JPH07120648B2 - Microwave plasma processing equipment - Google Patents

Microwave plasma processing equipment

Info

Publication number
JPH07120648B2
JPH07120648B2 JP62003307A JP330787A JPH07120648B2 JP H07120648 B2 JPH07120648 B2 JP H07120648B2 JP 62003307 A JP62003307 A JP 62003307A JP 330787 A JP330787 A JP 330787A JP H07120648 B2 JPH07120648 B2 JP H07120648B2
Authority
JP
Japan
Prior art keywords
plasma
magnetic field
discharge chamber
substrate
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62003307A
Other languages
Japanese (ja)
Other versions
JPS63172429A (en
Inventor
賢郎 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP62003307A priority Critical patent/JPH07120648B2/en
Publication of JPS63172429A publication Critical patent/JPS63172429A/en
Publication of JPH07120648B2 publication Critical patent/JPH07120648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体の製造工程等に於て基板に薄膜形成や
エッチング或は酸化、窒化等の処理を施すために使用さ
れるマイクロ波プラズマ処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a microwave plasma used for subjecting a substrate to thin film formation, etching, oxidation, nitriding or the like in a semiconductor manufacturing process or the like. Regarding a processing device.

(従来の技術) 従来のマイクロ波プラズマ処理装置は、第1図に見られ
るように、マイクロ波導入管aと放電室bをセラミック
窓cを介して連結し、該放電室bに基板dを収容した処
理室eを連結する構成を備え、該放電室b内に電子サイ
クロトロン共鳴磁場が形成されるように該室bの外周に
1対の電磁石f,gを設けて構成するを一般とする。これ
に於いて、電磁石f,gを調節し、中心軸h上の磁場強度
がマイクロ波導入側で磁気ミラーとなるような強い磁場
となり、処理室eへと放電室b内のプラズマを引き出す
側では次第に弱くなるように調節され、具体的には第2
図示のように窓cから基板dまでの中心軸h上の磁場強
度が得られるように電磁石f,gが調節される。
(Prior Art) In a conventional microwave plasma processing apparatus, as shown in FIG. 1, a microwave introduction tube a and a discharge chamber b are connected via a ceramic window c, and a substrate d is placed in the discharge chamber b. The processing chamber e housed therein is connected to each other, and a pair of electromagnets f and g are generally provided on the outer periphery of the discharge chamber b so that an electron cyclotron resonance magnetic field is formed in the discharge chamber b. . In this, the electromagnets f and g are adjusted so that the magnetic field strength on the central axis h becomes a strong magnetic field that acts as a magnetic mirror on the microwave introduction side, and the plasma in the discharge chamber b is drawn out to the processing chamber e. Then it is adjusted so that it becomes weaker, specifically the second
As shown in the figure, the electromagnets f and g are adjusted so that the magnetic field strength on the central axis h from the window c to the substrate d can be obtained.

一方実験装置として用いられている電子サイクロトロン
共鳴型のプラズマ放電装置として、第3図及び第4図示
のように円筒型放電室iの中心軸上にアンテナjを設け
てマイクロ波を導入し、放電室iの壁面近くのラインカ
スプ磁場kと結合させて放電を起こさせるようにしたも
のも知られている。。lはラインカスプ磁場kを発生さ
せるために放電室iの外周に設けた永久磁石である。
On the other hand, as an electron cyclotron resonance type plasma discharge device used as an experimental device, an antenna j is provided on the central axis of a cylindrical discharge chamber i as shown in FIGS. It is also known that a discharge is generated by coupling with the line cusp magnetic field k near the wall surface of the chamber i. . Reference numeral 1 is a permanent magnet provided on the outer periphery of the discharge chamber i for generating the line cusp magnetic field k.

(発明が解決しようとする問題点) 第1図に示す装置では、中心軸h上の磁場が最も強く、
放電室bの壁面に近い方の磁場が弱くなるため、プラズ
マ中の荷電粒子が壁に拡散し易く、全般的に振動の多い
不安定なプラズマになり勝ちで、安定したプラズマが得
難い欠点がある。また基板へプラズマから入射する荷電
粒子の分布が中心部で大きくなる傾向があり、基板サイ
ズが増加すると磁場の制御で荷電粒子の一様な分布を得
ることがより一層困難になる。
(Problems to be Solved by the Invention) In the device shown in FIG. 1, the magnetic field on the central axis h is the strongest,
Since the magnetic field closer to the wall surface of the discharge chamber b becomes weaker, charged particles in the plasma easily diffuse to the wall, and generally unstable plasma with a lot of vibration tends to be generated, which makes it difficult to obtain stable plasma. . In addition, the distribution of charged particles incident on the substrate from the plasma tends to increase at the central portion, and as the substrate size increases, it becomes even more difficult to obtain a uniform distribution of charged particles by controlling the magnetic field.

また、第3図及び第4図示の装置ではマイクロ波導入の
アンテナjの部分の磁場が弱いためマイクロ波と磁場が
結合しにくく、プラズマが均一に全体に広がりにくい。
しかもプラズマ放電を制御するパラメータが少ないため
放電の最適化が行ない難い。
Further, in the apparatus shown in FIGS. 3 and 4, since the magnetic field in the portion of the antenna j for introducing the microwave is weak, it is difficult for the microwave and the magnetic field to be coupled, and it is difficult for the plasma to spread uniformly over the whole.
Moreover, it is difficult to optimize the discharge because there are few parameters for controlling the plasma discharge.

本発明は均一な分布で安定したプラズマ放電と基板へ一
様な分布で入射する荷電粒子とが得られ、プラズマ放電
の制御の容易なマイクロ波プラズマ処理装置を得ること
を目的とするものである。
It is an object of the present invention to obtain a microwave plasma processing apparatus in which stable plasma discharge with a uniform distribution and charged particles incident on a substrate with a uniform distribution can be obtained, and the plasma discharge can be easily controlled. .

(問題点を解決するための手段) 本発明では、マイクロ波を外周に電磁石を設けた放電室
に導入し、該電磁石により与えられた電子サイクロトロ
ン共鳴磁場により該放電室にプラズマを発生させ、基板
を設けた処理室に該プラズマを導入して該基板にエッチ
ングその他の処理を施すようにしたものに於いて、該放
電室の外周に、該放電室内にカスプ磁場を形成する永久
磁石を設け、前記目的を達成するようにした。
(Means for Solving the Problems) In the present invention, microwaves are introduced into a discharge chamber provided with an electromagnet on the outer circumference, and plasma is generated in the discharge chamber by an electron cyclotron resonance magnetic field provided by the electromagnet, and the substrate is In which the plasma is introduced into the processing chamber provided with to perform etching or other processing on the substrate, a permanent magnet that forms a cusp magnetic field in the discharge chamber is provided on the outer periphery of the discharge chamber. The above object was achieved.

(作用) 周囲の電磁石により電子サイクロトロン共鳴磁場が与え
られた放電室へマイクロ波を導入すると、該放電室内に
於いてプラズマ放電が発生し、該プラズマを処理室に導
入すると基板にエッチング又は薄膜形成、酸化、窒化等
の処理を施すことが出来る。
(Function) When microwaves are introduced into the discharge chamber to which an electron cyclotron resonance magnetic field is applied by the surrounding electromagnets, plasma discharge is generated in the discharge chamber, and when the plasma is introduced into the processing chamber, etching or thin film formation on the substrate occurs. , Oxidation, nitriding, etc. can be performed.

而して電磁石を設けるだけでは荷電粒子が放電室の壁に
拡散してプラズマが不安定化し、処理室内の基板に入射
する荷電粒子の一様な分布が得られないが、本発明の如
く放電室内にカスプ磁場を形成させるように外周に永久
磁石を設けることにより荷電粒子が放電室の壁に拡散す
ることを防止出来、振動の少ない安定したプラズマが得
られ、放電室の壁寄りでの荷電粒子の拡散が少ないので
一様な分布の荷電粒子を基板に入射させ得る。またカス
プ磁場とマイクロ波との結合で2次的なプラズマ発生が
起こり、このプラズマは電磁石によるプラズマと合流
し、均一に広がった大口径のプラズマが得られる。
Therefore, if the electromagnet is simply provided, the charged particles diffuse into the wall of the discharge chamber to destabilize the plasma, and the uniform distribution of the charged particles incident on the substrate in the processing chamber cannot be obtained. By providing a permanent magnet on the outer circumference so as to form a cusp magnetic field inside the chamber, it is possible to prevent the charged particles from diffusing to the wall of the discharge chamber, a stable plasma with less vibration can be obtained, and the charge near the wall of the discharge chamber can be obtained. Since the diffusion of particles is small, a uniform distribution of charged particles can be incident on the substrate. Further, secondary plasma generation occurs due to the coupling of the cusp magnetic field and the microwave, and this plasma merges with the plasma generated by the electromagnet to obtain a uniformly wide plasma having a large diameter.

(実施例) 本発明の実施例を別紙図面の第5図につき説明すると、
符号(1)はマイクロ波導入管、(2)は該マイクロ波
導入管(1)にセラミック窓(3)を介して連結した放
電室、(4)は該放電室(2)の仕切板(5)を有する
プラズマ引き出し口(6)を介して接続した処理室、
(7)は該処理室(4)に設けた排気口を示す。
(Example) An example of the present invention will be described with reference to FIG.
Reference numeral (1) is a microwave introduction tube, (2) is a discharge chamber connected to the microwave introduction tube (1) through a ceramic window (3), and (4) is a partition plate of the discharge chamber (2) ( A processing chamber connected via a plasma outlet (6) having 5),
(7) shows an exhaust port provided in the processing chamber (4).

該処理室(4)内には台(8)上にシリコン等の基板
(9)が載せられ、該基板(9)にエッチングや薄膜形
成等の処理が施される。
A substrate (9) made of silicon or the like is placed on a pedestal (8) in the processing chamber (4), and the substrate (9) is subjected to processing such as etching and thin film formation.

(10)は該放電室(2)の外周に設けた環状の電磁石
で、これにより該放電室(2)内に電子サイクロトロン
共鳴磁場以上の強い磁場を形成し、マイクロ波導入管
(1)を介してマイクロ波が該放電室(2)に導入され
るとそこにプラズマ放電が発生する。(11)は該放電室
(2)の外周を囲んで環状に設けた永久磁石を示し、図
示の例では複数個の永久磁石(11)を設けるものとし、
マイクロ波の導入側の永久磁石(11a)は中心軸(12)
の方向にNS極を配列し、処理室(4)寄りの永久磁石
(11b)は半径方向にNS極又はSN極を配列させ、リング
カスプ磁場が該放電室(2)内に点線で示すように形成
されるようにした。
(10) is an annular electromagnet provided on the outer periphery of the discharge chamber (2), which forms a strong magnetic field higher than the electron cyclotron resonance magnetic field in the discharge chamber (2), and When microwaves are introduced into the discharge chamber (2) via the plasma discharge, a plasma discharge is generated there. Reference numeral (11) indicates a permanent magnet provided in an annular shape so as to surround the outer periphery of the discharge chamber (2). In the illustrated example, a plurality of permanent magnets (11) are provided.
The permanent magnet (11a) on the microwave introduction side has a central axis (12).
The NS poles are arranged in the direction of, and the permanent magnet (11b) near the processing chamber (4) has the NS poles or the SN poles arranged in the radial direction so that the ring cusp magnetic field is shown in the discharge chamber (2) by a dotted line. Was formed.

電磁石(10)による電子サイクロトロン共鳴磁場と、永
久磁石(11)によるカスプ磁場とが与えられた放電室
(2)へマイクロ波が導入されると、両磁場の夫々の作
用によりプラズマ放電が該室(2)内に発生し、そのプ
ラズマ(13)は処理室(4)の基板(9)へと引き出さ
れ、該基板(9)にエッチング、薄膜形成等の処理を施
す。該プラズマ(13)はリングカスプ磁場により放電室
(2)の壁面へ拡散することが防止されるので振動の少
ない安定したプラズマが得られる。またプラズマ(13)
中の荷電粒子は放電室(2)の壁面寄りでの拡散が少な
いので均一な分布となり、基板(9)へ均一な分布で荷
電粒子を入射させることが出来、基板(9)の均一なエ
ッチングや薄膜形成等の処理を行なえ、該プラズマ(1
3)にはマイクロ波と磁場との結合によるプラズマ放電
が加わるので大口径のものが得られ、該大口径に相当す
る大径の基板(9)の処理を均一に行なうことが出来
る。
When microwaves are introduced into the discharge chamber (2) to which the electron cyclotron resonance magnetic field by the electromagnet (10) and the cusp magnetic field by the permanent magnet (11) are applied, plasma discharge is caused by the respective actions of both magnetic fields. The plasma (13) generated in (2) is drawn out to the substrate (9) in the processing chamber (4), and the substrate (9) is subjected to processing such as etching and thin film formation. Since the plasma (13) is prevented from diffusing to the wall surface of the discharge chamber (2) by the ring cusp magnetic field, stable plasma with less vibration can be obtained. Plasma (13)
Since the charged particles inside are less diffused near the wall surface of the discharge chamber (2), they have a uniform distribution, and the charged particles can be incident on the substrate (9) with a uniform distribution, and the substrate (9) can be uniformly etched. And the plasma (1
Since plasma discharge due to the combination of the microwave and the magnetic field is applied to 3), a large-diameter substrate is obtained, and a large-diameter substrate (9) corresponding to the large-diameter can be uniformly processed.

電子サイクロトロン共鳴磁場とカスプ磁場の作用した放
電室(2)に於けるプラズマ放電は、該室(2)内の圧
力が10-4Torr程度の低圧力領域でも安定に発生し、しか
も広い空間に亘って一様な密度を持ち、非常に静かであ
るという特徴が見られ、該電磁石(10)の磁力を制御す
ることによりプラズマ放電を制御し、処理速度を変化さ
せ得る。
The plasma discharge in the discharge chamber (2) under the action of the electron cyclotron resonance magnetic field and the cusp magnetic field is stable even in the low pressure region of about 10 -4 Torr in the chamber (2), and further, in a large space. It is characterized by having a uniform density throughout and being very quiet. By controlling the magnetic force of the electromagnet (10), plasma discharge can be controlled and the processing speed can be changed.

放電室(2)及び処理室(4)を通る中心軸(12)上の
磁場の強さは第6図示の如くであり、電磁石(10)によ
る強い電子サイクロトロン共鳴磁場とこれをラインカス
プ磁場により急激に減衰させた磁場とを有し、該電子サ
イクロトロン共鳴磁場により発生したプラズマ放電を引
き出し口(6)側で急激に拡張させ得る。
The strength of the magnetic field on the central axis (12) that passes through the discharge chamber (2) and the processing chamber (4) is as shown in Fig. 6, and the strong electron cyclotron resonance magnetic field generated by the electromagnet (10) and the line cusp magnetic field rapidly increase it. And a magnetic field that is attenuated to allow the plasma discharge generated by the electron cyclotron resonance magnetic field to be rapidly expanded on the extraction port (6) side.

該処理室(4)にSinHn、CnHn、N2、O2などのガスを導入す
ると基板(9)の表面にアモルファスシリコン、SiO2、S
i3N4、Sic、Cなどの薄膜を形成出来る。また、Cl2、CnF
nなどのフッ素化合物や塩素化合物のガスを用いると基
板(9)の表面のSiや絶縁膜、金属などのエッチングを
行なえ、O2、N2のガスを用いると基板(9)の酸化、窒
化の処理を行なえる。
When a gas such as SinHn, CnHn, N 2 or O 2 is introduced into the processing chamber (4), amorphous silicon, SiO 2 , S or S is formed on the surface of the substrate (9).
Thin films such as i 3 N 4 , Sic, and C can be formed. In addition, Cl 2 , CnF
When fluorine or chlorine compound gas such as n is used, Si on the surface of the substrate (9), insulating film, metal, etc. can be etched, and when O 2 or N 2 gas is used, the substrate (9) is oxidized or nitrided. Can be processed.

(発明の効果) 以上のように本発明によるときはマイクロ波が導入され
る放電室に電子サイクロトロン共鳴磁場の他にカスプ磁
場を与えるようにしたので、大口径の安定したプラズマ
を発生させ、均一な分布の荷電粒子を引き出すことが出
来、基板を迅速で均一に処理し得、電磁石を調節してプ
ラズマ放電を容易に制御出来る等の効果がある。
(Effects of the Invention) As described above, according to the present invention, a cusp magnetic field is applied to the discharge chamber into which microwaves are introduced in addition to the electron cyclotron resonance magnetic field, so that a stable plasma having a large diameter is generated and uniform. It is possible to extract charged particles having various distributions, process the substrate quickly and uniformly, and adjust the electromagnet to easily control plasma discharge.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来例の截断側面図、第2図は第1図示のもの
に於ける中心軸上の磁場を示す線図、第3図はラインカ
スプ磁場を使用したマイクロ波プラズマ源の断面線図、
第4図は第3図の断面図、第5図は本発明の実施例の截
断側面図、第6図は第5図示のものの中心軸上の磁場を
示す線図である。 (2)…放電室、(4)…処理室、(9)…基板 (10)…電磁石、(11)…永久磁石
FIG. 1 is a cutaway side view of a conventional example, FIG. 2 is a diagram showing a magnetic field on the central axis in the one shown in FIG. 1, and FIG. 3 is a sectional diagram of a microwave plasma source using a line cusp magnetic field. ,
4 is a sectional view of FIG. 3, FIG. 5 is a cutaway side view of an embodiment of the present invention, and FIG. 6 is a diagram showing a magnetic field on the central axis of the one shown in FIG. (2) ... Discharge chamber, (4) ... Processing chamber, (9) ... Substrate (10) ... Electromagnet, (11) ... Permanent magnet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】マイクロ波を外周に電磁石を設けた放電室
に導入し、該電磁石により与えられた電子サイクロトロ
ン共鳴磁場により該放電室にプラズマを発生させ、基板
を設けた処理室に該プラズマを導入して該基板にエッチ
ングその他の処理を施すようにしたものに於いて、該放
電室の外周に、該放電室内にカスプ磁場を形成する永久
磁石を設けて成るマイクロ波プラズマ処理装置。
1. A microwave is introduced into a discharge chamber provided with an electromagnet on the outer periphery, plasma is generated in the discharge chamber by an electron cyclotron resonance magnetic field provided by the electromagnet, and the plasma is introduced into a processing chamber provided with a substrate. A microwave plasma processing apparatus in which a substrate is introduced to perform etching or other processing on the substrate, and a permanent magnet for forming a cusp magnetic field in the discharge chamber is provided on the outer periphery of the discharge chamber.
JP62003307A 1987-01-12 1987-01-12 Microwave plasma processing equipment Expired - Fee Related JPH07120648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62003307A JPH07120648B2 (en) 1987-01-12 1987-01-12 Microwave plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62003307A JPH07120648B2 (en) 1987-01-12 1987-01-12 Microwave plasma processing equipment

