JPS62294131A - Manufacture of grain-oriented silicon steel sheet minimal in iron loss - Google Patents

Manufacture of grain-oriented silicon steel sheet minimal in iron loss

Info

Publication number
JPS62294131A
JPS62294131A JP61135014A JP13501486A JPS62294131A JP S62294131 A JPS62294131 A JP S62294131A JP 61135014 A JP61135014 A JP 61135014A JP 13501486 A JP13501486 A JP 13501486A JP S62294131 A JPS62294131 A JP S62294131A
Authority
JP
Japan
Prior art keywords
silicon steel
grain
iron loss
steel sheet
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61135014A
Other languages
Japanese (ja)
Other versions
JPH0680173B2 (en
Inventor
Ujihiro Nishiike
西池 氏裕
Norio Takahashi
憲男 高橋
Yasuhiro Kobayashi
康宏 小林
Hisanao Nakahara
中原 久直
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61135014A priority Critical patent/JPH0680173B2/en
Publication of JPS62294131A publication Critical patent/JPS62294131A/en
Publication of JPH0680173B2 publication Critical patent/JPH0680173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce iron losses due to mirror-finishing treatment of silicon steel sheet surface, by subjecting the surface of a finish-annealed grain-oriented silicon steel sheet to mechanical polishing by use of elastic abrasive material so as to form a smooth surface having a specific surface roughness. CONSTITUTION:The matrix surface of a finish-annealed grain-oriented silicon steel sheet is subjected to mechanical polishing by use of elastic abrasive material so as to be formed into smooth surface of <=0.3mum average roughness Ra. As the above elastic abrasive material, the one prepared by allowing abrasive grains to adhere to a matrix such as polyurethane, etc., and the like are used. In this way, irregular strain is applied to the matrix surface, so that deterioration in magnetism can be prevented. Further, by forming, if necessary, a tension- giving film of TiN, etc., on the surface of the above mirror-finished surface, magnetic properties can be improved to a greater extent.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 鋼板表面の鏡面化によって鉄損の極めて低い方向性けい
素鋼板を製造する方法に関してこの明細書では、該鏡面
化を機械研磨にて行うことについての開発研究の成果を
述べる。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) This specification describes a method for manufacturing grain-oriented silicon steel sheets with extremely low iron loss by mirror-finishing the surface of the steel sheet. This paper describes the results of research and development on mechanical polishing.

方向性けい素鋼板は主として変圧器その他の電気機器の
鉄心として利用され、その磁化特性が優れていること、
とくに鉄tM (Wl?/S。で代表される)が低いこ
とが要求されている。
Grain-oriented silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and their magnetization properties are excellent.
In particular, it is required that iron tM (represented by Wl?/S.) be low.

このためには、鋼板中の2次再結晶粒の<001〉粒方
位を圧延方向に高度に揃えること、最終製品中の不純物
を減少させる等の努力により最近では、0.23mmの
板厚でWl?/SOO値が0.9W/kgの低鉄損のも
のが得られている。
To this end, recent efforts have been made to align the <001> grain orientation of the secondary recrystallized grains in the steel sheet in the rolling direction, and to reduce impurities in the final product. Wl? /SOO value of 0.9 W/kg and low iron loss was obtained.

しかし、数年前のエネルギー危機を境にして、電力損失
のより少ない電気機器を求める傾向が一段と強まり、そ
れらの鉄芯材料として、さらに鉄損の低い方向性けい素
鋼板が要請されるようになっている。
However, after the energy crisis a few years ago, the trend for electrical equipment with lower power loss became even stronger, and grain-oriented silicon steel sheets with even lower core loss were required as core materials for these devices. It has become.

(従来の技術) ところで、方向性けい素鋼板の鉄損を下げる手法として
は、Si含有量を高める、製品板厚を薄くする、2次再
結晶粒を細がくする、不純物含有量を低減する、そして
(110)  (001)方位の2次再結晶粒をより高
度に揃えるなど、主に冶金学的方法が一般に知られてい
るが、これらの手法は、現行の生産手段の上からはもは
や限界に達していて、これ以上の改善は極めて難しく、
たとえ多少の改善が認められたとしても、その努力の割
には鉄損改善の実効は僅かとなるに至っていた。
(Prior art) By the way, methods for lowering the core loss of grain-oriented silicon steel sheets include increasing the Si content, reducing the thickness of the product sheet, making secondary recrystallized grains finer, and reducing the impurity content. , and (110) (001) oriented secondary recrystallized grains to a higher degree of alignment.However, these methods are no longer compatible with current production methods. We have reached our limit and further improvement is extremely difficult.
Even if some improvement was recognized, the effectiveness of iron loss improvement was small compared to the efforts made.

また、特公昭54−23647号公報に開示されている
ように、鋼板表面に2次再結晶阻止領域を形成させるこ
とにより、2次再結晶粒を細粒化させる方法が提案され
ている。しかしながらこの方法は、2次再結晶粒径の制
御が安定していないため、実用的とは言いがたい。
Furthermore, as disclosed in Japanese Patent Publication No. 54-23647, a method has been proposed in which secondary recrystallization grains are made finer by forming a secondary recrystallization inhibiting region on the surface of a steel sheet. However, this method cannot be said to be practical because control of the secondary recrystallized grain size is not stable.

その他特公昭58−5968号公報には、2次再結晶後
の鋼板の表面にボールペン状小球にて、微小歪を鋼板表
層に導入することにより、磁区の幅を微細化し、鉄損を
低減する技術が、また、特公昭57−2252号公報に
は、最終製品板表面に、圧延方向にほぼ直角にレーザー
ビームを数mm間隔に照射し、鋼板表層に高転位密度領
域を導入することにより、磁区の幅を微細化し、鉄損を
低減する技術が提案されている。さらに、特開昭57−
188810号公報には、放電加工により綱板表層に微
小歪を導入し、磁区幅を微細化し、鉄損を低減する同様
の技術が提案されている。これら3種類の方法は、いず
れも2次再結晶後の鋼板の地鉄表層に微小な塑性歪を導
入することにより磁区幅を微細化し鉄損の低減を図るも
のであって、均しく実用的であり、がつ鉄損低減効果も
優れているが、鋼板の打抜き加工、せん断加工、巻き加
工などの後の歪取り焼鈍や、コーティングの焼付は処理
の如き熱処理によって、塑性歪4人による効果が減殺さ
れる欠点を伴う、なおコーティング処理後に微小な塑性
歪の導入を行う場合は、絶縁性を維持するために絶縁コ
ーティングの再塗布を行わねばならず歪付与工程、再塗
布工程と、工程の大幅増加になり、コストアップをもた
らす。
In addition, Japanese Patent Publication No. 58-5968 discloses that by introducing micro-strain into the surface layer of the steel plate after secondary recrystallization using a ballpoint pen-shaped ball, the width of the magnetic domain is made finer and iron loss is reduced. Furthermore, Japanese Patent Publication No. 57-2252 discloses a technique for irradiating the surface of the final product sheet with a laser beam at intervals of several mm approximately perpendicular to the rolling direction to introduce high dislocation density regions into the surface layer of the steel sheet. , techniques have been proposed to reduce iron loss by reducing the width of magnetic domains. Furthermore, JP-A-57-
A similar technique is proposed in Japanese Patent No. 188810, in which minute strain is introduced into the surface layer of a steel plate by electric discharge machining, the magnetic domain width is made finer, and iron loss is reduced. These three methods all aim to reduce iron loss by refining the magnetic domain width by introducing minute plastic strain into the surface layer of the steel sheet after secondary recrystallization, and are equally practical. It has an excellent iron loss reduction effect, but the effects of plastic strain can be reduced by heat treatment such as strain relief annealing after punching, shearing, and winding of steel sheets, and baking of coatings. However, if a small amount of plastic strain is introduced after the coating process, the insulating coating must be reapplied to maintain the insulation properties. This will result in a significant increase in costs, leading to an increase in costs.

またこれらの技術とは別に特公昭52−24499号公
報には、仕上焼鈍後のけい素鋼板表面を鏡面仕上げする
ことにより、磁気特性、特に鉄損が軽減することが開示
されている。
In addition to these techniques, Japanese Patent Publication No. 52-24499 discloses that magnetic properties, particularly iron loss, can be reduced by mirror-finishing the surface of a silicon steel sheet after final annealing.

しかし、これらの方法は、鏡面仕上げには化学研磨ある
いは電解研磨を用い非常にコスト高になっていたため、
実際に工業的なプロセスに適用するには著しい困難があ
り、大量生産工程に採用されるに至っていない。かかる
コスト高な工程を例えば砥石等による機械研磨に代える
ことはけい素鋼板中に残留ひずみを与えて鉄損を著しく
劣化させるため不可能であった。
However, these methods require chemical polishing or electrolytic polishing for mirror finishing, which is extremely costly.
There are significant difficulties in actually applying it to industrial processes, and it has not yet been adopted in mass production processes. It has been impossible to replace such a costly process with mechanical polishing using a grindstone, for example, because residual strain is imparted to the silicon steel sheet and the iron loss is significantly degraded.

(発明が解決しようとする問題点) そこで仕上焼鈍を経た方向性けい素鋼板の表面の鏡面化
による鉄損の低減を、低コストの機械研磨にて達成する
ことが、この発明の目的である。
(Problems to be Solved by the Invention) Therefore, it is an object of the present invention to reduce iron loss by mirror-finishing the surface of grain-oriented silicon steel sheets that have undergone finish annealing through low-cost mechanical polishing. .

(問題点を解決するための手段) 発明者等は、仕上焼鈍後の方向性けい素鋼板表面の鏡面
化に適用する機械研磨はその研磨手段によって、磁気特
性の劣化の度合が異なることに注目し、種々の研磨用砥
石をテストした結果、磁気特性を良好ならしめる砥石に
特別の条件があることを見い出した。
(Means for Solving the Problem) The inventors noted that the degree of deterioration of magnetic properties of mechanical polishing applied to mirror-finish the surface of a grain-oriented silicon steel sheet after final annealing varies depending on the polishing method used. However, as a result of testing various polishing wheels, it was discovered that there are special conditions for the wheels to have good magnetic properties.

すなわち砥粒のバインダーとなる生地が圧力に対し弾性
変形をする物質で作られた、いわゆる弾性研磨材を用い
ると、良好な磁気特性の研磨面が得られることがわかっ
た。
In other words, it has been found that a polishing surface with good magnetic properties can be obtained by using a so-called elastic abrasive material, in which the dough serving as the binder for the abrasive grains is made of a material that deforms elastically in response to pressure.

この発明は上記知見に由来するものである。This invention is derived from the above knowledge.

すなわちこの発明は、仕上焼鈍を経た方向性けい素鋼板
の地鉄表面に、弾性研磨材による機械研磨を施し、平均
粗さRaで0.3μm以下の平滑面とすることを特徴と
する鉄損の極めて低い方向性けい素鋼板の製造方法、お
よび仕上焼鈍を経た方向性けい素鋼板の地鉄表面に、弾
性研磨材による機械研磨を施し、平均粗さRaで0.3
μm以下の平滑面とし、該平滑面に張力付与膜を被成す
ることを特徴とする鉄損の極めて低い方向性けい素鋼板
の製造方法である。
That is, this invention is characterized in that the surface of the base iron of a grain-oriented silicon steel plate that has undergone finish annealing is subjected to mechanical polishing using an elastic abrasive material to obtain a smooth surface with an average roughness Ra of 0.3 μm or less. A method for manufacturing a grain-oriented silicon steel sheet with extremely low surface roughness, and mechanical polishing with an elastic abrasive material is applied to the surface of the grain-oriented silicon steel sheet that has undergone final annealing, resulting in an average roughness Ra of 0.3.
This is a method for producing a grain-oriented silicon steel sheet with extremely low core loss, which is characterized by forming a smooth surface of μm or less and coating the smooth surface with a tension imparting film.

この発明において用いる素材は、仕上焼鈍を経た方向性
けい素鋼板(以下単に鋼板という)である。
The material used in this invention is a grain-oriented silicon steel plate (hereinafter simply referred to as steel plate) that has undergone finish annealing.

ここで仕上焼鈍までの工程は、初めに公知の製鋼方法、
例えば転炉、電気炉などによって製鋼し、さらに造塊−
分塊法または連続鋳造法などによってスラブ(鋼片)と
したのち、熱間圧延によって得られる熱延コイルを用い
る。
Here, the process up to final annealing involves first using a known steelmaking method.
For example, steel is manufactured using a converter furnace, electric furnace, etc., and then ingots are made.
A hot-rolled coil obtained by forming a slab (steel billet) by a blooming method or continuous casting method and then hot rolling is used.

この熱延板は、Siを2.0〜4.0wtχ程度含有す
る組成であることが好ましい。というのは、Siが2.
0wt1未満では鉄損の劣化が大きく、また4、0wt
%を超えると、冷間加工性が劣化するからである。
This hot rolled sheet preferably has a composition containing approximately 2.0 to 4.0 wtχ of Si. This is because Si is 2.
At less than 0wt1, the iron loss deteriorates significantly, and at 4,0wt
%, cold workability deteriorates.

その他の成分については方向性けい素鋼板の素材成分で
あれば、いずれも適用可能である。
As for the other components, any material components of grain-oriented silicon steel sheets can be used.

次に冷間圧延により、最終目標板厚とされるが、冷間圧
延は、1回もしくは中間焼鈍を挟む2回の冷間圧延によ
り行なわれる。このとき必要に応じて熱延板の均一化焼
鈍や、冷間圧延に替わる温間圧延を施すこともできる。
Next, the final target plate thickness is achieved by cold rolling, and the cold rolling is performed once or twice with intermediate annealing sandwiched in between. At this time, if necessary, uniform annealing of the hot rolled sheet or warm rolling instead of cold rolling may be performed.

最終板厚とされた冷延板は、脱炭可能な程度の酸化性雰
囲気もしくはサブスケール形成可能な程度の弱酸化性雰
囲気中で1次再結晶焼鈍が施される。
The cold-rolled sheet having the final thickness is subjected to primary recrystallization annealing in an oxidizing atmosphere that allows decarburization or a weakly oxidizing atmosphere that allows subscale formation.

ついで、鋼板表面に例えば、MgOを主成分とする焼鈍
分離剤を塗布したのち、2次再結晶焼鈍ついで亮温純化
焼鈍と続く最終仕上焼鈍を行なうことにより、フォルス
テライト被膜などの酸化物層が形成される。
Next, after applying an annealing separator containing MgO as a main component to the surface of the steel sheet, secondary recrystallization annealing, light temperature purification annealing, and final finish annealing are performed to remove oxide layers such as forsterite coatings. It is formed.

さてこの発明は、まず鋼板表面に形成された、例えばフ
ォルステライト被膜のような1〜3μm厚の酸化物層を
除去し、さらに地鉄を表面から0.5μm以上除去する
研磨を行うのが好ましい。
Now, in this invention, it is preferable to first remove an oxide layer with a thickness of 1 to 3 μm, such as a forsterite coating, formed on the surface of a steel sheet, and then perform polishing to remove 0.5 μm or more of base iron from the surface. .

これは表面から0.5μm程度の表面近傍層には不純物
が多く、酸化物などの第2相が地鉄内部へ島状に形成さ
れていることが多いために、地鉄表面に不規則な歪が付
与されて磁性が劣化するのを防ぐことにある。
This is because there are many impurities in the layer near the surface, about 0.5 μm from the surface, and second phases such as oxides are often formed in the form of islands inside the steel base, causing irregularities on the surface of the steel base. The purpose is to prevent deterioration of magnetism due to strain.

そしてtA板の地鉄表面が平均粗さRaで0.3μm以
下の平滑面になるように研磨を行う。鋼板表面の研磨に
は、ポリウレタンなどの弾性素材のマトリックスに砥粒
を付着させた弾性研磨材を用いる。
Then, the base metal surface of the tA plate is polished so that it becomes a smooth surface with an average roughness Ra of 0.3 μm or less. To polish the surface of a steel plate, an elastic abrasive is used, which is a matrix of an elastic material such as polyurethane with abrasive grains attached to it.

なお研磨の際の鋼板面と弾性研磨材との相対速度は、6
000m/min以下であることが好ましい。
The relative speed between the steel plate surface and the elastic abrasive during polishing is 6
000 m/min or less is preferable.

また、弾性研磨材のショア硬さは30〜70の範囲が好
適である。ショア′硬さが30に満たない場合は、軟ら
かすぎ、鋼板の研摩に著しい時間がかかり、また、70
を越える場合は、a仮に大きな塑性歪が導入されるため
鉄損が著しく劣化するからである。
The Shore hardness of the elastic abrasive material is preferably in the range of 30 to 70. If the Shore' hardness is less than 30, it is too soft and it takes a significant amount of time to polish the steel plate.
This is because if the value exceeds a, large plastic strain is introduced, resulting in significant deterioration of iron loss.

また上記のように鏡面仕上げした鋼板表面に張力付与膜
を被成することによって、さらに磁気特性を改善するこ
とができる。張力付与膜は、地鉄表面の平滑度を低下す
ること、化学反応、とくに酸化によって地鉄表面に磁性
を劣化する酸化物を形成することなどの不都合が生じな
いならば、その種類は限定されないが、例えば窒化チタ
ンおよび窒化クロムなどが好適で、施工法は蒸着又はめ
っきなどが適合する。
Moreover, by forming a tension imparting film on the mirror-finished steel plate surface as described above, the magnetic properties can be further improved. The type of tension imparting film is not limited as long as it does not cause disadvantages such as reducing the smoothness of the surface of the base metal or forming oxides that deteriorate magnetism on the surface of the base metal due to chemical reactions, especially oxidation. However, for example, titanium nitride and chromium nitride are suitable, and vapor deposition or plating is suitable as the construction method.

(作 用) この発明において鋼板の地鉄表面の平均粗さをRaで0
.3μm以下としたのは、Raが0.3μmをこえると
磁性の劣化を招くためで、これは表面粗度の増加により
、鉄損を構成しているヒステリシス損失が増大すること
による。
(Function) In this invention, the average roughness of the base surface of the steel plate is set to 0 in Ra.
.. The reason why it is set to 3 μm or less is because if Ra exceeds 0.3 μm, the magnetic properties deteriorate.This is because the increase in surface roughness increases hysteresis loss, which constitutes iron loss.

次に機械研磨に用いる研磨材について、下表に示す各種
の研摩材を用いてRaで0.2μmに研摩した鋼板の鉄
損を、第1図に示す。
Next, regarding the abrasive materials used for mechanical polishing, FIG. 1 shows the iron loss of a steel plate polished to 0.2 μm at Ra using various abrasive materials shown in the table below.

同図から、通常研磨材C,Dを用いた場合は素材より高
い鉄損値を示したのに対し、弾性研磨材を用いた場合は
鉄損の低減を達成でき、その効果も著しいことがわかる
From the same figure, it can be seen that when normal abrasives C and D were used, the iron loss value was higher than that of the raw material, but when elastic abrasives were used, iron loss could be reduced, and the effect was also remarkable. Recognize.

弾性研磨材を用いた研摩による鉄損低減のmj7↑は未
だ解明されていないが、通常の研摩との間に加工機構に
おいて何らかの差異があるものと推定される。
Although mj7↑ of iron loss reduction due to polishing using an elastic abrasive has not yet been elucidated, it is presumed that there is some difference in the processing mechanism between it and normal polishing.

一方第2図は、素材の磁気特性について素材に対し# 
1000の回転砥石で研磨、あるいはエメリー紙(# 
1000)で機械研磨した場合と、化学研磨(フン酸と
過酸化水素水を用い、片面あたり4μm研磨)シた場合
とを比較したものである。
On the other hand, Figure 2 shows the magnetic properties of the material.
Polish with a 1000 grindstone or emery paper (#
1000) and chemical polishing (4 μm polishing per side using hydronic acid and hydrogen peroxide).

同図に示すように、研摩の際に不要な歪を地鉄表面に加
えてしまう回転砥石およびエメリ研磨では鉄損の劣化が
みられ、化学研磨では鉄損が低減している。しかだって
従来は機械研磨ではなく化学研磨又は電解研磨を用いざ
るを得なかったが、これらの研磨はコストが非常に高く
工業生産には不向きで、かかる技術が実現されることは
なかった。そこでこの発明は弾性研磨材を用いることで
、コストの安い機械研磨による鉄損の低減を実現させた
As shown in the figure, iron loss deteriorates with rotary grindstone and emery polishing, which add unnecessary strain to the surface of the base metal during polishing, and with chemical polishing, iron loss decreases. However, in the past, chemical polishing or electrolytic polishing had to be used instead of mechanical polishing, but these polishing methods were extremely expensive and unsuitable for industrial production, and such techniques were never realized. Therefore, this invention uses an elastic abrasive material to reduce iron loss through low-cost mechanical polishing.

また平滑面とした鋼板表面に張力付与膜を被成するのは
、張力付与により180 ”磁区の幅が減少し、鉄損を
構成する渦電流損失が減少することによって鉄損値が低
下するからである。
In addition, the reason why a tension imparting film is formed on the surface of a smooth steel sheet is that by applying tension, the width of the 180" magnetic domain decreases, and the eddy current loss that constitutes the core loss decreases, thereby lowering the iron loss value. It is.

(実施例) 次1tレー 3.3 svt%Stを含有し、鉄損がWI?/!l。(Example) Next 1t race 3.3 Contains svt%St and iron loss is WI? /! l.

において0.90 W/kgである仕上焼鈍後の鋼板を
、アルミナを砥粒としポリウレタンをマトリックスとす
るショア硬さ470弾性研磨材(# 1000)を使用
し表面より1μmg+磨して平均粗さRa: 0.10
μmとした。
A steel plate after finish annealing at 0.90 W/kg was polished to an average roughness of 1 μmg+ from the surface using a shore hardness 470 elastic abrasive (#1000) with alumina abrasive grains and polyurethane matrix. : 0.10
It was set as μm.

一方比較例としてアルミナを砥粒とするショア硬さが9
4の通常の回転砥石(#  1000)を使用し、表面
より1μm研磨して平均粗さRa : 0.13μmと
した。両者の鉄損を測定したところ、この発明に従う前
者は0.82W/kgで、比較例である後者は1.33
H/kgであった。
On the other hand, as a comparative example, the Shore hardness using alumina as abrasive grains is 9.
Using a normal rotary grindstone (#1000) of No. 4, the surface was polished by 1 μm to give an average roughness Ra of 0.13 μm. When the iron loss of both was measured, the former according to the present invention was 0.82 W/kg, and the latter, which is a comparative example, was 1.33.
It was H/kg.

実崖炎1 3.3wt%Siを含有し、鉄損がWIT/S。におい
て0.90 W/kgである仕上焼鈍後の鋼板を、炭化
けい素を砥粒としポリウレタンをマトリックスとするシ
ョア硬さ49の弾性研磨材(# 1000)を使用し、
表面より1μm5p(磨して平均粗さRa : 0.0
8μmとした。
Real cliff flame 1 Contains 3.3wt% Si and has an iron loss of WIT/S. A steel plate after finish annealing at 0.90 W/kg was processed using an elastic abrasive (#1000) with a Shore hardness of 49, which has silicon carbide as abrasive grains and polyurethane as a matrix.
1μm5p from the surface (average roughness Ra: 0.0
It was set to 8 μm.

また比較例として炭化けい素を砥粒とするショア硬さが
90の通常の砥石(# 1000)を使用し同じく表面
より1μm研磨して平均粗さRa : 0.12μmと
した。
As a comparative example, a normal grindstone (#1000) with a shore hardness of 90 and made of silicon carbide was used to polish the surface by 1 μm to obtain an average roughness Ra of 0.12 μm.

両者の鉄損を測定したところ、前者は0.81W/kg
で、後者は1.371n/kgであった。
When we measured the iron loss of both, the former was 0.81W/kg.
The latter was 1.371n/kg.

さらにこれらの鋼板の表面にイオンブレーティングによ
りTiNを1μm蒸着したところ、この発明に従う前者
の鉄損は0.72W/kgとなり、比較例である後者は
1.29W/kgとなった。
Further, when TiN was deposited to a thickness of 1 μm on the surface of these steel plates by ion blasting, the iron loss of the former according to the present invention was 0.72 W/kg, and the latter, which was a comparative example, was 1.29 W/kg.

(発明の効果) この発明によれば、工業的にコストが安く大量化度が可
能である機械研磨による鋼板表面の鏡面仕上げに弾性研
磨材を用いることで、鉄損の著しい改善を低コストで達
成できる。
(Effects of the Invention) According to this invention, by using an elastic abrasive material to finish the surface of a steel plate to a mirror finish by mechanical polishing, which is industrially inexpensive and can be mass-produced, a significant improvement in iron loss can be achieved at a low cost. It can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種研磨材と鉄損との関係を示すグラフ、 第2図は各種研磨方法と鉄損との関係を示すグラフであ
る。
Figure 1 is a graph showing the relationship between various abrasives and iron loss, and Figure 2 is a graph showing the relationship between various polishing methods and iron loss.

Claims (1)

【特許請求の範囲】 1、仕上焼鈍を経た方向性けい素鋼板の地鉄表面に、弾
性研磨材による機械研磨を施し、平均粗さRaで0.3
μm以下の平滑面とすることを特徴とする鉄損の極めて
低い方向性けい素鋼板の製造方法。 2、仕上焼鈍を経た方向性けい素鋼板の地鉄表面に、弾
性研磨材による機械研磨を施し、平均粗さRaで0.3
μm以下の平滑面とし、該平滑面に張力付与膜を被成す
ることを特徴とする鉄損の極めて低い方向性けい素鋼板
の製造方法。
[Claims] 1. The surface of the grain-oriented silicon steel plate that has undergone finish annealing is mechanically polished using an elastic abrasive material, and the average roughness Ra is 0.3.
A method for producing a grain-oriented silicon steel sheet with extremely low iron loss, characterized by having a smooth surface of μm or less. 2. The surface of the grain-oriented silicon steel plate that has undergone final annealing is mechanically polished using an elastic abrasive to obtain an average roughness Ra of 0.3.
1. A method for producing grain-oriented silicon steel sheets with extremely low iron loss, characterized by forming a smooth surface of μm or less and coating the smooth surface with a tension imparting film.
JP61135014A 1986-06-12 1986-06-12 Method for producing grain-oriented silicon steel sheet with extremely low iron loss Expired - Lifetime JPH0680173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61135014A JPH0680173B2 (en) 1986-06-12 1986-06-12 Method for producing grain-oriented silicon steel sheet with extremely low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61135014A JPH0680173B2 (en) 1986-06-12 1986-06-12 Method for producing grain-oriented silicon steel sheet with extremely low iron loss

Publications (2)

Publication Number Publication Date
JPS62294131A true JPS62294131A (en) 1987-12-21
JPH0680173B2 JPH0680173B2 (en) 1994-10-12

Family

ID=15141913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135014A Expired - Lifetime JPH0680173B2 (en) 1986-06-12 1986-06-12 Method for producing grain-oriented silicon steel sheet with extremely low iron loss

Country Status (1)

Country Link
JP (1) JPH0680173B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302639A2 (en) * 1987-08-01 1989-02-08 Kawasaki Steel Corporation Grain oriented electromagnetic steel sheets having a very low iron loss and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302639A2 (en) * 1987-08-01 1989-02-08 Kawasaki Steel Corporation Grain oriented electromagnetic steel sheets having a very low iron loss and method of producing the same

Also Published As

Publication number Publication date
JPH0680173B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
JP2620171B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet without glass coating
JPH10130727A (en) Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density
JPS6332849B2 (en)
US4963197A (en) Grain oriented electromagnetic steel sheets having a very low iron loss and method of producing the same
JPS62294131A (en) Manufacture of grain-oriented silicon steel sheet minimal in iron loss
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JPH028027B2 (en)
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH0617132A (en) Ultralow iron loss grain-oriented silicon steel sheet having extremely high magnetic flux density and its production
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JP2706039B2 (en) Method for manufacturing mirror-oriented silicon steel sheet
JP2603170B2 (en) Method for producing high magnetic flux density ultra-low iron loss grain-oriented electrical steel sheet with excellent workability
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2738620B2 (en) High magnetic flux density ultra-low iron loss grain-oriented electrical steel sheet with excellent workability and method of manufacturing the same
JPS6332850B2 (en)
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH07268470A (en) Production of grain oriented silicon steel sheet with low iron loss
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPH06145998A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic property and remarkably excellent in iron core workability and its production
JPS62151521A (en) Manufacture of low iron loss grain oriented electrical sheet superior in glass film characteristic
JPH0327631B2 (en)
JPH01198430A (en) Production of grain oriented electrical steel sheet having extremely good iron loss characteristics and film adhesiveness
JPS62294132A (en) Manufacture of grain-oriented silicon steel sheet minimal in iron loss