JPS6343324A - Plasma shower equipment - Google Patents

Plasma shower equipment

Info

Publication number
JPS6343324A
JPS6343324A JP18747386A JP18747386A JPS6343324A JP S6343324 A JPS6343324 A JP S6343324A JP 18747386 A JP18747386 A JP 18747386A JP 18747386 A JP18747386 A JP 18747386A JP S6343324 A JPS6343324 A JP S6343324A
Authority
JP
Japan
Prior art keywords
plasma
magnetic field
chamber
sample
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18747386A
Other languages
Japanese (ja)
Inventor
Yoichi Ino
伊野 洋一
Masami Sasaki
正己 佐々木
Kenji Numajiri
憲二 沼尻
Seitaro Matsuo
松尾 誠太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Anelva Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18747386A priority Critical patent/JPS6343324A/en
Publication of JPS6343324A publication Critical patent/JPS6343324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To make a plasma of a uniform energy to be incident upon a substrate by providing a magnetic field strength uniformizing means under the sample chamber when extracting a plasma, which was generated by the electron cyclotron resonance in a plasma generation chamber, into the sample chamber by means of a divergent magnetic field, in which sample chamber a thin film or the like is formed on the surface of a semiconductor substrate. CONSTITUTION:The outer periphery of a plasma chamber 11 is surrounded with a magnetic coil 17, the upper surface of which plama chamber 11 is provided with a system 12 for introducing a gas such as N2 and a waveguide 13 for introducing a microwave to generate a plasma, and the electron cyclotron resonance is utilized in the plasma chamber 11 while a plasma 16 having its magnetic field decreased is generated in the direction of an arrow H1 from a plasma extracting window 18 in the lower portion of the chamber 11 to a sample stand 14 of a sample chamber 20 provided beneath the window 18 and is radiated to a semiconductor substrate 15. At this time, an electromagnetic coil 25 is provided on the outer periphery of the sample chamber 20, and further a magnetic field strength uniformizing means consisting of an electromagnetic coil 21 is provided on the bottom opening of the sample chamber 20, and this magnetic field is directed in the direction of an arrow H2 to weaken the divergent magnetic field strength in the substrate 15 central portion, thereby uniformizing the magnetic field on the substrate 15.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体基板の表面に薄膜形成やエツチング
等の処理を行なうプラズマシャワー装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a plasma shower apparatus for performing processes such as forming a thin film and etching on the surface of a semiconductor substrate.

(従来の技術) 従来のプラズマシャワー装置は、第2図に示すように、
プラズマ発生室1内にガス導入系2からガスを導入する
とともに、導波管3からマイクロ波を導入して、電磁コ
イル4による磁界で電子サイクロトロン共鳴(E CR
)を行なわせ、プラズマ室l内にプラズマを発生させる
とともに、電磁コイル4の発散磁界を利用して、プラズ
マを引出窓5から試料室6に引出している。そして、引
出したプラズマによって試料台7に載置した基板(ウェ
ハー)8の表面に所定の処理、例えば薄膜の形成をする
ようにしている。
(Prior Art) A conventional plasma shower device, as shown in Fig. 2,
Gas is introduced into the plasma generation chamber 1 from the gas introduction system 2, microwaves are introduced from the waveguide 3, and the magnetic field from the electromagnetic coil 4 generates electron cyclotron resonance (ECR).
) to generate plasma in the plasma chamber 1, and at the same time draw out the plasma from the extraction window 5 to the sample chamber 6 using the divergent magnetic field of the electromagnetic coil 4. Then, the drawn plasma is used to perform a predetermined process, for example, to form a thin film, on the surface of the substrate (wafer) 8 placed on the sample stage 7.

上記プラズマシャワー装置は多くの特徴をもっている。The plasma shower device described above has many features.

すなわち、ECRで活性度が非常に高くなったプラズマ
を、発散磁界を活用して適度に調整されたエネルギーで
取出してウェハー8に衝突させているので、プラズマの
高活性と、イオンや電子のウェハーへの限定された強さ
の衝突とによる複合効果によって効率良くウェハー表面
上に損傷の少ない膜生成などの表面処理反応が生じる。
In other words, the plasma, which has become extremely active due to ECR, is taken out with appropriately adjusted energy using a divergent magnetic field and collided with the wafer 8, so that the plasma is highly active and the ions and electrons are The combined effect of the collision with the limited strength of the wafer efficiently causes a surface treatment reaction such as the formation of a film with little damage on the wafer surface.

この反応は外部から加熱しなくとも起きるから、常温で
処理が可能で、しかも窒化シリコン、酸化シリコンなど
の生成された各種薄膜は、常温加工にもかかわらず、耐
酸性、緻密性に優れている。
This reaction occurs without external heating, so it can be processed at room temperature, and the various thin films produced from silicon nitride, silicon oxide, etc. have excellent acid resistance and density even when processed at room temperature. .

(本発明が解決しようとする問題点) しかしながら、膜厚の分布や膜質の分布など基板上の処
理の分布に関しては必ずしも十分でない面があり、特に
ウェハー8の面積が大きくなるとこの傾向が顕著であっ
た。その理由を以下に説明する。
(Problems to be Solved by the Present Invention) However, there are some aspects in which the distribution of processing on the substrate, such as the distribution of film thickness and the distribution of film quality, is not always sufficient, and this tendency is particularly noticeable when the area of the wafer 8 becomes large. there were. The reason for this will be explained below.

前記電磁コイル4による磁界は、プラズマ発生室l内で
ECR条件を満たすだけでなく、試料室6内に有用な発
散磁界を形成する。(第3図参照)。第3図すの実!B
pは、第3図aのプラズマ流の中央のP線に沿った各位
置における磁界の強さを示し、破線Bqはプラズマ流の
外側の線Qに沿った各位置の磁界の強さを示す。
The magnetic field generated by the electromagnetic coil 4 not only satisfies the ECR conditions within the plasma generation chamber 1, but also forms a useful divergent magnetic field within the sample chamber 6. (See Figure 3). Figure 3 Sunomi! B
p indicates the strength of the magnetic field at each position along the line P in the center of the plasma flow in Figure 3a, and the broken line Bq indicates the strength of the magnetic field at each position along the line Q outside the plasma flow. .

このような発散磁界では、プラズマ中の円運動電子は反
磁性を示すため、磁界の強さの勾配によって磁界の発散
方向である試料台7に向かって加速される。プラズマ発
生室1と試料台7は電気的に絶縁されており、試料台7
方向に加速された電子は、中和条件を満たすようにイオ
ンを加速し、電子を減速するような両極性磁界を発生し
て、平衡状態となる。この状態では電子およびイオンは
同じ加速状態となるため、 Fi/M=Fe/m ただし、Fi、 Fe: イオンおよび電子に働く力、
M、m:イオンおよび電子の質量である。
In such a diverging magnetic field, circularly moving electrons in the plasma exhibit diamagnetic properties and are therefore accelerated toward the sample stage 7, which is the direction of divergence of the magnetic field, due to the gradient of the magnetic field strength. The plasma generation chamber 1 and the sample stage 7 are electrically insulated, and the sample stage 7
The electrons accelerated in the direction generate a bipolar magnetic field that accelerates the ions so as to satisfy the neutralization condition and decelerates the electrons, resulting in an equilibrium state. In this state, electrons and ions are in the same accelerated state, so Fi/M=Fe/m where Fi, Fe: Force acting on ions and electrons,
M, m: Mass of ions and electrons.

Fi=eE E:プラズマ流中に発生した電界。Fi=eE E: Electric field generated in the plasma flow.

Fe=−p−(dB/dz)−eE 用は円運動電子の磁気モーメントであ、す、電子の円運
動エネルギーをω】 としてW=ωr/Bであり、断熱
不変量である。Zは流出方向の距離。
Fe=-p-(dB/dz)-eE is the magnetic moment of a circularly moving electron. Letting the circularly moving energy of the electron be ω], W=ωr/B, which is an adiabatic invariant. Z is the distance in the outflow direction.

これらの関係からEを求め、E==−dφ/dzを積分
すると、電位φは、 φ= −[(1)O/(e (1+ m/  M))1
(1−B/  Bv)”F  (ωo /e)  (1
−(B/Bo ) ’tとなり、イオンエネルギーは、 eφ=−ωoil−(B/Bo))   ・・・(1)
で与えられる。(参考文献。SEMI TECHNOL
OGYSYMPOSIUM ’85 、  F −4−
1) 、 ココテωo、BOはプラズマ発生室lでの電
子の円運動エネルギーおよび磁束密度である。
If we calculate E from these relationships and integrate E==-dφ/dz, the potential φ becomes φ=-[(1)O/(e(1+m/M))1
(1-B/ Bv)”F (ωo /e) (1
-(B/Bo)'t, and the ion energy is eφ=-ωoil-(B/Bo))...(1)
is given by (References. SEMI TECHNOL
OGYSYMPOSIUM '85, F -4-
1) , ωo, BO are the circular kinetic energy and magnetic flux density of electrons in the plasma generation chamber l.

またこの式(1)は試料台7におけるプラズマの衝突エ
ネルギーを示すものである。すなわち、プラズマ発生室
1から引き出されたプラズマは式(1)によって与えら
れたエネルギーでウェハー8に衝突する。そしてこの衝
突エネルギーが膜生成などの処理のエネルギーとなる。
Further, this equation (1) indicates the collision energy of plasma on the sample stage 7. That is, the plasma extracted from the plasma generation chamber 1 collides with the wafer 8 with energy given by equation (1). This collision energy becomes the energy for processes such as film formation.

したがってウェハー8上の処理の分布を均一にするには
、プラズマの衝突エネルギーがウェハー8の面上で一定
でなければならず、このためには、電荷eが定数である
から、上記の電位φが試料台7の面上で一定でなければ
ならない、また試料台7の面上の電位φが一定であるた
めには、電磁コイル4によって発生する磁界強度Boは
一定でプラズマ室1におけるωGは一定の分布をするか
ら、試料台7の面上の磁界の強さBが一定でなければな
らない。
Therefore, in order to make the distribution of processing on the wafer 8 uniform, the collision energy of the plasma must be constant on the surface of the wafer 8, and for this purpose, since the charge e is a constant, the above potential φ must be constant on the surface of the sample stage 7, and in order for the potential φ on the surface of the sample stage 7 to be constant, the magnetic field strength Bo generated by the electromagnetic coil 4 is constant, and ωG in the plasma chamber 1 is Since the distribution is constant, the strength B of the magnetic field on the surface of the sample stage 7 must be constant.

しかし、第3図に示すように、P、Q線に沿った磁界強
度に差があり、ウェハー8上の中心位置0と端部qとで
は磁界強度が異なる。
However, as shown in FIG. 3, there is a difference in the magnetic field strength along the P and Q lines, and the magnetic field strength is different between the center position 0 and the end q on the wafer 8.

第4図に、第3図のP線に沿って引出窓5から、試料台
7に至る間の電位を測定した例を示す。第3、第4図か
ら明らかなように、磁界の減少に対応して負電位が増加
しており、試料台7の中心位置Oでは一13V程度であ
った。一方、試料台7の端部q(第3図参照)の位置の
電位を測定したところ、試料台7の中心位置Oよりも磁
界が弱いので、−13Vよりも低い一18Vであった。
FIG. 4 shows an example in which the potential was measured along line P in FIG. 3 from the drawer window 5 to the sample stage 7. As is clear from FIGS. 3 and 4, the negative potential increased in response to the decrease in the magnetic field, and was about -13 V at the center position O of the sample stage 7. On the other hand, when the potential at the end q (see FIG. 3) of the sample stage 7 was measured, it was found to be -18V, which is lower than -13V since the magnetic field is weaker than at the center position O of the sample stage 7.

従来は上記のように、試料台7の中心位置0と端部qと
で、電位の差や磁界強度の差があるため、ウェハー8の
表面におけるプラズマの入射速度やプラズマ密度に差を
生じ、これら両者の差による相乗作用によってウェハー
8の表面処理に大きな差を生じさせていた。すなわちウ
ェハーに形成される薄膜の膜厚分布や膜質分布を不均一
なものにしてしまい、特に、ウェハーの径が大きいと、
ウェハーの中心位置から離れるほど磁界が弱くなり、ま
た電位差も大きくなるところから、膜厚分布壱1f!2
質分布が一層不均一になってしまうという欠点があった
Conventionally, as described above, there is a difference in potential and magnetic field strength between the center position 0 and the end q of the sample stage 7, which causes a difference in the plasma incident velocity and plasma density on the surface of the wafer 8. The synergistic effect of these two differences causes a large difference in the surface treatment of the wafer 8. In other words, the film thickness distribution and film quality distribution of the thin film formed on the wafer become non-uniform, especially when the diameter of the wafer is large.
The further away from the center of the wafer, the weaker the magnetic field and the larger the potential difference, so the film thickness distribution 1f! 2
The disadvantage was that the quality distribution became even more uneven.

このため、従来の装置では、実用的な薄膜の生成できる
ウェハー8の最大径はほぼ100++mが限度であり、
これ以上の径の大きいウェハー8を処理するには、プラ
ズマ発生室lやECR条件を得るための電磁コイルを大
きくしなければならず、装置全体が大きくなりすぎてし
まうという問題があった。
For this reason, with conventional equipment, the maximum diameter of the wafer 8 that can produce a practical thin film is limited to approximately 100++ m.
In order to process a wafer 8 with a larger diameter than this, the plasma generation chamber 1 and the electromagnetic coil for obtaining ECR conditions must be made larger, resulting in a problem that the entire apparatus becomes too large.

この発明は、試料台の磁界を均一にして、大口径のウェ
ハーを均一に処理することのできるプラズマシャワー装
置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plasma shower apparatus that can uniformly process large-diameter wafers by uniformizing the magnetic field of a sample stage.

(問題を解決するための手段) この発明は、上記の目的を達成するために、プラズマ発
生室で電子サイクロトロン共鳴によって発生したプラズ
マを、発散磁界によって試料室に引出し、この引出した
プラズマで試料室の試料台に載置された試料基板の表面
を処理するプラズマシャワー装置において、基板上の磁
界強度を均一にする磁界強度均一化手段を設けたもので
ある。
(Means for Solving the Problem) In order to achieve the above object, the present invention extracts plasma generated by electron cyclotron resonance in a plasma generation chamber into a sample chamber using a divergent magnetic field, and uses the drawn plasma to generate a sample chamber. A plasma shower apparatus for treating the surface of a sample substrate placed on a sample stage is provided with a magnetic field strength equalizing means for making the magnetic field strength on the substrate uniform.

(本発明の作用) 磁界強度均一化手段によって、試料基板上の磁界強度が
均一になる。
(Action of the present invention) The magnetic field strength equalizing means makes the magnetic field strength on the sample substrate uniform.

(本発明の効果) 試料基板上の磁界強度が均一になるので、試料基板にプ
ラズマが均一のエネルギーで入射する。
(Effects of the Invention) Since the magnetic field strength on the sample substrate becomes uniform, plasma is incident on the sample substrate with uniform energy.

これにより、装着を大きくせずに大口径の試料基板を均
一に処理することができる。
Thereby, a large-diameter sample substrate can be uniformly processed without increasing the mounting size.

(本発明の実施例) 第1図において、11はプラズマ室で、ガス導入系12
から例えばN2ガス等を導入し、また導波管13からマ
イクロ波を導入してプラズマを発生させる。17は磁気
コイルで、プラズマ室11における電子サイクロトロン
共鳴に利用するとともに、プラズマ引出窓18から試料
台14に向けて適当な勾配で磁界強度を減少する発散磁
界を例えば矢印H1方向に形成している。そしてこの発
散磁界によって、プラズマ室11で発生したプラズマを
プラズマ引出窓工8から試料室20に流すようにしてい
る。前記試料台14は基板15を保持するとともに、そ
の径が、試料台14におけるプラズマ流IBの径より大
きく形成されている。
(Embodiment of the present invention) In FIG. 1, 11 is a plasma chamber, and a gas introduction system 12
For example, N2 gas or the like is introduced from the waveguide 13, and microwaves are introduced from the waveguide 13 to generate plasma. A magnetic coil 17 is used for electron cyclotron resonance in the plasma chamber 11, and forms a diverging magnetic field that reduces the magnetic field strength at an appropriate gradient from the plasma extraction window 18 toward the sample stage 14, for example, in the direction of arrow H1. . This divergent magnetic field causes the plasma generated in the plasma chamber 11 to flow from the plasma extraction window 8 into the sample chamber 20. The sample stage 14 holds the substrate 15 and has a diameter larger than the diameter of the plasma flow IB on the sample stage 14.

21は試料台14の面上における発散磁界の磁界強度を
、広範囲に亘って均一にする磁界強度均一化手段で、電
磁コイルから構成されている。
Reference numeral 21 denotes a magnetic field strength equalizing means for uniformizing the magnetic field strength of the divergent magnetic field on the surface of the sample stage 14 over a wide range, and is composed of an electromagnetic coil.

この電磁コイル21は、発散磁界が例えば矢印H1方向
のとき、磁界を矢印H2方向に発生するようにしである
。この磁界H2が、試料台14の中心位置における発散
磁界の磁界強度を大きく弱め、−七の中心位置から遠ざ
かるにしたがって小さく弱めていき、試料台14の面上
における発散磁界の磁界強度を広範囲に亘って均一にす
るものである。
This electromagnetic coil 21 is designed to generate a magnetic field in the direction of arrow H2 when the divergent magnetic field is in the direction of arrow H1, for example. This magnetic field H2 greatly weakens the magnetic field strength of the divergent magnetic field at the center position of the sample stage 14, and gradually weakens as it moves away from the center position of -7, thereby widening the field strength of the divergent magnetic field on the surface of the sample stage 14. This is to make it uniform throughout.

いま、例えばN2ガスをガス導入径12からプラズマ室
11に導入し、ざらに導波管13からマイクロ波を導入
するとともに磁気コイル17によって磁界を発生させて
プラズマ室11にプラズマを発生させる。そして磁気コ
イル17によって形成される発散磁界によって、プラズ
マ室11のプラズマが引出窓18から引き出されて、試
料台14に向かって流れ、試料台14に入射する。
Now, for example, N2 gas is introduced into the plasma chamber 11 through the gas introduction diameter 12, microwaves are roughly introduced through the waveguide 13, and a magnetic field is generated by the magnetic coil 17 to generate plasma in the plasma chamber 11. Then, the plasma in the plasma chamber 11 is drawn out from the extraction window 18 by the diverging magnetic field formed by the magnetic coil 17, flows toward the sample stage 14, and enters the sample stage 14.

一方、電磁コイル21による磁界H2によって、試料台
14の面上における発散磁界の磁界強度が広範囲に亘っ
て均一に形成され、またこの均一な磁界によって試料台
14の面上の電位も広範囲に亘って均一になる。これら
により、ウェハー15の面に入射するプラズマ流の密度
およびその入射エネルギーも広範囲に亘って均一になる
On the other hand, due to the magnetic field H2 generated by the electromagnetic coil 21, the magnetic field strength of the diverging magnetic field on the surface of the sample stage 14 is formed uniformly over a wide range, and due to this uniform magnetic field, the potential on the surface of the sample stage 14 is also formed over a wide range. and become uniform. Due to these, the density of the plasma flow incident on the surface of the wafer 15 and its incident energy are also made uniform over a wide range.

したがって、大口径のウェハーに均一な膜厚および膜質
の薄膜を形成することができる。
Therefore, a thin film with uniform thickness and quality can be formed on a large diameter wafer.

実験によれば、ウェハー15に形成される薄膜の膜厚の
分布が±5%であったものが、電磁コイル21に流す電
流値を適当にすることによって、±2.5%にまで向上
させることができた。膜質もまた同様に均一になること
が解った。
According to experiments, the thickness distribution of the thin film formed on the wafer 15 was ±5%, but by adjusting the current value flowing through the electromagnetic coil 21 appropriately, it was improved to ±2.5%. I was able to do that. It was found that the film quality was also uniform.

なお、電磁コイル21は例えば破線25で示す位置など
に、極性を適当にして、また必要のときは複数個設置し
て、試料台14の面上の磁界を均一にしてもよい、なお
電磁コイル21の設置位置や数は図示のものに限定され
るものではない。
In addition, the electromagnetic coil 21 may be installed, for example, at the position indicated by the broken line 25, with appropriate polarity, and if necessary, a plurality of electromagnetic coils may be installed to uniformize the magnetic field on the surface of the sample stage 14. The installation position and number of 21 are not limited to those shown in the drawings.

上記実施例では薄膜生成について説明したが、同様な原
理を利用したエツチング等にも適用できることは勿論で
ある。
Although the above embodiment describes thin film formation, it is of course applicable to etching and the like using the same principle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例のプラズマシャワー装置の構成図、第2
図は従来のプラズマシャワー装置の説明図、第3図はプ
ラズマ発生室および試料室の各位置における磁界強度を
示した説明図、第4図は引出窓と試料台との間の位置の
電位を測定したグラフである。 11・・・プラズマ室、14・・・試料台、15・・・
基板、20・・・試料室、21・・・電磁コイル。
Figure 1 is a configuration diagram of the plasma shower device of the embodiment, Figure 2
The figure is an explanatory diagram of a conventional plasma shower device, Figure 3 is an explanatory diagram showing the magnetic field strength at each position in the plasma generation chamber and sample chamber, and Figure 4 is an explanatory diagram showing the potential at the position between the drawer window and the sample stage. This is a measured graph. 11... Plasma chamber, 14... Sample stage, 15...
Substrate, 20...sample chamber, 21...electromagnetic coil.

Claims (1)

【特許請求の範囲】[Claims] プラズマ発生室で電子サイクロトロン共鳴によって発生
したプラズマを、発散磁界によって試料室に引出し、こ
の引出したプラズマを用いて試料室の試料台に載置され
た基板の表面を処理するプラズマシャワー装置において
、該基板上の磁界強度を均一にする磁界強度均一化手段
を設けたことを特徴とするプラズマシャワー装置。
In a plasma shower apparatus, plasma generated by electron cyclotron resonance in a plasma generation chamber is drawn into a sample chamber by a divergent magnetic field, and the drawn plasma is used to process the surface of a substrate placed on a sample stage in the sample chamber. A plasma shower apparatus characterized by being provided with a magnetic field strength equalizing means for uniformizing the magnetic field strength on a substrate.
JP18747386A 1986-08-09 1986-08-09 Plasma shower equipment Pending JPS6343324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18747386A JPS6343324A (en) 1986-08-09 1986-08-09 Plasma shower equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18747386A JPS6343324A (en) 1986-08-09 1986-08-09 Plasma shower equipment

Publications (1)

Publication Number Publication Date
JPS6343324A true JPS6343324A (en) 1988-02-24

Family

ID=16206695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18747386A Pending JPS6343324A (en) 1986-08-09 1986-08-09 Plasma shower equipment

Country Status (1)

Country Link
JP (1) JPS6343324A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436769A (en) * 1987-04-27 1989-02-07 Semiconductor Energy Lab Plasma treatment device
US5139552A (en) * 1989-12-05 1992-08-18 Nippon Sheet Glass Co., Ltd. Apparatus for bending and tempering sheet glass
US5181986A (en) * 1990-04-02 1993-01-26 Fuji Electric Co., Ltd. Plasma processing apparatus
US6376388B1 (en) * 1993-07-16 2002-04-23 Fujitsu Limited Dry etching with reduced damage to MOS device
US8163129B2 (en) 2007-10-02 2012-04-24 Semes Co., Ltd. Method and apparatus for cleaning a substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS5779621A (en) * 1980-11-05 1982-05-18 Mitsubishi Electric Corp Plasma processing device
JPS61267324A (en) * 1985-05-21 1986-11-26 Fuji Electric Co Ltd Dry thin film processing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS5779621A (en) * 1980-11-05 1982-05-18 Mitsubishi Electric Corp Plasma processing device
JPS61267324A (en) * 1985-05-21 1986-11-26 Fuji Electric Co Ltd Dry thin film processing device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436769A (en) * 1987-04-27 1989-02-07 Semiconductor Energy Lab Plasma treatment device
US5858259A (en) * 1987-04-27 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6217661B1 (en) 1987-04-27 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6423383B1 (en) 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6838126B2 (en) 1987-04-27 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Method for forming I-carbon film
US5139552A (en) * 1989-12-05 1992-08-18 Nippon Sheet Glass Co., Ltd. Apparatus for bending and tempering sheet glass
US5181986A (en) * 1990-04-02 1993-01-26 Fuji Electric Co., Ltd. Plasma processing apparatus
US6376388B1 (en) * 1993-07-16 2002-04-23 Fujitsu Limited Dry etching with reduced damage to MOS device
US6884670B2 (en) 1993-07-16 2005-04-26 Fujitsu Limited Dry etching with reduced damage to MOS device
US8163129B2 (en) 2007-10-02 2012-04-24 Semes Co., Ltd. Method and apparatus for cleaning a substrate

Similar Documents

Publication Publication Date Title
US7491649B2 (en) Plasma processing apparatus
US5435886A (en) Method of plasma etching
KR20130139982A (en) Apparatus for forming a magnetic field and methods of use thereof
KR20080010061A (en) Plasma based ion implantation apparatus
JP2004200169A (en) Electromagnetic induction accelerator
JPS6343324A (en) Plasma shower equipment
JPH088235B2 (en) Plasma reactor
JPH04237123A (en) Plasma processor
JPS63172429A (en) Microwave plasma treating apparatus
JPH04343420A (en) Plasma reaction device
JP3172788B2 (en) Neutral particle processing method and device
JPH076998A (en) Microwave plasma processing equipment
JP3406322B2 (en) ECR type plasma processing equipment
JPH01107539A (en) Microwave plasma processor
JPS63299338A (en) Plasma treatment equipment
JPH0415921A (en) Method and apparatus for activating plasma
JP2634910B2 (en) Microwave plasma processing equipment
JPH0717147Y2 (en) Plasma processing device
JPH02156526A (en) Microwave plasma treating system
JPH04107919A (en) Plasma processor provided with magnetic field and absorbing microwave
JP2700890B2 (en) Plasma processing equipment
JPH04136180A (en) Microwave absorption plasma treating device having magnetic field
JP3016940B2 (en) Electron beam excitation type plasma processing equipment
JP2514328B2 (en) Semiconductor manufacturing equipment
JPH0799160A (en) Method and apparatus for working of neutral particles