JPH07118409B2 - Grain-oriented silicon steel sheet with extremely low iron loss - Google Patents

Grain-oriented silicon steel sheet with extremely low iron loss

Info

Publication number
JPH07118409B2
JPH07118409B2 JP62191521A JP19152187A JPH07118409B2 JP H07118409 B2 JPH07118409 B2 JP H07118409B2 JP 62191521 A JP62191521 A JP 62191521A JP 19152187 A JP19152187 A JP 19152187A JP H07118409 B2 JPH07118409 B2 JP H07118409B2
Authority
JP
Japan
Prior art keywords
polishing
iron loss
grain
silicon steel
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62191521A
Other languages
Japanese (ja)
Other versions
JPS6437003A (en
Inventor
氏裕 西池
康宏 小林
成子 筋田
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP62191521A priority Critical patent/JPH07118409B2/en
Priority to EP88306781A priority patent/EP0302639B1/en
Priority to DE3889600T priority patent/DE3889600T2/en
Priority to US07/225,546 priority patent/US4906530A/en
Publication of JPS6437003A publication Critical patent/JPS6437003A/en
Priority to US07/380,991 priority patent/US4963197A/en
Publication of JPH07118409B2 publication Critical patent/JPH07118409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 鉄損の極めて低い方向性電磁鋼板を得るためには、仕上
焼鈍を経た電磁鋼帯の地鉄表面に、研磨を施した上で絶
縁皮膜を被覆形成し、とくに該研磨につき中心線平均粗
さRa0.3μm以下の表面粗さまで平滑化しておくことが
有用であるところ、この明細書では、このような平滑面
化をはかる研磨手法の改善とくに砥粒を用いた研磨加工
による能率的な平滑化の適合についての開発成果に関連
して以下に述べる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) In order to obtain a grain-oriented electrical steel sheet with extremely low iron loss, the surface of the base steel of a magnetic steel strip that has undergone finish annealing is polished and then an insulating film is applied. It is useful to form a coating on the surface to smooth the surface roughness to a center line average roughness Ra of 0.3 μm or less for the polishing. In this specification, the improvement of the polishing method for achieving such smoothing is described. In particular, the development results on the efficient adaptation of smoothing by polishing using abrasive grains will be described below.

いうまでもなく方向性けい素鋼板は主として変圧器その
他の電気機器の鉄心として利用され、その磁化特性が優
れていること、とくに鉄損(W17/50値で代表される。)
が極めて低いことの要求はますます強まっている。
Needless to say, grain-oriented silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and have excellent magnetization characteristics, especially iron loss (represented by W 17/50 value).
The demand for very low is becoming increasingly stronger.

このような要請に対し鋼板中の2次再結晶粒の〈100〉
粒方位を圧延方向に高度に揃えること、また最終製品中
の不純物を減少させることによるような、これまでの開
発努力によっても最近では、0.23mmの板厚でW17/50値が
0.9W/kg程度の低鉄損化が可能となった。
In response to this demand, secondary recrystallized grains <100> in the steel sheet
Recent development efforts such as highly aligning the grain orientation with the rolling direction and reducing impurities in the final product have recently led to a W 17/50 value of 0.23 mm.
It has become possible to reduce iron loss to about 0.9 W / kg.

しかし、数年前のエネルギー危機を境にして、電力損失
のより少ない電気機器を求める傾向が一段と強まり、そ
れらの鉄芯材料として、さらに一層鉄損の低い、方向性
けい素鋼板が要請されるようになっている。
However, since the energy crisis of several years ago, the tendency to seek electrical equipment with less power loss has become stronger, and as a core material for them, grain-oriented silicon steel sheets with even lower iron loss are required. It is like this.

(従来の技術) ところで、方向性けい素鋼板の鉄損を下げる基本的な手
法としては、Si含有量を高めること、製品板厚を薄くす
ること、2次再結晶粒を細かくすること、不純物含有量
を低減すること、そして(110)〔001〕方位の2次再結
晶粒をより高度に揃えることなど、主に冶金学的方法が
一般に知られてはいるけれども、これらの手法は、現行
の生産手段の上からはもはや限界に達していて、これ以
上の改善は極めて難しく、たとえ多少の改善が認められ
るにしても、その努力の割には鉄損改善の実効に乏しい
状況となるに至った。
(Prior Art) By the way, as a basic method for reducing the iron loss of grain-oriented silicon steel sheets, increasing the Si content, reducing the product sheet thickness, making secondary recrystallized grains finer, impurities Although metallurgical methods are generally known, such as reducing the content and making secondary recrystallized grains in the (110) [001] orientation more highly aligned, these methods are currently Has reached the limit from the above, and further improvement is extremely difficult, and even if some improvement is recognized, iron loss improvement will be ineffective for the effort. I arrived.

また一方で特公昭54−23647号公報に開示されているよ
うに鋼板表面に2次再結晶阻止領域を形成させることに
より、2次再結晶粒を細粒化させる方法も提案されてい
るがこの方法は、2次再結晶粒径の制御が安定していな
いため、実用的とは言いがたい。
On the other hand, as disclosed in Japanese Patent Publication No. 54-23647, a method has been proposed in which secondary recrystallized grains are made finer by forming a secondary recrystallization inhibiting region on the surface of a steel sheet. The method is not practical because the control of the secondary recrystallized grain size is not stable.

その他、特公昭58−5968号公報には、2次再結晶後の鋼
板の表面にボールペン状小球にて、微小歪を鋼板表層に
導入することによって磁区の幅を微細化し、鉄損を低減
する技術が、また特公昭57−2252号公報には、最終製品
表面に、圧延方向にほぼ直角にレーザービームを数mm間
隔に照射し、鋼板表層に高転位密度領域を導入すること
により、磁区の幅を微細化し、鉄損を低減する技術が提
案されている。さらに、特開昭57−188810号公報には、
放電加工により鋼板表層に微小歪を導入し、磁区幅を微
細化し、鉄損を低減する同様の技術が提案されている。
In addition, in Japanese Patent Publication No. 58-5968, the width of the magnetic domain is made finer by introducing a minute strain into the surface layer of the steel sheet with a ball-point pen-shaped small ball on the surface of the steel sheet after the secondary recrystallization to reduce the iron loss. According to Japanese Patent Publication No. 57-2252, the surface of the final product is irradiated with a laser beam at intervals of several mm almost at right angles to the rolling direction, and a high dislocation density region is introduced into the surface layer of the steel sheet to form magnetic domains. Has been proposed to reduce the iron loss by making the width of the core smaller. Further, JP-A-57-188810 discloses that
A similar technique has been proposed in which minute strain is introduced into the surface layer of a steel sheet by electric discharge machining to make the magnetic domain width finer and reduce iron loss.

これら3種類の方法は、いずれも2次再結晶後の鋼板の
地鉄表層に微小な塑性歪を導入することにより磁区幅を
微細化し鉄損の低減を図るものであって、均しく実用的
であり、かつ鉄損低減効果も優れているが、鋼板の打抜
き加工、せん断加工、巻き加工などの後の歪取り焼鈍
や、コーティングの焼付け処理の如き熱処理によって、
塑性歪導入による効果が滅殺される欠点を伴う。なおコ
ーティング処理後に微小な塑性歪の導入を行う場合は、
絶縁性を維持するために絶縁コーティングの再塗布を行
わねばならず歪付与工程、再塗布工程と、工程の大幅増
加になり、コストアップをもたらす。さて、これらの技
術とは別に特公昭52−24499鋼公報には、仕上焼鈍後の
けい素鋼板表面を酸洗により表面形成物を除去し、次い
でその表面を鏡面状態に化学研磨あるいは電解研磨する
ことによって、磁気特性、特に鉄損が軽減することが開
示されている。
These three types of methods all aim to reduce the magnetic domain width to reduce the iron loss by introducing a minute plastic strain into the surface layer of the base metal of the steel sheet after secondary recrystallization, and are equally practical. Although it is also excellent in iron loss reduction effect, by stress relief annealing after punching, shearing, winding, etc. of steel sheet, and heat treatment such as baking treatment of coating,
With the drawback that the effect of introducing plastic strain is destroyed. If a small amount of plastic strain is introduced after the coating process,
Insulation coating must be re-applied in order to maintain the insulating property, resulting in a large increase in the steps of strain application and re-application, resulting in cost increase. Separately from these techniques, in Japanese Examined Patent Publication No. Sho 52-24499, the surface of a silicon steel sheet after finish annealing is removed by pickling to remove surface formations, and then the surface is chemically or electrolytically polished to a mirror state. It is disclosed that magnetic properties, especially iron loss, are thereby reduced.

しかし、この場合は、鏡面仕上げのために、化学研磨又
は電解研磨を要するので非常にコスト高になり、実際に
工業的なプロセに適用するにはやはり著しい難点があ
り、大量生産工程に採用されるに至っていない。
However, in this case, since chemical polishing or electrolytic polishing is required for mirror finishing, the cost becomes very high, and there are still significant difficulties in actually applying it to an industrial process, and it is adopted in a mass production process. Has not reached the end.

そればかりでなく鏡面仕上げをした表面に対しては、方
向性けい素鋼板の絶縁皮膜として通常用いられるりん酸
塩系の張力付与コーティングを密着性よく、とくに平滑
面とすることによって良好となった磁性を損なうことな
く施膜することが困難であった。
Not only that, but on the mirror-finished surface, a phosphate-based tensioning coating that is usually used as an insulating film for grain-oriented silicon steel sheets has good adhesion, and it was particularly good when it was made a smooth surface. It was difficult to form a film without impairing magnetism.

上記のようにコスト高な研磨工程を例えば砥石等による
機械研磨に代えて経費負担を軽減しようとすると、けい
素鋼板中に研磨加工による残留ひずみを与えて、鉄損を
却って著しく劣化させる不利のため実用不可能であった
のである。
When attempting to reduce the cost burden by replacing the high-cost polishing step with mechanical polishing with a grindstone or the like as described above, a residual strain due to the polishing process is applied to the silicon steel plate, which is a disadvantage that significantly deteriorates iron loss rather. Therefore, it was not practical.

(発明が解決しようとする問題点) そこで仕上焼鈍を経た方向性けい素鋼帯の地鉄表面をよ
り低コストの機械研磨の手法により平滑化することによ
って、極めて有利に鉄損の著しい低減を図った方向性け
い素鋼板を与えることがこの発明の第1の目的であり、
また磁性を損なうことなくして密着性の良いりん酸塩系
の張力付与コーティングの施膜により一層鉄損の低減を
実現できる、方向性けい素鋼板を与えることが第2の目
的である。
(Problems to be solved by the invention) Therefore, it is extremely advantageous to significantly reduce iron loss by smoothing the base iron surface of the grain-oriented silicon steel strip that has undergone finish annealing by a lower-cost mechanical polishing method. It is a first object of the present invention to provide a grain-oriented silicon steel sheet,
A second object is to provide a grain-oriented silicon steel sheet capable of further reducing iron loss by applying a phosphate-based tension-imparting coating having good adhesion without impairing magnetism.

(問題点を解決するための手段) 上記の各目的は、砥粒を用いた研磨加工による平滑表面
を有する仕上焼鈍済みの方向性けい素鋼帯であって、該
鋼帯の表面粗さが中心線平均粗さ(Ra)で0.3μm以下
で、しかもこの研磨表面の直下層に埋込まれて残存する
砥粒又はその破片の数が1000〜20000個/cm2であること
を特徴とする鉄損の極めて低い方向性けい素鋼板(第1
発明)、砥粒を用いた研磨加工による平滑表面を有する
仕上焼鈍済みの方向性けい素鋼帯であって、該鋼帯の表
面粗さが中心線平均粗さ(Ra)で0.3μm以下で、しか
もこの研磨表面の直下層に埋込まれて残存する砥粒又は
その破片の数が1000〜20000個/cm2であり、かつこの表
面層上にめっき薄層を有するものであることを特徴とす
る鉄損の極めて低い方向性けい素鋼板(第2発明)によ
って達成される。
(Means for Solving Problems) Each of the above objects is a finish-annealed grain-oriented silicon steel strip having a smooth surface formed by polishing using abrasive grains, and the surface roughness of the steel strip is The center line average roughness (Ra) is 0.3 μm or less, and the number of abrasive grains or fragments thereof remaining embedded in the layer directly under the polishing surface is 1000 to 20000 particles / cm 2. Grain-oriented silicon steel sheet with extremely low iron loss (No. 1
Invention), a finish annealed grain-oriented silicon steel strip having a smooth surface by polishing using abrasive grains, wherein the surface roughness of the steel strip is 0.3 μm or less in terms of center line average roughness (Ra). Moreover, the number of abrasive grains or fragments thereof remaining embedded in the layer immediately below the polishing surface is 1000 to 20000 pieces / cm 2 , and a plating thin layer is provided on this surface layer. It is achieved by a grain-oriented silicon steel sheet (second invention) having an extremely low iron loss.

発明者らは、仕上焼鈍後の方向性けい素鋼板表面の平滑
面化に適用する研磨方法によって磁気特性の劣化の度合
いが異なることを発見し、それに注目し、種々の研磨方
法について検討を行ったところ、磁気特性を良好ならし
める条件があることを見い出した。
The inventors have found that the degree of deterioration of magnetic properties varies depending on the polishing method applied to smoothing the surface of the grain-oriented silicon steel sheet after finish annealing, paying attention to it, and examining various polishing methods. As a result, they found that there is a condition for achieving good magnetic characteristics.

すなわち地鉄表面に砥粒による研磨を施こし表面を中心
線平均粗さ0.3μm以下となすに当り、上記砥粒による
研磨後の表面の直下層に埋込まれて残存する埋め込み砥
粒を1000〜20000個/cm2以内にとどめる研磨手法によっ
て、この研磨面に絶縁皮膜を施膜した方向性けい素鋼板
の鉄損が顕著に低減し、またとくにこの絶縁皮膜として
コロイド状シリカとりん酸塩系コーティング液を用いて
張力付与膜を施膜するときこの張力付与膜と地鉄表面と
の間にてバインダーとして機能する金属めっきを上記の
研磨面に予め施すことによって、さらに鉄損を極めて低
くするのに役立つことである。
That is, when the surface of the base metal is subjected to polishing with abrasive grains so that the center line has an average roughness of 0.3 μm or less, the embedded abrasive grains embedded in the layer immediately below the surface after polishing with the above abrasive grains and remaining 1000 by ~20000 pieces / cm 2 polishing method keep within the iron loss of grain oriented silicon steel sheet施膜the insulating film on the polished surface is significantly reduced, in particular colloidal silica and phosphate as the insulating film When applying a tension-imparting film using a system-based coating liquid, the metal loss that acts as a binder between the tension-imparting film and the surface of the base metal is preliminarily applied to the above-mentioned polishing surface to further reduce the iron loss. Is to help you.

第1、第2各発明において、Ra0.3μmで表面直下層
への砥粒埋込み数が1000〜20000個/cm2以内になる砥粒
を用いた研磨加工の条件としては、研磨基材としてポリ
ウレタンロール、不織布ロール、研磨用ブラシ等弾性的
な基材を用いること、砥粒は、材質はSiC,Al2O3,Cなど
特に限定されないが、粒度が#800以下であることと、
その他垂直圧力を5kg/cm2以下とすることが必要であ
る。
In each of the first and second inventions, as the polishing condition using the abrasive grains having Ra 0.3 μm and the number of abrasive grains embedded in the layer immediately below the surface is within 1000 to 20000 grains / cm 2 , polyurethane is used as the polishing substrate. Roll, non-woven roll, using an elastic substrate such as a brush for polishing, abrasive grains, the material is not particularly limited, such as SiC, Al 2 O 3 , C, and that the grain size is # 800 or less,
In addition, it is necessary to keep the vertical pressure below 5 kg / cm 2 .

(作用) この発明において中心線平均粗さ(Ra)0.3μm以下の
表面粗さの平滑面を得るための研磨は仕上げ焼鈍を経た
方向性けい素鋼帯に施す必要がある。なんとなればかり
に仕上焼鈍以前に平滑化処理を施したとしても焼鈍中に
表面に形成される酸化物によって鋼帯表面は磁性的に粗
な面となるからである。また仕上焼鈍後の帯鋼表面に施
す上記研磨は、帯鋼に加えられたそれまでの工程、すな
わちSi量、インヒビター量ないしは板厚の如何や焼鈍分
離剤の種類の選択などにかかわらず、この発明で所期し
た効果をもたらすことはいうまでもない。
(Function) In the present invention, polishing for obtaining a smooth surface having a center line average roughness (Ra) of 0.3 μm or less needs to be applied to the grain-oriented silicon steel strip that has undergone finish annealing. This is because even if a smoothing treatment is performed before finish annealing, the steel strip surface becomes a magnetically rough surface due to the oxide formed on the surface during annealing. Further, the above polishing to be applied to the surface of the strip steel after the finish annealing is performed regardless of the steps up to that time added to the strip steel, that is, the Si amount, the inhibitor amount or the plate thickness, the type of the annealing separator, etc. It goes without saying that the invention brings about the intended effect.

すなわち、この発明の眼目は含けい素冷延薄鋼帯の表面
の平滑化によって履歴損失が減少するという現象を活用
するところにあり、それ故方向性けい素鋼板それ自体の
製造工程には全く依存しないのである。
That is, the eye of the present invention is to utilize the phenomenon that the hysteresis loss is reduced by smoothing the surface of the cold-rolled silicon-containing thin steel strip, and therefore, it is not necessary in the manufacturing process of the grain-oriented silicon steel sheet itself. It does not depend.

次に表面粗さに関し中心線平均粗さ(Ra)で0.3μm以
下とするのは、Raが0.3μmを越えると履歴損失の軽減
に寄与すべき平滑化効果がもはや失われてしまうからで
ある。
Next, regarding the surface roughness, the center line average roughness (Ra) is set to 0.3 μm or less because when Ra exceeds 0.3 μm, the smoothing effect that should contribute to the reduction of hysteresis loss is lost. .

ここで砥粒による研磨の際その研磨表面の直下層に埋込
まれて残存する砥粒又はその破片につき1000〜20000個
/cm2の範囲に限定した理由を述べる。
Here, the reason why the range of 1000 to 20000 particles / cm 2 is limited for the abrasive particles or fragments thereof which are embedded and remain in the layer immediately below the polishing surface during polishing with the abrasive particles.

一般に砥粒による研磨は、磁気特性を劣化させ、回転砥
石やエメリ研磨紙のように砥粒による研磨を普通に行な
った際に磁性体の磁気特性(鉄損)が劣化するのは保持
力Hcが増大するためであり、つまり保持力が増大して履
歴損失が増大するために鉄損の劣化が生じるのである。
In general, polishing with abrasive grains deteriorates the magnetic properties, and the magnetic properties (iron loss) of magnetic materials deteriorate when the abrasive grains are normally used for polishing, such as with a rotating whetstone or emery polishing paper. Is increased, that is, the holding force is increased and the hysteresis loss is increased, so that the iron loss is deteriorated.

発明者らは、このような鉄損の劣化現象と加工後の表面
との関係を調べることにより、砥粒による研磨を行なっ
た際には砥粒が研磨に際して表面層直下に埋め込まれ、
それによって生じた歪が鉄損を劣化せしめることを発見
した。第1図は仕上焼鈍後の方向性けい素鋼板の鉄損に
対してその板面酸化物を一たん除去して地鉄表面を研磨
代3μmで砥粒による研磨を施した上で仕上焼鈍後と研
磨後の鉄損を比較したものであり、研磨条件を種々変化
させて、砥粒の埋込量との関係を調べたものである。こ
の図から砥粒又はその破片の埋込数が1000〜20000個/c
m2の範囲であれば研磨による磁気特性の向上がもたらさ
れることがわかる。
The inventors, by examining the relationship between the deterioration phenomenon of such iron loss and the surface after processing, when polishing with abrasive grains, the abrasive grains are embedded immediately below the surface layer during polishing,
It was discovered that the strain caused thereby deteriorates iron loss. Fig. 1 shows the iron loss of the grain-oriented silicon steel sheet after finishing annealing, the oxides on the sheet surface were removed at once, and the surface of the base iron was polished with abrasive grains at a polishing allowance of 3 μm and then finished and annealed. And the iron loss after polishing were compared, and the relationship with the amount of embedding of abrasive grains was investigated under various polishing conditions. From this figure, the embedding number of abrasive grains or fragments is 1000 to 20000 pieces / c
It can be seen that polishing improves the magnetic properties in the range of m 2 .

このような埋込量を左右する要因は数多くあり、例えば
研磨材(研磨ロールなど)の圧下力が小さいほど、また
砥粒の小さいほど、一般に埋込数は少なくなるがそのほ
か(研磨ロールなど)の種類、材質、回転数や研磨液の
種類と適用のしかたなど、研磨方法の如何によっても異
なるが、いずれも特性は研磨後の表面層の状態すなわち
砥粒埋め込み数によって左右され、とくに3〜5×103
個/cm2付近において極小値があるようにみうけられ、
一般に1000〜20000個/cm2の埋め込み量で特性が向上し
ている。
There are many factors that influence the embedding amount. For example, the smaller the rolling force of the abrasive (polishing roll, etc.) and the smaller the abrasive grains, the smaller the embedding number in general. The characteristics depend on the state of the surface layer after polishing, that is, the number of embedded abrasive grains, especially 3 5 x 10 3
It seems that there is a minimum value near the number of pieces / cm 2 ,
Generally, the characteristics are improved with an embedding amount of 1000 to 20000 pieces / cm 2 .

これは微量の埋込みによって生じる研磨表面の極く浅い
直下層に生じた加工変質量が与える微小な引張応力がむ
しろ鉄損に対していわゆる引張効果を与えるという、望
外の効果によるものと考えられる。
It is considered that this is due to an unexpected effect that the minute tensile stress caused by the processing variable mass generated in the extremely shallow layer immediately below the polished surface caused by a small amount of embedding rather exerts a so-called tensile effect on iron loss.

埋め込み数が0近くになるような砥粒による研磨は現在
のところ実現し得ないが在来の化学研磨などによる平滑
化を行った場合にも平均的に0.10W/kg位は鉄損を向上さ
せるのでこれにほぼ匹敵し得る埋込み数として1000〜20
000個/cm2の範囲に限定した。
Polishing with abrasive grains so that the embedded number is close to 0 is not currently realized, but even if smoothing is performed by conventional chemical polishing, iron loss is improved by an average of about 0.10 W / kg. As the number of embeddings that can be almost equal to this is 1000 to 20
It was limited to the range of 000 pieces / cm 2 .

ここで第2図には素材の磁気特性について素材に対し#
1000の回転砥石で研磨した場合と、エメリー研磨した場
合、および化学研磨した場合とを比較したが、この図か
ら明らかなように、研磨の際に不要な歪を地鉄表面に加
えてしまう回転砥石およびエメリ研磨では鉄損の劣化が
みられる一方化学研磨では鉄損が低減している。したが
って従来は機械研磨ではなくコストた嵩むにも拘らず化
学研磨又は電解研磨を用いざる得なかったのである。
Here in Fig. 2, the magnetic characteristics of the material
We compared the case of polishing with 1000 rotating grindstone, the case of emery polishing, and the case of chemical polishing, but as is clear from this figure, rotation that adds unnecessary strain to the surface of the base steel during polishing The iron loss is deteriorated in the grindstone and the emery polishing, while the iron loss is reduced in the chemical polishing. Therefore, in the past, chemical polishing or electrolytic polishing had to be used instead of mechanical polishing, despite the high cost.

次に第1発明に従い砥粒を用いた研磨による平滑化を施
した表面に対しては、いわゆる張力効果による鉄損の低
減(改良)は、以下に述べるところにおいて非常に効果
がある。したがって絶縁皮膜としてとくに張力付与コー
トを適用することは一層有利である。
Next, the reduction (improvement) of iron loss due to the so-called tension effect is very effective for the surface smoothed by polishing with abrasive grains according to the first invention as described below. Therefore, it is more advantageous to apply a tension applying coat as the insulating film.

ここに従来から知られている張力付与コートには、コロ
イダルシリカを添加したりん酸塩系のコーティング液を
800℃付近で非晶質化して焼きつける方法によって得ら
れるものである。ところが、この種のコーティング液に
よる皮膜を十分密着性よく成膜させようとするとき、元
来平滑化された地鉄表面は好ましくなく、通常800℃付
近のたとえば歪取り焼鈍ではく離し易い。そこで従来は
何んらかの化学反応をコーティング膜と生じさせたり、
表面に酸化物を生成せしめてコーティングを施こしたり
する必要があり、このようにして密着性は確保されるに
しても表面平滑化の効果はもはや失われ、鉄損は平滑化
以前のレベルに戻ってしまう。
The conventionally known tension-imparting coat here is a phosphate-based coating liquid with colloidal silica added.
It is obtained by a method of amorphizing at around 800 ° C and baking. However, when attempting to form a film of this type of coating solution with sufficient adhesion, the originally smooth surface of the base iron is not preferable, and is usually easily peeled off by strain relief annealing at around 800 ° C. So, in the past, some chemical reaction was caused with the coating film,
It is necessary to form an oxide on the surface and apply a coating.Thus, even if adhesion is secured in this way, the effect of surface smoothing is lost, and iron loss is at the level before smoothing. I'll be back.

この点第2発明において平滑化の効果を失なわないよう
平滑度を保存するために地鉄の表面を金属めっきで被覆
してそのめっき層をバインダーとして上記のりん酸塩系
皮膜を成膜せしめれば、密着性よく十分な引張効果と平
滑化効果を得ることが可能である。
In this respect, in the second invention, in order to preserve the smoothness so as not to lose the smoothing effect, the surface of the base iron is coated with metal plating, and the above-mentioned phosphate coating is formed using the plating layer as a binder. If so, it is possible to obtain sufficient tensile effect and smoothing effect with good adhesiveness.

かかるバインダーとしての役割をはたす金属めっきとし
てはめっき後にそのまま、あるいは化成処理、酸化処理
等で、張力コーティングを焼き付けることが可能なもの
であればウエットめっき、ドライめっき等の方法、物質
例えば金属、酸化物、窒化物、金属間化合物等の種類、
めっき層の層数を問わない。また金属種によってバイン
ダーそのものが張力を付与する効果も期待される。いず
れも処理中に地鉄の平滑度を損なわないだけの十分なち
密性が必要条件である。次表は鉄めっき、銅めっき、ニ
ッケルめっきを行なった時の張力コート成膜前後の鉄損
と密着性の比較を示している。
As the metal plating serving as such a binder, if it is possible to bake the tension coating as it is after plating, or by chemical conversion treatment, oxidation treatment, etc., methods such as wet plating and dry plating, substances such as metal, oxidation Types of materials, nitrides, intermetallic compounds, etc.,
The number of plating layers does not matter. In addition, it is expected that the binder itself gives tension depending on the metal species. In all cases, sufficient compactness is required so as not to impair the smoothness of the base steel during processing. The following table shows a comparison of iron loss and adhesion before and after tension coating film formation when iron plating, copper plating, and nickel plating were performed.

めっきなしに比して、鉄、銅、ニッケルめっきを施した
ものに張力コーティングを成膜した場合密着性は顕著な
効果を示し鉄損の改善も大きい。
When a tension coating is formed on a material plated with iron, copper, or nickel, adhesion is remarkably effective and iron loss is greatly improved as compared with the case without plating.

(実施例) 実施例1 MnSe+MnS系のインヒビターを用いた次の化学組成C:0.0
02%,Si:3.2%に成るけい素鋼熱延板を一般的な方向性
けい素鋼板の加工手順に従って冷間圧延した上で焼鈍分
離材にAl2O3+MgOを用いた0.20mmの板厚の仕上焼鈍後の
素材(A)と、同じく焼鈍分離剤にAl2O3を用いた0.18m
mの板厚の仕上焼鈍済の素材(B)とをそれぞれ#1000
エメリーエンドレス砥石(比較例1:埋込み量過大)、#
200砥粒入不織布ロール(比較例2:Ra過大)、#800砥粒
入ウレタンロール(適合条件)を使用して比較例2を除
きRaが0.15μm以下まで研磨した。各工程毎の鉄損の比
較は表1の通りである。
(Example) Example 1 The following chemical composition C: 0.0 using an inhibitor of MnSe + MnS system
A 0.20 mm sheet made of Al 2 O 3 + MgO as an annealing separator after cold-rolling a 02%, Si: 3.2% hot-rolled silicon steel sheet according to the general procedure for processing grain-oriented silicon steel sheets. 0.18m thick material (A) after finish annealing and also using Al 2 O 3 as an annealing separator
# 1000 with the material (B) that has been finished and annealed with a plate thickness of m
Emery endless grindstone (Comparative example 1: Excessive embedding amount), #
Nonwoven fabric rolls containing 200 abrasive grains (Comparative Example 2: Ra too large) and urethane rolls containing # 800 abrasive grains (compatible conditions) were used to polish Ra to 0.15 μm or less except for Comparative Example 2. Table 1 shows a comparison of iron loss in each process.

またこの発明に従う研磨済み試料の研磨面に対して、Fe
めっきを1μm厚みで施してその上に張力コートを成膜
したものとめっきなしでそのまま張力コートを直接成膜
したものとを比較したところめっきを施したものの最終
特性はW17/50が素材(A)では0.78W/kg,素材(B)で
は0.75W/kgとなり、密着性も良好であった。
Also, for the polished surface of the polished sample according to the present invention, Fe
A comparison was made between plating with a thickness of 1 μm and a tension coating formed on it, and one with a tension coating directly formed without plating. The final properties of the plated material are W 17/50 ( A) was 0.78 W / kg, and material (B) was 0.75 W / kg, and the adhesion was good.

めっきなしでそのまま張力コートを成膜したものは、3c
mφの丸棒にまきつけたとき、皮膜の破壊を生じ密着性
は不良と判定されたが同じテストでメッキを施しておい
たものは全くはく離を生ぜず密着性良好であった。
It is 3c if the tension coat is directly formed without plating.
When it was spread on a mφ round bar, the film was broken and the adhesiveness was judged to be poor, but those plated in the same test did not peel at all and had good adhesiveness.

このように第1発明に従って砥粒を用い研磨した場合に
磁気特性の向上が顕著でとくにその研磨表面へ第2発明
に従うめっき層を介し成膜した張力付与コートを有する
ものは密着性良好な上に磁気特性の改善効果も著しい。
As described above, when the abrasive grains are used for polishing according to the first aspect of the invention, the magnetic properties are remarkably improved, and in particular, those having a tension-imparting coat formed on the polished surface via the plating layer according to the second aspect of the invention have good adhesion. Also, the effect of improving the magnetic properties is remarkable.

実施例2 AIN系のインヒビターを用いた次の化学組成C:0.003%,S
i:3.1%に成る方向性けい素鋼熱延板を一般的な方向性
けい素鋼板の加工手順に従って冷間圧延した上で焼鈍分
離剤としてMgOを適用した0.27mmの板厚の仕上焼鈍後の
素材(C)を、#200の砥粒入不織布ロール(比較例3:R
a過大、埋め込み量過大)と#1000の砥粒入不織布ロー
ル(適合例)とを使用して研磨した。
Example 2 The following chemical composition using an AIN-based inhibitor C: 0.003%, S
i: 3.1% Hot rolling of grain-oriented silicon steel was cold-rolled according to the general procedure for grain-oriented silicon steel sheet, and then MgO was applied as an annealing separator. The material (C) of # 200 was used as a # 200 abrasive grain-containing nonwoven fabric roll (Comparative Example 3: R
a is too large, and the embedded amount is too large) and a # 1000 abrasive grain-containing nonwoven fabric roll (compatible example) is used for polishing.

各工程毎の鉄損の比較は表2のとおりである。Table 2 shows a comparison of iron loss in each process.

また第1発明に従って研磨処理した材料に対して第2発
明に従いTiのドライめっき(蒸着)を0.5μm厚みにて
施し、その上に張力コートを成膜したものと、めっきな
しにそのまま張力コートを直接成膜したものとを比較し
たところめっきを施したものの最終特性はW17/50が0.79
W/kgであった。そのまま直接張力コートを成膜したもの
は3cmφの丸棒にまきつけたところ皮膜は破損して密着
は不良であったのに反し同じテストでめっきを施したも
のは密着性良好であった。
Further, the material subjected to the polishing treatment according to the first invention was subjected to dry plating (vapor deposition) of Ti according to the second invention to a thickness of 0.5 μm, and a tension coat was formed on the material. Comparing with the film directly formed, the final property of the plated product is W17 / 50 of 0.79.
It was W / kg. When the tension coat was directly formed as it was on a 3 cmφ round bar, the film was damaged and the adhesion was poor. On the contrary, the one plated in the same test had good adhesion.

(発明の効果) 化学研磨、電解研磨のようにコストが嵩むことのない砥
粒を用いる研磨加工の手法によって、適切なRaの下に研
磨表面直下への砥粒埋込み量を規制することによって方
向性けい素鋼板製品の鉄損低減が達成され、また、とく
にこの研磨面へめっきを施すことによってとくに張力付
与皮膜の成膜密着性を高めしかも一層の鉄損低減に寄与
する。
(Effects of the Invention) By controlling the amount of embedding of the abrasive grains just below the polishing surface under an appropriate Ra, by a polishing method that uses abrasive grains that do not increase the cost, such as chemical polishing and electrolytic polishing. The iron loss of the silicon carbide steel product is reduced, and plating of the polished surface particularly enhances the adhesion of the tension-imparting film to the film and further contributes to the reduction of the iron loss.

【図面の簡単な説明】[Brief description of drawings]

第1図は砥粒埋込量と研磨前後の鉄損差の関係を示すグ
ラフ、 第2図は各種研磨条件による磁気特性の差を示すグラフ
である。
FIG. 1 is a graph showing the relationship between the amount of embedded abrasive grains and the difference in iron loss before and after polishing, and FIG. 2 is a graph showing the difference in magnetic characteristics due to various polishing conditions.

フロントページの続き (72)発明者 筋田 成子 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (56)参考文献 特開 昭62−69501(JP,A)Front page continuation (72) Inventor Naruko Sueda 1 Kawasaki-cho, Chiba-shi, Chiba Inside Kawasaki Steel Co., Ltd. Technical Research Headquarters (56) References JP 62-69501 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】砥粒を用いた研磨加工による平滑表面を有
する仕上焼鈍済みの方向性けい素鋼帯であって、該鋼帯
の表面粗さが中心線平均粗さ(Ra)で0.3μm以下で、
しかもこの研磨表面の直下層に埋込まれて残存する砥粒
又はその破片の数が1000〜20000個/cm2であることを特
徴とする鉄損の極めて低い方向性けい素鋼板。
1. A finish annealed grain-oriented silicon steel strip having a smooth surface obtained by polishing using abrasive grains, the surface roughness of said strip being 0.3 μm in terms of center line average roughness (Ra). Below,
Moreover, a grain-oriented silicon steel sheet having an extremely low iron loss, characterized in that the number of abrasive grains or fragments thereof remaining embedded in the layer immediately below the polished surface is 1000 to 20000 pieces / cm 2 .
【請求項2】砥粒を用いた研磨加工による平滑表面を有
する仕上焼鈍済みの方向性けい素鋼帯であって、該鋼帯
の表面粗さが中心線平均粗さ(Ra)で0.3μm以下で、
しかもこの研磨表面の直下層に埋込まれて残存する砥粒
又はその破片の数が1000〜20000個/cm2であり、かつこ
の表面層上にめっき薄層を有するものであることを特徴
とする鉄損の極めて低い方向性けい素鋼板。
2. A finish annealed grain-oriented silicon steel strip having a smooth surface obtained by polishing using abrasive grains, the surface roughness of said strip being 0.3 μm in center line average roughness (Ra). Below,
Moreover, the number of abrasive grains or fragments thereof remaining embedded in the layer immediately below the polishing surface is 1000 to 20000 pieces / cm 2 , and a thin plating layer is provided on the surface layer. A grain-oriented silicon steel sheet with extremely low iron loss.
JP62191521A 1987-08-01 1987-08-01 Grain-oriented silicon steel sheet with extremely low iron loss Expired - Lifetime JPH07118409B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62191521A JPH07118409B2 (en) 1987-08-01 1987-08-01 Grain-oriented silicon steel sheet with extremely low iron loss
EP88306781A EP0302639B1 (en) 1987-08-01 1988-07-22 Grain oriented electromagnetic steel sheets having a very low iron loss and method of producing the same
DE3889600T DE3889600T2 (en) 1987-08-01 1988-07-22 Grain-oriented electrical sheets with very low iron losses and processes for producing these sheets.
US07/225,546 US4906530A (en) 1987-08-01 1988-07-28 Grain oriented electromagnetic steel sheets having a very low iron loss
US07/380,991 US4963197A (en) 1987-08-01 1989-07-17 Grain oriented electromagnetic steel sheets having a very low iron loss and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62191521A JPH07118409B2 (en) 1987-08-01 1987-08-01 Grain-oriented silicon steel sheet with extremely low iron loss

Publications (2)

Publication Number Publication Date
JPS6437003A JPS6437003A (en) 1989-02-07
JPH07118409B2 true JPH07118409B2 (en) 1995-12-18

Family

ID=16276042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62191521A Expired - Lifetime JPH07118409B2 (en) 1987-08-01 1987-08-01 Grain-oriented silicon steel sheet with extremely low iron loss

Country Status (1)

Country Link
JP (1) JPH07118409B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701853B2 (en) * 2005-06-20 2011-06-15 凸版印刷株式会社 Multi-layer wiring board with built-in resistance element and resistance value adjustment method for the resistance element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269501A (en) * 1985-09-21 1987-03-30 Kawasaki Steel Corp Manufacture of low iron loss grain oriented silicon steel plate

Also Published As

Publication number Publication date
JPS6437003A (en) 1989-02-07

Similar Documents

Publication Publication Date Title
US4897131A (en) Grain-oriented electrical steel sheet having improved glass film properties and low watt loss
US4906530A (en) Grain oriented electromagnetic steel sheets having a very low iron loss
JPH07118409B2 (en) Grain-oriented silicon steel sheet with extremely low iron loss
JPH0699824B2 (en) Thermally stable ultra-low iron loss unidirectional silicon steel sheet and method for producing the same
JPH0220710B2 (en)
JPH11310882A (en) Ultralow iron loss grain oriented silicon steel sheet and its production
JP2691753B2 (en) Method for producing grain-oriented electrical steel sheet having metallic luster with extremely excellent punchability
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JPS6269501A (en) Manufacture of low iron loss grain oriented silicon steel plate
JPH0663035B2 (en) Method for producing grain-oriented electrical steel sheet with extremely low iron loss
JP3277039B2 (en) Method for producing grain-oriented silicon steel sheet having homogeneous forsterite coating
JPH0598398A (en) High silicon grain-oriented silicon steel sheet and its manufacture
JPH075973B2 (en) Manufacturing method of ultra-low iron loss unidirectional silicon steel sheet
JPH02228480A (en) Treatment of grain-oriented steel sheet to reduce iron loss
JPH0577749B2 (en)
JPS62151521A (en) Manufacture of low iron loss grain oriented electrical sheet superior in glass film characteristic
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPH046264A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPS62294131A (en) Manufacture of grain-oriented silicon steel sheet minimal in iron loss
JP3885341B2 (en) Method for removing oxide scale from silicon steel surface
JPS62133021A (en) Grain oriented electrical steel sheet having good adhesiveness of glass film and low iron loss and production thereof
JPH0327630B2 (en)
JPS63227720A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss
JPH0413426B2 (en)
JPH0680175B2 (en) Method for producing grain-oriented silicon steel sheet having good magnetic properties