A JP2011146222A (en) 2010-01-14 2010-01-14 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005550A JP2011146222A (en) 2010-01-14 2010-01-14 Battery pack

Publications (1)

Publication Number Publication Date
JP2011146222A true JP2011146222A (en) 2011-07-28

Family

ID=44460912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005550A Pending JP2011146222A (en) 2010-01-14 2010-01-14 Battery pack

Country Status (1)

Country Link
JP (1) JP2011146222A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041757A (en) * 2011-08-17 2013-02-28 Gs Yuasa Corp Lead acid storage battery
CN103560217A (en) * 2013-11-14 2014-02-05 天津雅迪实业有限公司 Battery case of lead-acid batteries of electric bicycle
US9755218B2 (en) 2013-03-12 2017-09-05 K-Tec Engineering, Inc. Stationary lead battery performance improvement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122291A (en) * 1993-10-28 1995-05-12 Shin Kobe Electric Mach Co Ltd Storage battery, manufacture of the same, and retainer for the same
JP2000149900A (en) * 1998-11-09 2000-05-30 Matsushita Electric Ind Co Ltd Cell storing module device and cell storing device
JP2000173645A (en) * 1998-12-07 2000-06-23 Yuasa Corp Nickel-hydrogen battery for electric vehicle
JP2006093047A (en) * 2004-09-27 2006-04-06 Furukawa Battery Co Ltd:The Lead acid battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122291A (en) * 1993-10-28 1995-05-12 Shin Kobe Electric Mach Co Ltd Storage battery, manufacture of the same, and retainer for the same
JP2000149900A (en) * 1998-11-09 2000-05-30 Matsushita Electric Ind Co Ltd Cell storing module device and cell storing device
JP2000173645A (en) * 1998-12-07 2000-06-23 Yuasa Corp Nickel-hydrogen battery for electric vehicle
JP2006093047A (en) * 2004-09-27 2006-04-06 Furukawa Battery Co Ltd:The Lead acid battery

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6014001249; JIS C 8704-2-2 , 20060920, 11-13頁 *
JPN7014000121; ベント式電導フォークリフト用鉛蓄電池"パーフェクトプラスシリーズ" , 20040120 *
JPN7014000124; GS YUASA: 制御弁式鉛蓄電池総合カタログ , 200907, 3-12頁 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041757A (en) * 2011-08-17 2013-02-28 Gs Yuasa Corp Lead acid storage battery
US9755218B2 (en) 2013-03-12 2017-09-05 K-Tec Engineering, Inc. Stationary lead battery performance improvement method
CN103560217A (en) * 2013-11-14 2014-02-05 天津雅迪实业有限公司 Battery case of lead-acid batteries of electric bicycle

Similar Documents

Publication Publication Date Title
US10243193B2 (en) Battery pack
CN103828086B (en) The battery unit of novel structure
US20180331334A1 (en) Battery module assembly
EP2201629B1 (en) Module pack for secondary battery
JP6510633B2 (en) Battery pack case with efficient cooling structure
US10181623B2 (en) Battery module including sensing assembly and battery pack comprising the same
US8734974B2 (en) Rechargeable battery
US9263721B2 (en) Lead-acid battery design having versatile form factor
US10547037B2 (en) Battery module, and battery pack and vehicle comprising the same
US20100200314A1 (en) Energy storage assembly with poka-yoke connections
US20130189563A1 (en) Battery module and a method for assembling battery modules
JP2005332823A (en) Rechargeable battery and battery module using the same
US10559805B2 (en) Battery for an electric vehicle
EP2521203A1 (en) Battery module
EP2725637A2 (en) Battery
US20180323412A1 (en) Battery module, and battery pack and vehicle comprising same
US20100282529A1 (en) Electrochemical cell and energy storage assembly
CN110612629B (en) Cylindrical secondary battery including welding rod
JP2011146222A (en) Battery pack
CN101399369A (en) Secondary battery
US20100273043A1 (en) Electrochemical cell with weld points connections and energy storage assembly
EP2381524A1 (en) Lead acid battery
WO2014097516A1 (en) Lead storage battery
CN114639900A (en) Battery and electric equipment
EP2568527A1 (en) Hybrid battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527