Publications (2)

Publication Number Publication Date
JPS63172429A JPS63172429A (en) 1988-07-16
JPH07120648B2 true JPH07120648B2 (en) 1995-12-20

Family

ID=11553700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62003307A Expired - Fee Related JPH07120648B2 (en) 1987-01-12 1987-01-12 Microwave plasma processing equipment

Country Status (1)

Country Link
JP (1) JPH07120648B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2612167B2 (en) * 1987-03-31 1997-05-21 太田 ▲あきら▼ Plasma generator by electron resonance
JP2561270B2 (en) * 1987-04-08 1996-12-04 株式会社日立製作所 Plasma equipment
JP2855903B2 (en) * 1990-08-30 1999-02-10 日本電気株式会社 Method for manufacturing semiconductor device
JPH04129133A (en) * 1990-09-20 1992-04-30 Hitachi Ltd Ion source and plasma device
JP3020580B2 (en) * 1990-09-28 2000-03-15 株式会社日立製作所 Microwave plasma processing equipment
EP0537950B1 (en) * 1991-10-17 1997-04-02 Applied Materials, Inc. Plasma reactor
FR2701797B1 (en) * 1993-02-18 1995-03-31 Commissariat Energie Atomique Microwave power transfer coupler to a plasma table and linear microwave source for plasma surface treatment.
JP5733623B2 (en) 2011-06-10 2015-06-10 国立大学法人九州大学 Manufacturing method of semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691013B2 (en) * 1984-11-09 1994-11-14 日本電信電話株式会社 Plasma deposition device
JPH089780B2 (en) * 1986-09-29 1996-01-31 日本電信電話株式会社 Thin film forming equipment

Also Published As

Publication number Publication date
JPS63172429A (en) 1988-07-16

Similar Documents

Publication Publication Date Title
JP2670623B2 (en) Microwave plasma processing equipment
US5397956A (en) Electron beam excited plasma system
US4668338A (en) Magnetron-enhanced plasma etching process
US6076483A (en) Plasma processing apparatus using a partition panel
JP3020580B2 (en) Microwave plasma processing equipment
JP2581255B2 (en) Plasma processing method
JPH07120648B2 (en) Microwave plasma processing equipment
JPS61150219A (en) Microwave plasma treating apparatus
JPS6338585A (en) Plasma device
US20030127191A1 (en) Plasma generation apparatus
JP2001160553A (en) Plasma apparatus
JPH01187824A (en) Plasma processor
JPS63279599A (en) Microwave plasma generating method
JPS6343324A (en) Plasma shower equipment
JPH0680640B2 (en) Plasma equipment
JPS602388B2 (en) ion etching equipment
JP3205542B2 (en) Plasma equipment
JPH098009A (en) Plasma processor
JP2725203B2 (en) Microwave plasma processing equipment
JPS63250821A (en) Microwave plasma processor
JPS63299338A (en) Plasma treatment equipment
JP2976553B2 (en) ECR plasma processing equipment
JPH0640542B2 (en) Microwave plasma processing equipment
JPH01105540A (en) Plasma treating device
JPH02256233A (en) Plasma treatment method and apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees