JPH07121809B2 - Purification method of iron chloride aqueous solution - Google Patents

Purification method of iron chloride aqueous solution

Info

Publication number
JPH07121809B2
JPH07121809B2 JP62150089A JP15008987A JPH07121809B2 JP H07121809 B2 JPH07121809 B2 JP H07121809B2 JP 62150089 A JP62150089 A JP 62150089A JP 15008987 A JP15008987 A JP 15008987A JP H07121809 B2 JPH07121809 B2 JP H07121809B2
Authority
JP
Japan
Prior art keywords
iron
solution
aqueous solution
iron chloride
chloride aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62150089A
Other languages
Japanese (ja)
Other versions
JPS63315522A (en
Inventor
直兄 平井
徹 村瀬
克伸 奥谷
輝夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP62150089A priority Critical patent/JPH07121809B2/en
Publication of JPS63315522A publication Critical patent/JPS63315522A/en
Publication of JPH07121809B2 publication Critical patent/JPH07121809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/10Halides

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鉄鋼の塩酸酸洗によるデスケーリング工程で
発生した塩化鉄水溶液を焙焼して塩酸を回収し、併せて
高純度の酸化鉄粉を得る際の、高純度の塩化鉄水溶液の
製造方法であって、更に詳しくはこの高純度の塩化鉄水
溶液を、そのまゝあるいは他の金属イオンを添加して成
分調整後、焙焼することにより、例えば、ソフトフェラ
イトの製造に極めて適した高純度の酸化鉄粉を製造する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to the recovery of hydrochloric acid by roasting an aqueous solution of iron chloride generated in a descaling process of steel with hydrochloric acid pickling, and also to obtain high-purity iron oxide. A method for producing a high-purity iron chloride aqueous solution for obtaining powder, more specifically, this high-purity iron chloride aqueous solution is roasted after adjusting the components by adding the same or other metal ions. Thus, for example, the present invention relates to a method for producing high-purity iron oxide powder that is extremely suitable for producing soft ferrite.

[従来の技術] 鉄鋼の塩酸酸洗で発生した塩化鉄水溶液を焙焼して酸化
鉄粉を製造する方法は広く実施されている。例えばソフ
トフェライトはこの酸化鉄粉に他の酸化金属粉を調合
し、焼結して製造されるが、この酸化鉄粉はSi,Al,Cr,C
u,P等の不純物が少ないことが性能のよいソフトフェラ
イトを経済的に製造するために望ましい。
[Prior Art] A method of producing an iron oxide powder by roasting an aqueous solution of iron chloride generated by pickling steel with hydrochloric acid is widely practiced. For example, soft ferrite is manufactured by mixing this iron oxide powder with other metal oxide powders and sintering it, but this iron oxide powder contains Si, Al, Cr, C
It is desirable that the amount of impurities such as u and P is small in order to economically produce soft ferrite with good performance.

特開昭59−199505号は金属塩化物溶液の精製法であり、
金属塩化物溶液を濃縮して、濃縮液を鉄等の金属と反応
させて、あるいは濃縮液に炭酸塩を添加して、あるいは
濃縮液をNH4OH等でPH3〜6に調整して濾過する方法が示
されている。しかし特別の工夫を行う事なく濃縮液を鉄
等の金属と反応させたり、あるいは濃縮液のPHを3〜6
に調整すると、濃縮液中には多量の水酸化鉄が浮遊状に
生成し、濾過に際して目詰りを発生させるため、濾別に
極めて長時間を要し工業的な実施に困難をともなう。又
特開昭60−54907号や特開昭60−65709号も金属塩化物溶
液を濃縮し、2価金属を加えた後濾過する方法である
が、特開昭59−199505号と同様に、これ等の方法では濾
過に極めて長時間を要し、工業規模での実施が困難を伴
う。さらにこれらの方法は濾過の困難性のみならず、不
溶化した水酸化鉄の分別によって酸化鉄粉そのものの歩
留が低下するという欠点を有する。
JP 59-199505 A is a method for purifying a metal chloride solution,
Concentrate the metal chloride solution, react the concentrate with a metal such as iron, or add carbonate to the concentrate, or adjust the concentrate to PH 3 to 6 with NH 4 OH, etc. and filter. The method is shown. However, the concentrate can be reacted with metals such as iron without special measures, or the pH of the concentrate can be 3 to 6
When adjusted to 1, a large amount of iron hydroxide is produced in a suspended state in the concentrated liquid, and clogging occurs during filtration, which requires an extremely long time for filtration and is difficult to carry out industrially. Further, JP-A-60-54907 and JP-A-60-65709 are methods of concentrating a metal chloride solution, adding a divalent metal, and then filtering, but like JP-A-59-199505, According to these methods, the filtration takes a very long time and is difficult to carry out on an industrial scale. Further, these methods have the drawback that not only the difficulty of filtration but also the yield of the iron oxide powder itself decreases due to the fractionation of the insolubilized iron hydroxide.

[発明が解決しよとする問題点] 本発明は、鉄鋼の塩酸酸洗で発生した塩化鉄水溶液(以
下本明細書では原塩化鉄水溶液という)から不純成分で
あるSi,Al,Cr,Cu,Pを除去する方法であり、分別除去に
際して分別が工業的に能率よく実施できる、原塩化鉄水
溶液の精製方法に関する。
[Problems to be Solved by the Invention] The present invention relates to Si, Al, Cr, and Cu which are impure components from an iron chloride aqueous solution (hereinafter referred to as an original iron chloride aqueous solution) generated by hydrochloric acid pickling of steel. The present invention relates to a method for purifying an original iron chloride aqueous solution, which is a method for removing P, and which can be industrially efficiently fractionated during fractionation.

[問題点を解決するための手段] 本発明は 鉄鋼の塩酸酸洗によるデスケーリング工程で発生した塩
化鉄水溶液を焙焼して塩酸と酸化鉄粉を回収するプロセ
スにおいて、該塩化鉄水溶液を該プロセスで発生する焙
焼ガスと接触させて加熱濃縮して該塩化鉄水溶液中のSi
成分を不溶化せしめ、次いで該液に鉄を加えて該液のPH
を1以上3未満の範囲で遊離酸を消費せしめて該液中の
Al,Cr,Cu,P成分の大部分を不溶化せしめ、鉄の添加終了
から5時間経過後に不溶化物を分別除去する、鉄鋼の塩
酸酸洗で発生した塩化鉄水溶液の精製方法である。尚本
明細書で分別とは、濾紙、濾布等による濾過や、吸着分
離や、遠心分離等で不溶化物を溶液から分離することを
いう。
[Means for Solving the Problems] In the process of roasting the iron chloride aqueous solution generated in the descaling step of the steel by hydrochloric acid pickling to recover hydrochloric acid and iron oxide powder, the iron chloride aqueous solution is Si in the iron chloride aqueous solution is obtained by contacting with the roasting gas generated in the process and concentrating by heating.
The ingredients were insolubilized, and then iron was added to the solution to adjust the pH of the solution.
Of free acid in the range of 1 or more and less than 3
This is a method for purifying an aqueous iron chloride solution generated by hydrochloric acid pickling of steel, in which most of the Al, Cr, Cu, P components are insolubilized, and the insoluble matter is fractionally removed 5 hours after the addition of iron is completed. In the present specification, the separation means separating the insoluble matter from the solution by filtration with a filter paper, a filter cloth or the like, adsorption separation, centrifugation or the like.

第1図は本発明のプロセスフローの例を示す図である。
6は原塩化鉄水溶液で1はその貯留槽である。2は接触
塔で、原塩化鉄水溶液6は焙焼で生成した熱ガス3と接
触し加熱濃縮される。加熱濃縮された液は調整槽4に送
られ、ここで鉄が加えられる。7は分別装置で、鉄の添
加終了から5時間経過後にSi,Al,Cr,Cu,P等の不溶化物
8を分別する。不溶化物が除去された塩化鉄精製溶液9
は焙焼炉5で焙焼されて熱ガス3と高純度酸化鉄粉10と
になる。11は高純度酸化鉄粉を回収する電気集塵機で、
12は熱ガス3から塩酸を回収する塩酸回収塔である。
FIG. 1 is a diagram showing an example of a process flow of the present invention.
Reference numeral 6 is a raw iron chloride aqueous solution and 1 is a storage tank thereof. Reference numeral 2 denotes a contact tower, and the raw iron chloride aqueous solution 6 is brought into contact with the hot gas 3 produced by roasting to be heated and concentrated. The heated and concentrated solution is sent to the adjusting tank 4, where iron is added. Reference numeral 7 denotes a fractionation device for fractionating insoluble matters 8 such as Si, Al, Cr, Cu and P 5 hours after the addition of iron is completed. Iron chloride purification solution 9 from which insoluble matter has been removed
Is roasted in a roasting furnace 5 to become hot gas 3 and high-purity iron oxide powder 10. 11 is an electric dust collector that collects high-purity iron oxide powder,
12 is a hydrochloric acid recovery tower for recovering hydrochloric acid from the hot gas 3.

[作用、実施例] 本発明で、原塩化鉄水溶液6は接触塔2で加熱濃縮され
るが、原塩化鉄水溶液中のSiはこの加熱濃縮によって大
部分不溶化物となる。加熱濃縮された液に調整槽で鉄を
加えるが、これは加熱濃縮された液中の遊離塩酸を消耗
させてPHを調整するためである。本発明ではPHが1以上
3未満となるように鉄を加えるが、PHが高くなると水酸
化鉄の沈殿物がふえるため、PHは低目に調整するのが望
ましい。このようにPHを低く調整しても、鉄の添加終了
から5時間経過後に沈殿物を分別すると、溶液中のAl,C
r,Cu,Pは不溶化物となって除去される。Al,Cr,Cu,Pが一
括して不溶化物となるのは下記の理由による。本発明の
原塩化鉄水溶液はPを含有する原塩化鉄水溶液である。
加熱濃縮された溶液は遊離塩酸を多量に含むためPHが低
く、この状態では溶液中のPは主として未解離のリン酸
あるいは第1リン酸イオンであり、このリン酸や第1リ
ン酸の金属塩は水溶性である。鉄を加えてPHを上げる
と、リン酸や第1リン酸イオンの解離が進み、第2リン
酸イオンや第3リン酸イオンとなるが、これらのイオン
の金属塩は不溶性であり、溶液中のAl,Cr,Cu等のイオン
と結合して不溶化物となる。原塩化鉄水溶液は、Al,Cr,
Cu,Pの濃度が比較的低いために、PHの調整直後ではこれ
らの不溶化物の結晶成長が不十分であり、不溶化物は濾
紙や濾布の目を通過するので不溶化物を十分に分別する
ことができない。溶液を攪拌したりあるいは熟成時間を
設ける事によって、鉄の添加終了から5時間経過後に分
別を行い不溶化物の結晶成長を促進させると、不溶化物
は濾紙や濾布の目を通過しない大きさに成長して、濾過
等の分別の効果をリン酸塩として不溶化物とするため
に、PHを低くできるのが特徴で、PHが低いために水酸化
鉄等の余分の沈殿物が少なく、不溶化物の分別が容易で
ある。次に、PHの調整範囲について説明する。本発明に
よるAl,Cr,Cu,Pの不溶化は、上述の通り、不溶性リン酸
塩の生成を主なる反応とするものであり、これらの反応
は、溶液中におけるそれぞれのイオンの初期濃度および
溶液のPHによって左右されるが、PH1以下では、リン酸
の解離平衡による第2リン酸イオンまたは第3リン酸イ
オンの濃度が極めて低く、従ってAl,Cr,Cu等との不溶性
塩の生成が不完全となる。一方、リン酸の解離平衡より
みて、不溶性塩の生成は、PH3より低いレべルにおい
て、ほとんど完結する。従って、PH3より高くする必要
はなく、それは、むしろ前述した如く不必要な水酸化鉄
等の沈殿を生じることとなるので好ましくない。
[Operations and Examples] In the present invention, the raw iron chloride aqueous solution 6 is heated and concentrated in the contact tower 2, but Si in the raw iron chloride aqueous solution is mostly insolubilized by this heating and concentration. Iron is added to the heat-concentrated solution in the adjusting tank because the free hydrochloric acid in the heat-concentrated solution is consumed to adjust the PH. In the present invention, iron is added so that the pH becomes 1 or more and less than 3, but when the PH becomes high, the precipitate of iron hydroxide increases, so it is desirable to adjust the PH to a low level. Even if the pH is adjusted to a low value in this way, if the precipitate is separated 5 hours after the end of the addition of iron, the Al, C
r, Cu and P are removed as insoluble matter. The reason why Al, Cr, Cu, P collectively become insoluble is as follows. The raw iron chloride aqueous solution of the present invention is a raw iron chloride aqueous solution containing P.
Since the solution concentrated by heating contains a large amount of free hydrochloric acid, its PH is low. In this state, P in the solution is mainly undissociated phosphate or primary phosphate ion. The salt is water soluble. When iron is added to raise the pH, dissociation of phosphate and primary phosphate ions progresses to form secondary phosphate ions and tertiary phosphate ions, but the metal salts of these ions are insoluble and in solution It combines with Al, Cr, Cu and other ions to form an insoluble substance. The raw iron chloride solution is Al, Cr,
Since the concentrations of Cu and P are relatively low, the crystal growth of these insolubles is insufficient immediately after adjusting the pH, and the insolubles pass through the eyes of the filter paper or filter cloth, so the insolubles are sufficiently separated. I can't. When the solution is stirred or an aging time is provided to separate the iron after 5 hours from the end of the addition of iron to promote the crystal growth of the insoluble matter, the insoluble matter does not pass through the filter paper or the filter cloth. The feature is that PH can be lowered because it grows and the effect of separation such as filtration is made into phosphate as an insoluble matter, and since PH is low, there are few extra precipitates such as iron hydroxide and insoluble matter Is easy to separate. Next, the PH adjustment range will be described. The insolubilization of Al, Cr, Cu, and P according to the present invention is, as described above, the main reaction is the formation of insoluble phosphate, and these reactions include the initial concentration of each ion in the solution and the solution. However, below PH1, the concentration of di- or tri-phosphate ions due to the dissociation equilibrium of phosphate is extremely low, and therefore the formation of insoluble salts with Al, Cr, Cu, etc. is not possible. Be complete. On the other hand, in view of the dissociation equilibrium of phosphate, the formation of insoluble salt is almost completed at a level lower than PH3. Therefore, it is not necessary to make it higher than PH3, which is not preferable because it causes unnecessary precipitation of iron hydroxide or the like as described above.

第1表の原塩化鉄水溶液は、鉄鋼の塩酸酸洗によるデス
ケーリング工程で発生する塩化鉄水溶液の一例で、その
FeCl2濃度は26%である。本発明者らはこの原塩化鉄水
溶液を焙焼ガスと接触させてその容積が62%になるよう
に加熱濃縮した。この濃縮液1宛をとり、これに鉄を
添加量を変えて添加溶解せしめてPHを調整し、不溶化物
を濾別して、第1表に記載の不溶化物濾別後の水溶液を
得た。表中の分数表示で、分子はPH調整処理後1時間以
内に不溶化物を濾別除去した液(熟成なし濾液)の不純
物濃度であり、又分母はPH調整処理後5時間以降に不溶
化物を濾別除去した液(熟成あり濾液)の不純物濃度で
ある。第1表にみられる如く、本発明ではPH調整後に5
時間以上の熟成時間を設け、その後に不溶化物を濾別す
ること により、濾液中の不純物の濃度を大幅に低減させること
ができる。即ち第1表の例では、熟成ありの場合はPHを
2.5に調整すれば十分で、Si,Al,Cr,Cu,Pの濃度はいずれ
も、濃縮液での濃度の1/10以下となる。またPHが2.5の
溶液では水酸化鉄の沈殿が少ないため、濾紙.濾布等に
よる濾過で不溶化物を分別する事が出来るが、例えば遠
心分離と濾過の2段組合せで不溶化物を分別すると分別
の能率は更に大幅に向上する。
The raw iron chloride aqueous solution shown in Table 1 is an example of the iron chloride aqueous solution generated in the descaling process of hydrochloric acid pickling of steel.
The FeCl 2 concentration is 26%. The present inventors brought this raw iron chloride aqueous solution into contact with a roasting gas and heated and concentrated it so that its volume became 62%. The concentrated solution 1 was taken and iron was added to and dissolved in the concentrated solution 1 to adjust the PH, and the insoluble matter was filtered off to obtain an aqueous solution after filtration of the insoluble matter described in Table 1. In the fractional display in the table, the numerator is the impurity concentration of the solution (filtrate without aging) in which the insoluble matter is filtered off within 1 hour after the PH adjustment treatment, and the denominator is the insoluble matter after 5 hours after the PH adjustment treatment. It is the impurity concentration of the liquid removed by filtration (filtrate with aging). As shown in Table 1, in the present invention, after adjusting the PH,
Allow aging time longer than time, then filter insoluble matter Thereby, the concentration of impurities in the filtrate can be significantly reduced. That is, in the example of Table 1, if matured, PH
Adjusting to 2.5 is sufficient, and the concentrations of Si, Al, Cr, Cu, and P are all 1/10 or less of the concentration in the concentrated liquid. In addition, a solution with a pH of 2.5 causes less precipitation of iron hydroxide, so use a filter paper. The insoluble matter can be separated by filtration with a filter cloth or the like, but if the insoluble matter is separated by, for example, a two-stage combination of centrifugation and filtration, the efficiency of the separation is further improved.

[発明の効果] 本発明により、塩酸酸洗廃液中のSi,Al,Cr,Cu,Pを能率
よく除去して、高純度の塩化鉄水溶液が得られる。この
高純度の塩化鉄水溶液を焙焼すると、ソフトフェライト
の製造に適した高純度の酸化鉄粉が得られる。
[Effect of the Invention] According to the present invention, Si, Al, Cr, Cu, P in the hydrochloric acid pickling waste liquid can be efficiently removed to obtain a high-purity iron chloride aqueous solution. By roasting this high-purity iron chloride aqueous solution, a high-purity iron oxide powder suitable for the production of soft ferrite can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のプロセスフローの例を示す図である。 FIG. 1 is a diagram showing an example of a process flow of the present invention.

フロントページの続き (72)発明者 奥谷 克伸 東京都中央区日本橋1丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 森 輝夫 東京都中央区日本橋1丁目13番1号 ティ ーディーケイ株式会社内Front page continuation (72) Inventor Katsunobu Okutani 1-131-1 Nihonbashi, Chuo-ku, Tokyo TDC Corporation (72) Inventor Teruo Mori 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDC Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄鋼の塩酸酸洗によるデスケーリング工程
で発生した塩化鉄水溶液を焙焼して塩酸と酸化鉄粉を回
収するプロセスにおいて、該塩化鉄水溶液を該プロセス
で発生する焙焼ガスと接触させて加熱濃縮して該塩化鉄
水溶液中のSi成分を不溶化せしめ、次いで該液に鉄を加
えて該液のPHを1以上3未満の範囲で遊離酸を消費せし
めて該液中のAl,Cr,Cu,P成分の大部分を不溶化せしめ、
鉄の添加終了から5時間経過後に不溶化物を分別除去す
る、鉄鋼の塩酸酸洗で発生した塩化鉄水溶液の精製方
法。
1. In a process for recovering hydrochloric acid and iron oxide powder by roasting an iron chloride aqueous solution generated in a descaling step of iron and steel by hydrochloric acid pickling, the iron chloride aqueous solution is combined with a roasting gas generated in the process. The solution is contacted and concentrated by heating to insolubilize the Si component in the iron chloride aqueous solution, and then iron is added to the solution to consume the free acid in the range of PH of the solution of 1 or more and less than 3 to form Al in the solution. Insolubilizes most of Cr, Cu, P components,
A method for purifying an aqueous iron chloride solution generated by hydrochloric acid pickling of steel, wherein insoluble matter is separated and removed 5 hours after the addition of iron is completed.
JP62150089A 1987-06-18 1987-06-18 Purification method of iron chloride aqueous solution Expired - Lifetime JPH07121809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62150089A JPH07121809B2 (en) 1987-06-18 1987-06-18 Purification method of iron chloride aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62150089A JPH07121809B2 (en) 1987-06-18 1987-06-18 Purification method of iron chloride aqueous solution

Publications (2)

Publication Number Publication Date
JPS63315522A JPS63315522A (en) 1988-12-23
JPH07121809B2 true JPH07121809B2 (en) 1995-12-25

Family

ID=15489273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62150089A Expired - Lifetime JPH07121809B2 (en) 1987-06-18 1987-06-18 Purification method of iron chloride aqueous solution

Country Status (1)

Country Link
JP (1) JPH07121809B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688430A (en) * 1993-02-23 1997-11-18 Nippon Steel Corporation Soft ferrite raw material powder, its sintered body, and their production method and apparatus
US8182779B2 (en) 2009-04-21 2012-05-22 E. I. Du Pont De Nemours And Company Process for removing phosphorus-containing colloids and their precursors from iron chloride solutions
US8287738B2 (en) 2009-04-21 2012-10-16 E I Du Pont De Nemours And Company Process for removing impurities from iron chloride solutions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065709A (en) * 1983-09-21 1985-04-15 Tadayoshi Karasawa Purification and decomposition of metal chloride solution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065709A (en) * 1983-09-21 1985-04-15 Tadayoshi Karasawa Purification and decomposition of metal chloride solution

Also Published As

Publication number Publication date
JPS63315522A (en) 1988-12-23

Similar Documents

Publication Publication Date Title
JP4411057B2 (en) Arsenic removal method from smoke ash
CN102557153B (en) Method for removing calcium-magnesium impurities from nickel sulfate solution
CN104843789A (en) Method for purifying vanadium pentoxide
CN103343239B (en) Method for separating and purifying rhodium
US6383459B1 (en) Method for purifying a tantalum compound using a fluoride compound and sulfuric acid
JPH07121809B2 (en) Purification method of iron chloride aqueous solution
JPH01153532A (en) Purification of ferrous ion-containing solution
JPH0582330B2 (en)
JPS6143285B2 (en)
CN112746185B (en) Method for recovering indium from indium-containing acidic solution
JP5447824B2 (en) A method for purifying a rhodium nitrite complex ion solution and a method for producing an ammonium salt thereof.
JPS63496A (en) Method for purifying gallium electrolytic solution
JP2890830B2 (en) Purification method of scandium oxide
JPH0696453B2 (en) Purification method of iron chloride aqueous solution
JPH07121808B2 (en) Purification method of hydrochloric acid pickling waste liquid
JPH059617A (en) Method for removing tungsten in molybdenum oxide
CN1120589A (en) Carbonate method for conversion of sulfuric double salt of rareearth and separating cerium
JP2776423B2 (en) Manufacturing method of iron oxide powder
CN115011807B (en) Purification method for efficiently separating rhodium iridium with high yield
JP7377569B2 (en) Phosphorus recovery method
JP7359059B2 (en) Method for producing cadmium hydroxide
JP2010174352A (en) Method for producing rhodium black
RU2148555C1 (en) Method for production of vanadium pentoxide
JPH0623048B2 (en) Method for recovering tungsten from ammoniacal tungsten solution
CN117626009A (en) Method for removing iron and aluminum from rare earth feed liquid in matching mode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 12