JPH0711859B2 - Method of manufacturing perpendicular magnetic recording medium - Google Patents

Method of manufacturing perpendicular magnetic recording medium

Info

Publication number
JPH0711859B2
JPH0711859B2 JP3421388A JP3421388A JPH0711859B2 JP H0711859 B2 JPH0711859 B2 JP H0711859B2 JP 3421388 A JP3421388 A JP 3421388A JP 3421388 A JP3421388 A JP 3421388A JP H0711859 B2 JPH0711859 B2 JP H0711859B2
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
atmosphere
perpendicular magnetic
incident angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3421388A
Other languages
Japanese (ja)
Other versions
JPH01211241A (en
Inventor
和義 本田
龍二 杉田
清和 東間
康博 川分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3421388A priority Critical patent/JPH0711859B2/en
Priority to DE68915021T priority patent/DE68915021T2/en
Priority to EP89102609A priority patent/EP0329116B1/en
Priority to KR1019890001728A priority patent/KR910007760B1/en
Priority to US07/310,994 priority patent/US4999220A/en
Publication of JPH01211241A publication Critical patent/JPH01211241A/en
Publication of JPH0711859B2 publication Critical patent/JPH0711859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は耐久性の優れた垂直磁気記録媒体の製造方法に
関する。
TECHNICAL FIELD The present invention relates to a method of manufacturing a perpendicular magnetic recording medium having excellent durability.

従来の技術 情報化社会の進展に伴い、記録媒体の高密度化が要求さ
れている。磁気記録の分野で高記録密度化に対して有望
視されているものが垂直磁気記録方式であり、Co−Cr系
の材料を中心に研究開発が進められている。Co−Cr垂直
磁気異方性膜の開発は真空蒸着法及びスパッタ法等によ
って行われているが、特に真空蒸着法を用いた場合には
高速膜形成が可能であり、量産に適した製造方法である
と思われる。即ち第8図に示すような連続巻き取り式真
空蒸着法を用いると毎分数十m以上の速度で、高分子基
板を回転する円筒状キャンに沿って走行させながら垂直
磁気異方性膜の形成が可能である。この場合、媒体の生
産性を高める為には第6図でマスクの開口幅をできるだ
け大きくする事が望ましい。Co−Cr膜の場合、キャン入
り側に於ける入射角φi(初期入射角)が40度以下であ
れば、膜の結晶配向性は蒸着終端側の入射角φfに依存
しない事が報告されている。(杉田他、電子通信学会技
報MR83−31、1983年)。
2. Description of the Related Art With the progress of the information society, higher density of recording media is required. In the field of magnetic recording, what is promising for higher recording density is the perpendicular magnetic recording method, and research and development are being carried out mainly on Co—Cr based materials. Co-Cr perpendicular magnetic anisotropy film has been developed by vacuum deposition method, sputtering method, etc. In particular, when the vacuum deposition method is used, high-speed film formation is possible, and a manufacturing method suitable for mass production. Seems to be. That is, when the continuous winding type vacuum deposition method as shown in FIG. 8 is used, the perpendicular magnetic anisotropy film is formed while the polymer substrate is running along the rotating cylindrical can at a speed of several tens of meters per minute or more. It can be formed. In this case, in order to increase the productivity of the medium, it is desirable to make the opening width of the mask as large as possible in FIG. In the case of a Co-Cr film, it has been reported that the crystal orientation of the film does not depend on the incident angle φf on the vapor deposition end side if the incident angle φi (initial incident angle) on the can entering side is 40 degrees or less. There is. (Sugita et al., IEICE Technical Report MR83-31, 1983).

一方、高密度磁気記録においては磁気ヘッドと磁気媒体
間のスペーシングを極力小さくする事が必須であり、ヘ
ッドの微細加工技術等と共に磁性層及び基板の表面性制
御技術によってスペーシングの低減がなされている。一
方、ヘッド〜磁性層間のスペーシングが小さくなるのに
伴い媒体の耐久性低下が問題となり、これを解決する為
に磁性層表面に保護層を設ける事が試みられているが保
護層厚はスペーシング損失となるのでその値は極力小さ
くする事が必要である。
On the other hand, in high-density magnetic recording, it is essential to minimize the spacing between the magnetic head and the magnetic medium, and the spacing is reduced by the fine processing technology of the head and the surface property control technology of the magnetic layer and the substrate. ing. On the other hand, as the spacing between the head and the magnetic layer becomes smaller, the durability of the medium deteriorates, and in order to solve this problem, it has been attempted to provide a protective layer on the surface of the magnetic layer. Since it causes pacing loss, it is necessary to minimize the value.

発明が解決しようとする課題 磁性層の生産性を高める為に蒸着終端での蒸気入射角を
大きくした場合には、磁性層の耐久性は低下する傾向に
あり、生産性と耐久性は相反する課題となっている。本
発明は耐久性の優れた垂直磁気記録媒体を高い生産性で
形成するためのものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention When the vapor incident angle at the vapor deposition end is increased in order to improve the productivity of the magnetic layer, the durability of the magnetic layer tends to decrease, and the productivity and the durability contradict each other. It has become a challenge. The present invention is intended to form a highly durable perpendicular magnetic recording medium with high productivity.

課題を解決するための手段 真空蒸着法によって移動する高分子基板上に、CoとCrを
主成分とした磁性層を形成する垂直磁気記録媒体の製造
方法において、前記磁性層を形成する際の蒸発原子の入
射角を、膜形成最終部分において30度以上とし、かつ前
記磁気層の形成後に酸素を含む雰囲気で前記磁性層を加
熱する。
Means for Solving the Problem In a method for manufacturing a perpendicular magnetic recording medium in which a magnetic layer containing Co and Cr as main components is formed on a polymer substrate that is moved by a vacuum evaporation method, evaporation during the formation of the magnetic layer is performed. The angle of incidence of atoms is set to 30 degrees or more at the final portion of the film formation, and the magnetic layer is heated in an atmosphere containing oxygen after the magnetic layer is formed.

作用 本発明によれば、優れた耐久性を有する垂直磁気記録媒
体が高い生産性で形成可能である。
Effect According to the present invention, a perpendicular magnetic recording medium having excellent durability can be formed with high productivity.

実施例 第1図(a)に示される様な連続巻き取り式真空蒸着装
置を用いて高分子基板上にCo−Cr膜を真空蒸着した。第
1図においてロール状の高分子基板1は巻き出しロール
2から巻き出された後、円筒状のキャン3の周表面に沿
って走行中に電子ビーム蒸発源4よりCo−Cr膜の蒸着を
受けて巻き取りロール5に巻き取られる。この際、基板
上への蒸発原子の入射角は蒸発源と基板の間に設置され
たマスク6によって初期入射角φi、及び終端入射角φ
fで制限される。
Example A Co-Cr film was vacuum-deposited on a polymer substrate using a continuous winding type vacuum vapor deposition apparatus as shown in Fig. 1 (a). In FIG. 1, the roll-shaped polymer substrate 1 is unwound from the unwinding roll 2, and then the Co-Cr film is vapor-deposited from the electron beam evaporation source 4 while traveling along the peripheral surface of the cylindrical can 3. It is received and taken up by the take-up roll 5. At this time, the incident angle of the vaporized atoms on the substrate is determined by the mask 6 installed between the vaporization source and the substrate.
Limited by f.

第2図は蒸着終端部での蒸発原子の入射角と磁気特性の
関係を示す図である。蒸着初期での入射角φiは40度で
一定とした。Co−Cr膜の膜厚は250nm、飽和磁化値は500
emu/ccである。第2図から分かる様に終端部での入射角
が90度になっても磁気特性の劣化は認められない。
FIG. 2 is a diagram showing the relationship between the incident angle of vaporized atoms at the end of vapor deposition and the magnetic characteristics. The incident angle φi at the initial stage of vapor deposition was constant at 40 degrees. Co-Cr film thickness is 250 nm, saturation magnetization is 500
It is emu / cc. As can be seen from FIG. 2, even if the incident angle at the terminal end reaches 90 degrees, no deterioration in magnetic characteristics is observed.

第3図は蒸着終端での入射角とひっかき強度の関係を示
す図である。ひっかき試験は鋼球を用いて行った。第3
図から分かる様に終端部での入射角が大きくなる程ひっ
かき強度は低下している。
FIG. 3 is a diagram showing the relationship between the incident angle and the scratching strength at the end of vapor deposition. The scratch test was performed using a steel ball. Third
As can be seen from the figure, the scratch strength decreases as the incident angle at the terminal end increases.

第1図(b)は本発明の実施に用いた加熱処理装置の一
例の概略図である。Co−Cr膜が形成された高分子基板は
円筒状加熱ローラに沿って走行し、さらにローラ上でハ
ロゲンランプの照射によっても加熱される。加熱方法と
しては加熱ローラまたはハロゲンランプのいずれか一方
でも、或はその他の加熱方法を用いても良い。またオゾ
ン発生雰囲気中での加熱も有効である。第4図は直径50
0mmの加熱ローラを350度とし、ハロゲンランプを1kW照
射して加熱処理を行った場合のひっかき強度試験結果を
示す。処理雰囲気は大気中であり、基板の走行速度vを
変えて加熱処理を行った。第4図で破線は加熱処理無し
の場合の結果(第3図の結果)である。第4図から分か
る様に加熱処理の結果、ひっかき強度が上昇すると共に
終端入射角が大きい場合のひっかき強度低下が解消され
る。加えて、終端入射角が小さい場合よりも大きい場合
のほうが短い処理時間で加熱処理の効果が顕著に現れ
る。これは終端入射角が大きい場合には膜表面近傍での
充填率が若干小さく、従って膜表面からの酸素の侵入が
早く行われる為ではないかと思われる。終端入射角が30
度以下になるともはや酸素の侵入が十分に行われず、加
熱処理によってひっかき強度はあまり向上しない。なお
加熱処理によるひっかき強度の上昇はキャンのみによる
加熱の場合で230℃以上で認められた。
FIG. 1 (b) is a schematic view of an example of the heat treatment apparatus used for carrying out the present invention. The polymer substrate on which the Co-Cr film is formed runs along a cylindrical heating roller and is further heated on the roller by irradiation with a halogen lamp. As a heating method, either a heating roller or a halogen lamp may be used, or another heating method may be used. Heating in an ozone generating atmosphere is also effective. Fig. 4 shows a diameter of 50
The results of the scratching strength test when the heat treatment is performed by irradiating a halogen lamp at 1 kW with a heating roller of 0 mm at 350 degrees, are shown. The processing atmosphere was atmospheric air, and the heat treatment was performed by changing the traveling speed v of the substrate. In FIG. 4, the broken line shows the result without heat treatment (result of FIG. 3). As can be seen from FIG. 4, as a result of the heat treatment, the scratching strength is increased and the scratching strength is reduced when the terminal incident angle is large. In addition, when the terminal incident angle is large, the effect of heat treatment becomes more remarkable in a shorter processing time than when the terminal incident angle is large. It is considered that this is because the filling rate in the vicinity of the film surface is a little small when the terminal incident angle is large, and therefore oxygen invades from the film surface early. Terminal incident angle is 30
If the temperature is less than 100 ° C., oxygen is no longer sufficiently penetrated, and the scratching strength is not so improved by the heat treatment. The increase in scratching strength due to heat treatment was observed at 230 ° C or higher in the case of heating only with a can.

第5図は処理雰囲気圧力を変化させて加熱処理を行った
場合の結果である。減圧雰囲気の実現に油回転ポンプを
用いた。また、加熱後のガス組成比は大気と略同一であ
る。第6図は加熱処理を窒素、酸素混合の760torrで一
定とし、酸素ガス分圧を変化させて加熱処理を行った場
合の結果である。第5図、第6図の結果からひっかき強
度は加熱処理雰囲気中の酸素分圧に依存する事が分か
る。第7図は加熱処理前後の媒体のオージェ分析結果の
比較である。試料は初期入射角及び終端入射角が共に40
度のCoCr膜で、加熱処理条件はキャン温度350℃、基板
走行速度2m/minである。第7図の結果から、酸化処理に
よって表面酸化層は約7nm増加していると思われる。100
kFRPI程度の記録密度を考えた場合、7nmのスペーシング
増加は記録再生過程で1.5dB程度の出力低下で抑える事
が出来るので表面酸化層が再生出力に及ぼす影響は比較
的小さい。終端入射角が大きくして形成した膜は自己陰
影効果により膜表面近傍の充填率が低く、未処理の場合
には膜の機械的強度が低いが、表面酸化処理を行うと膜
表面から酸素がすみやかに侵入するので短時間で酸化層
が形成されると共に酸化層によって膜の表面近傍が緻密
になり、強度が向上するものと思われる。また実際に作
製した膜を8mm幅のテープ状にスリットしてビデオデッ
キで評価したところ、未処理の場合にはスチル状態で数
秒以内で媒体に傷が入るのに対して加熱処理を施すと1
時間以上のスチル耐久が得られた。なおCo−Cr−Niを用
いた場合にもCo−CRの場合とほぼ同様の効果が得られ
た。
FIG. 5 shows the results when heat treatment is performed by changing the treatment atmosphere pressure. An oil rotary pump was used to realize a reduced pressure atmosphere. The gas composition ratio after heating is almost the same as that in the atmosphere. FIG. 6 shows the results when the heat treatment was performed at a constant 760 torr of nitrogen and oxygen mixture and the oxygen gas partial pressure was changed. From the results of FIGS. 5 and 6, it can be seen that the scratch strength depends on the oxygen partial pressure in the heat treatment atmosphere. FIG. 7 is a comparison of Auger analysis results of the medium before and after the heat treatment. The sample has both an initial incident angle and a terminal incident angle of 40.
Degree CoCr film, the heat treatment conditions are a can temperature of 350 ° C. and a substrate traveling speed of 2 m / min. From the results of FIG. 7, it is considered that the surface oxide layer is increased by about 7 nm by the oxidation treatment. 100
Considering a recording density of about kFRPI, an increase in spacing of 7 nm can be suppressed by an output reduction of about 1.5 dB during the recording / reproducing process, so the influence of the surface oxide layer on the reproducing output is relatively small. A film formed with a large terminal incidence angle has a low filling rate near the film surface due to the self-shading effect, and the mechanical strength of the film is low when untreated, but when surface oxidation treatment is performed, oxygen is removed from the film surface. It is considered that the oxide quickly forms an oxide layer, so that an oxide layer is formed in a short time and the oxide layer makes the vicinity of the surface of the film dense and improves the strength. In addition, when the film actually made was slit into a tape shape with a width of 8 mm and evaluated by a video deck, the medium was scratched within a few seconds in the still state, but when heat treatment was applied, it was 1
Still durability over time was obtained. When Co-Cr-Ni was used, almost the same effect as in the case of Co-CR was obtained.

発明の効果 本発明によれば、耐久性の優れた垂直磁気記録媒体を高
い生産性で形成可能である。
Effects of the Invention According to the present invention, a perpendicular magnetic recording medium having excellent durability can be formed with high productivity.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)および(b)は各々、本発明に用いた垂直
磁気異方性層の形成装置及び膜の表面酸化装置の概略断
面図、第2図は蒸着終端部での蒸発原子の入射角と磁気
特性の関係を示す図、第3図は蒸着終端での入射角とひ
っかき強度の関係を示す図、第4図は表面酸化処理を行
った場合のひっかき強度試験結果を示す図、第5図は雰
囲気圧力を変化させた場合のひっかき強度試験結果を示
す図、第6図は酸素分圧を変化させた場合のひっかき強
度試験結果を示す図、第7図(a)および(b)は各
々、表面酸化処理前後の媒体のオージェ分析結果の比較
を示す図、第8図は連続蒸着装置の構成例を示す断面図
である。 1……高分子基板、2……巻き出しロール、3……キャ
ン、4……蒸発源、5……巻き取りロール、6……マス
ク、7……ハロゲンランプ、9……ガイドローラ、10…
…電子ビーム、11……真空槽、12……排気系、13……ガ
ス導入口、14……容器壁、15……加熱ローラ。
1 (a) and 1 (b) are schematic cross-sectional views of a perpendicular magnetic anisotropic layer forming device and a film surface oxidizing device used in the present invention, respectively. FIG. 2 shows vaporized atoms at the vapor deposition termination portion. FIG. 3 is a diagram showing the relationship between the incident angle and magnetic properties, FIG. 3 is a diagram showing the relationship between the incident angle at the end of vapor deposition and scratch strength, and FIG. 4 is a diagram showing the scratch strength test results when surface oxidation treatment is performed. FIG. 5 is a diagram showing a scratch strength test result when the atmospheric pressure is changed, FIG. 6 is a diagram showing a scratch strength test result when the oxygen partial pressure is changed, and FIGS. 7 (a) and 7 (b). 8) is a diagram showing a comparison of Auger analysis results of the medium before and after the surface oxidation treatment, and FIG. 8 is a sectional view showing a configuration example of a continuous vapor deposition apparatus. 1 ... Polymer substrate, 2 ... Unwind roll, 3 ... Can, 4 ... Evaporation source, 5 ... Winding roll, 6 ... Mask, 7 ... Halogen lamp, 9 ... Guide roller, 10 …
… Electron beam, 11 …… vacuum chamber, 12 …… exhaust system, 13 …… gas inlet, 14 …… container wall, 15 …… heating roller.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真空蒸着法によって移動する高分子基板上
にCoとCrまたはCoとCrとNiを主成分とした磁性層を形成
する垂直磁気記録媒体の製造方法において、前記磁性層
を形成する際の蒸発原子の入射角が、膜形成最終部分に
おいて30度以上であり、かつ前記磁性層の形成後に酸素
を含む雰囲気で前記磁性層を加熱する事を特徴とする垂
直磁気記録媒体の製造方法。
1. A method of manufacturing a perpendicular magnetic recording medium, wherein a magnetic layer containing Co and Cr or Co, Cr and Ni as main components is formed on a polymer substrate which is moved by a vacuum deposition method, wherein the magnetic layer is formed. The method of manufacturing a perpendicular magnetic recording medium, wherein the incident angle of vaporized atoms is 30 degrees or more in the final portion of the film formation, and the magnetic layer is heated in an atmosphere containing oxygen after the formation of the magnetic layer. .
【請求項2】加熱雰囲気が略大気または大気中の酸素分
圧と同等以上の酸素分圧を有する雰囲気である事を特徴
とする特許請求の範囲第1項記載の垂直磁気記録媒体の
製造方法。
2. The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the heating atmosphere is an atmosphere or an atmosphere having an oxygen partial pressure equal to or higher than the oxygen partial pressure in the atmosphere. .
JP3421388A 1988-02-17 1988-02-17 Method of manufacturing perpendicular magnetic recording medium Expired - Fee Related JPH0711859B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3421388A JPH0711859B2 (en) 1988-02-17 1988-02-17 Method of manufacturing perpendicular magnetic recording medium
DE68915021T DE68915021T2 (en) 1988-02-17 1989-02-15 Method for producing a recording medium with vertical magnetization.
EP89102609A EP0329116B1 (en) 1988-02-17 1989-02-15 Method for manufacturing perpendicular magnetic recording medium
KR1019890001728A KR910007760B1 (en) 1988-02-17 1989-02-15 Producing method for vertical type magnetic recording media
US07/310,994 US4999220A (en) 1988-02-17 1989-02-16 Method for manufacturing perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3421388A JPH0711859B2 (en) 1988-02-17 1988-02-17 Method of manufacturing perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH01211241A JPH01211241A (en) 1989-08-24
JPH0711859B2 true JPH0711859B2 (en) 1995-02-08

Family

ID=12407880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3421388A Expired - Fee Related JPH0711859B2 (en) 1988-02-17 1988-02-17 Method of manufacturing perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0711859B2 (en)

Also Published As

Publication number Publication date
JPH01211241A (en) 1989-08-24

Similar Documents

Publication Publication Date Title
US4557944A (en) Process of manufacturing a magnetic recording medium
JPH06150289A (en) Magnetic recording medium and its manufacture
JPH0711859B2 (en) Method of manufacturing perpendicular magnetic recording medium
JPH0834001B2 (en) Method of manufacturing magnetic recording medium
KR910007760B1 (en) Producing method for vertical type magnetic recording media
JPS62185246A (en) Production of magnetic recording medium
JP2508711B2 (en) Perpendicular magnetic recording media
JPH06333225A (en) Thin film magnetic recording medium
JP2951892B2 (en) Magnetic recording media
JPS6297133A (en) Production of magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2833444B2 (en) Manufacturing method of magnetic recording medium
JPS61284829A (en) Magnetic recording medium
JPH04248126A (en) Production of magnetic recording medium
JPS6267728A (en) Production of magnetic recording medium
JPH06309646A (en) Thin-film magnetic recording medium and its production
JPH04337520A (en) Magnetic recording medium and production thereof
JPH0757254A (en) Production of magnetic recording medium
JPS60217524A (en) Magnetic recording medium
JPH04283422A (en) Production of magnetic recording medium
JPH10105951A (en) Magnetic recording medium
JPH02137124A (en) Production of magnetic recording medium
JPH11144246A (en) Production of magnetic recording medium
JPH06231457A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees