JPH07118316B2 - Method for manufacturing organic electrolyte battery - Google Patents

Method for manufacturing organic electrolyte battery

Info

Publication number
JPH07118316B2
JPH07118316B2 JP63091197A JP9119788A JPH07118316B2 JP H07118316 B2 JPH07118316 B2 JP H07118316B2 JP 63091197 A JP63091197 A JP 63091197A JP 9119788 A JP9119788 A JP 9119788A JP H07118316 B2 JPH07118316 B2 JP H07118316B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
battery
lithium
organic electrolyte
propylene carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63091197A
Other languages
Japanese (ja)
Other versions
JPH01264172A (en
Inventor
宏和 貴堂
房次 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP63091197A priority Critical patent/JPH07118316B2/en
Publication of JPH01264172A publication Critical patent/JPH01264172A/en
Publication of JPH07118316B2 publication Critical patent/JPH07118316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウムなどのアルカリ金属を負極活物質と
し、二酸化マンガンを正極活物質とする有機電解液電池
の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an organic electrolyte battery using an alkali metal such as lithium as a negative electrode active material and manganese dioxide as a positive electrode active material.

〔従来の技術〕[Conventional technology]

リチウムなどのアルカリ金属を負極活物質とする有機電
解液電池では、その電解液溶媒としてプロピレンカーボ
ネート、1,2−ジメトキシエタン、1,3−ジオキソランな
どの有機溶媒が用いられている。このうち、特にプロピ
レンカーボネートは、誘電率が高く、電解質を高濃度に
溶解させることができ、かつ使用温度範囲が広いことか
ら、この種の電池では主溶媒として用いられることが多
い。
In an organic electrolytic solution battery using an alkali metal such as lithium as a negative electrode active material, an organic solvent such as propylene carbonate, 1,2-dimethoxyethane, or 1,3-dioxolane is used as the electrolytic solution solvent. Of these, propylene carbonate is often used as a main solvent in this type of battery because it has a high dielectric constant, can dissolve an electrolyte in a high concentration, and has a wide operating temperature range.

ところで、上記電池の正極活物質として二酸化マンガン
を用いた場合、二酸化マンガンが表面に付着水、結合
水、表面官能基を有しているため表面の活性能が高く、
これが電池形成した場合に理論電位より高電位を生じる
原因となり、また電解液溶媒として前記プロピレンカー
ボネートのように環状でエステル結合を有する有機溶媒
が使用されていると、貯蔵中に二酸化マンガンとプロピ
レンカーボネートとが反応して、プロピレンカーボネー
トが酸化されて分解するため、電池内部に炭酸ガス(CO
2)が発生し、電池総高の増加や、内部インピーダンス
の増加などの電池性能の低下を引き起こすことになる。
By the way, when manganese dioxide is used as the positive electrode active material of the above-mentioned battery, since manganese dioxide has attached water, bound water, and a surface functional group on the surface, the surface activity is high,
This causes a potential higher than the theoretical potential when forming a battery, and when an organic solvent having a cyclic ester bond such as the propylene carbonate is used as the electrolyte solvent, manganese dioxide and propylene carbonate are stored during storage. Reacts with each other to oxidize and decompose propylene carbonate, which causes carbon dioxide gas (CO
2 ) occurs, causing a decrease in battery performance such as an increase in total battery height and an increase in internal impedance.

そのため、これまでにも特開昭55-80276号公報に示され
るように、電池製造直後に予備放電して、プロピレンカ
ーボネートの分解を防止する方法が提案されているが、
この方法による場合、電池を1個ずつ所定電圧まで放電
させなけれならず、工業的には大変な手間を要すること
になる。
Therefore, as shown in JP-A-55-80276, there has been proposed a method of preventing the decomposition of propylene carbonate by pre-discharging immediately after the production of the battery.
According to this method, it is necessary to discharge the batteries one by one to a predetermined voltage, which requires a great deal of industrial effort.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、上述したように二酸化マンガンを正極活物質
として用いた従来の有機電解液電池が貯蔵性に欠けてい
たという問題点を解決し、貯蔵性の優れた有機電解液電
池を生産性よく製造できる方法を提供することを目的と
する。
The present invention solves the problem that the conventional organic electrolyte battery using manganese dioxide as the positive electrode active material lacks storability as described above, and the organic electrolyte battery having excellent storability is produced with good productivity. It is an object to provide a method that can be manufactured.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、二酸化マンガンをポリ酸で処理することによ
って、二酸化マンガンを安定化させ、二酸化マンガンの
プロピレンカーボネートに対する反応性を低下させ、貯
蔵中における二酸化マンガンとプロピレンカーボネート
との反応を抑制して、電池総高の増加や電池性能の低下
が少ない有機電解液電池が得られるようにしたものであ
る。
The present invention, by treating manganese dioxide with a polyacid, stabilizes manganese dioxide, reduces the reactivity of manganese dioxide with propylene carbonate, and suppresses the reaction between manganese dioxide and propylene carbonate during storage, It is an object of the present invention to provide an organic electrolyte battery with little increase in total battery height and decrease in battery performance.

上記のように二酸化マンガンをポリ酸で処理することに
よって、二酸化マンガンのプロピレンカーボネートに対
する反応性が低下する理由は、現在のところ必ずしも明
確ではないが、上記の処理により二酸化マンガン表面の
活性部位に比較的安定な複合酸化物が形成され、付着水
や結合水、表面官能基などに基づく二酸化マンガン表面
の活性が低下することによるものと考えられる。
The reason why the reactivity of manganese dioxide with propylene carbonate is decreased by treating the manganese dioxide with the polyacid as described above is not always clear at present, but the treatment makes it possible to compare the active sites on the surface of the manganese dioxide. It is considered that this is because a chemically stable complex oxide is formed and the activity of the surface of manganese dioxide based on attached water, bound water, surface functional groups and the like is reduced.

本発明において、二酸化マンガンを処理するのに用いる
ポリ酸は、周期表第V族金属(V、Nb、Ta)や周期表第
VI族金属(Cr、Mo、W、U)の酸化物が水化して得られ
る酸であり、その代表的なものとしては、タングステン
酸、モリブデン酸、燐タングステン酸、燐モリブデン
酸、珪タングステン酸、珪モリブデン酸などがあげられ
る。
In the present invention, the polyacid used to treat manganese dioxide is a metal of Group V (V, Nb, Ta) of the periodic table or a group of metals of the periodic table.
An acid obtained by hydrating an oxide of a Group VI metal (Cr, Mo, W, U), and typical examples thereof include tungstic acid, molybdic acid, phosphotungstic acid, phosphomolybdic acid, and silicotungstic acid. , Silicomolybdic acid and the like.

二酸化マンガンを処理するにあたっては、上記ポリ酸を
水に溶解した水溶液中に二酸化マンガンを浸漬すること
によって行われるが、その際のポリ酸の濃度としては、
通常、0.1〜2.0mol/lが好ましい。また、処理する際
に、加熱すると処理が促進されるので、60〜100℃に加
熱するのが好ましい。処理時間は処理時の温度にもよる
が、上記のように60〜100℃に加熱する場合には通常2
〜4時間程度にされる。
The treatment of manganese dioxide is carried out by immersing the manganese dioxide in an aqueous solution in which the polyacid is dissolved in water. As the concentration of the polyacid at that time,
Usually, 0.1 to 2.0 mol / l is preferable. In addition, since heating accelerates the treatment during the treatment, it is preferable to heat at 60 to 100 ° C. Although the treatment time depends on the temperature at the time of treatment, it is usually 2 when heated to 60 to 100 ° C as described above.
~ 4 hours.

本発明の電池の製造にあたり、負極活物質としては、例
えばリチウム、ナトリウム、カリウムなどのアルカリ金
属が用いられる。負極は上記アルカリ金属そのもので構
成してもよいが、リチウム合金などのように合金の状態
で構成してもよい。このリチウム合金で負極を構成する
場合も負極活物質として作用するのはリチウムである。
上記のようなリチウム合金としては、例えばリチウム−
アルミニウム合金、リチウム−ケイ素合金、リチウム−
錫合金、リチウム−鉛合金、リチウム−アンチモン合
金、リチウム−インジウム合金、リチウム−ガリウム合
金、リチウム−ビスマス合金、リチウム−ゲルマニウム
合金、リチウム−インジウム−ガリウム合金などがあげ
られる。また、上記リチウム合金にさらに他の金属を少
量添加したものを負極に用いることもできる。
In the production of the battery of the present invention, as the negative electrode active material, an alkali metal such as lithium, sodium or potassium is used. The negative electrode may be composed of the alkali metal itself, or may be composed of an alloy such as a lithium alloy. Even when the negative electrode is made of this lithium alloy, lithium acts as the negative electrode active material.
Examples of the lithium alloy as described above include lithium-
Aluminum alloy, lithium-silicon alloy, lithium-
Examples thereof include tin alloys, lithium-lead alloys, lithium-antimony alloys, lithium-indium alloys, lithium-gallium alloys, lithium-bismuth alloys, lithium-germanium alloys and lithium-indium-gallium alloys. Further, the lithium alloy described above to which a small amount of another metal is added can also be used for the negative electrode.

有機電解液は、通常、プロピレンカーボネートや、上記
プロピレンカーボネートと同様に環状でエステル結合を
有し二酸化マンガンとの反応によって分解するおそれが
あるエチレンカーボネート、γ−ブチロラクトンなどを
含む有機溶媒からなる電解液溶媒に、LiClO4、LiPF6、L
iAsF6、LiSbF6、LiBF4、LiB(C6H5)4などの電解質の1種
または2種以上を溶解したものが用いられる。上記プロ
ピレンカーボネート、エチレンカーボネート、γ−ブチ
ロラクトンなどは、それらを単独で電解液溶媒として用
いてもよく、また、それら同士を混合するかまたはそれ
らと1,2−ジメトキシエタン、1,2−ジエトキシエタン、
テトラヒドロフラン、1,3−ジオキソラン、4−メチル
−1,3−ジオキソランなどの有機溶媒を混合して電解液
溶媒として用いてもよい。
The organic electrolytic solution is usually an electrolytic solution containing propylene carbonate or an organic solvent containing ethylene carbonate, γ-butyrolactone, or the like, which may be decomposed by a reaction with manganese dioxide having a cyclic ester bond like the above propylene carbonate. LiClO 4 , LiPF 6 , L in the solvent
A solution in which one or more electrolytes such as iAsF 6 , LiSbF 6 , LiBF 4 , and LiB (C 6 H 5 ) 4 are dissolved is used. The above-mentioned propylene carbonate, ethylene carbonate, γ-butyrolactone, etc., may be used alone as an electrolytic solution solvent, or they may be mixed with each other or with them 1,2-dimethoxyethane, 1,2-diethoxy. Ethane,
An organic solvent such as tetrahydrofuran, 1,3-dioxolane or 4-methyl-1,3-dioxolane may be mixed and used as an electrolytic solution solvent.

そして、二酸化マンガンのポリ酸による処理は、多量の
二酸化マンガンを一度に処理することができ、製造直後
の電池を1個ずつ所定電圧まで放電する予備放電による
場合に比べて作業性がよく、生産性が優れている。
In addition, the treatment of manganese dioxide with polyacid can process a large amount of manganese dioxide at once, and the workability is better than that in the case of preliminary discharge in which each battery immediately after production is discharged to a predetermined voltage one by one. It has excellent properties.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be described in more detail with reference to examples.

実施例1 タングステン酸(H2WO4)を0.2mol/lとなるように水に
溶解して調製した処理液200mlに二酸化マンガン粉末20g
を入れ、かき混ぜながら90℃で3時間処理を行った。上
記処理後、二酸化マンガンを純水で水洗し、300℃に加
熱して乾燥した。
Example 1 Tungstic acid (H 2 WO 4 ) was dissolved in water to a concentration of 0.2 mol / l to prepare 200 ml of a treating solution, and 20 g of manganese dioxide powder was added.
Was added, and the mixture was treated with stirring at 90 ° C for 3 hours. After the above treatment, manganese dioxide was washed with pure water, heated to 300 ° C. and dried.

上記のようにして処理された二酸化マンガン100重量部
に対してりん状黒鉛10重量部およびポリテトラフルオロ
エチレン1重量部の割合で添加した正極合剤を加圧成形
して直径16mm、厚さ0.6mmの円板状の成形体を作製し
た。上記成形体を正極として用い、常法にしたがって電
池組立をして第1図に示す電池を製造した。
A positive electrode mixture added in a ratio of 10 parts by weight of phosphorous graphite and 1 part by weight of polytetrafluoroethylene to 100 parts by weight of manganese dioxide treated as described above is pressure-molded to have a diameter of 16 mm and a thickness of 0.6. A disc-shaped molded body having a size of mm was produced. A battery shown in FIG. 1 was manufactured by using the above-mentioned molded body as a positive electrode and assembling the battery according to a conventional method.

第1図において、1はリチウムからなる負極であり、こ
の負極1はステンレス鋼製の負極缶2の内面にあらかじ
めスポット溶接しておいたステンレス鋼製網からなる負
極集電体3に直径16mm、厚さ0.2mmのリチウム板を圧着
して形成したものである。4は微孔性ポリプロピレンフ
ィルムからなるセパレータで、5は上記のように処理さ
れた二酸化マンガンを正極活物質とする正極合剤を加圧
成形することによって作製した正極であり、6は上記正
極5の加圧成形時に正極5の一方の側に配設したステン
レス鋼製網からなる正極集電体である。7はステンレス
鋼製の正極缶で、8はポリプロピレン製の環状ガスケッ
トである。そして、この電池にはプロピレンカーボネー
トと1,2−ジメトキシエタンとの容量比2:1の混合溶媒に
過塩素酸リチウム(LiClO4)を1mol/l溶解させた有機電
解液が注入されており、電池は直径20.0mmのボタン形電
池である。
In FIG. 1, reference numeral 1 denotes a negative electrode made of lithium. The negative electrode 1 has a diameter of 16 mm on a negative electrode current collector 3 made of a stainless steel net and spot welded in advance to the inner surface of a stainless steel negative electrode can 2. It is formed by pressure bonding a 0.2 mm thick lithium plate. Reference numeral 4 is a separator made of a microporous polypropylene film, 5 is a positive electrode prepared by press molding a positive electrode mixture containing manganese dioxide treated as described above as a positive electrode active material, and 6 is the positive electrode 5 described above. Is a positive electrode current collector made of a stainless steel net, which is disposed on one side of the positive electrode 5 during the pressure molding. Reference numeral 7 is a positive electrode can made of stainless steel, and 8 is an annular gasket made of polypropylene. Then, in this battery, an organic electrolytic solution in which 1 mol / l of lithium perchlorate (LiClO 4 ) was dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 2: 1 was injected, The battery is a button type battery with a diameter of 20.0 mm.

実施例2 タングステン酸を溶解した処理液に代えて、モリブデン
酸(H2MoO4)を0.12mol/l溶解した処理液を用いて二酸
化マンガンを処理したほかは、実施例1と同様にして電
池を製造した。
Example 2 A battery was prepared in the same manner as in Example 1 except that manganese dioxide was treated with a treatment solution containing 0.12 mol / l of molybdic acid (H 2 MoO 4 ) in place of the treatment solution containing tungstic acid. Was manufactured.

比較例1 二酸化マンガンを処理することなくそのまま用いたほか
は、実施例1と同様にして電池を製造した。
Comparative Example 1 A battery was manufactured in the same manner as in Example 1 except that manganese dioxide was used as it was without treatment.

上記のように製造した実施例1〜2の電池および比較例
1の電池に関して次の2種類の試験を行った。
The following two types of tests were performed on the batteries of Examples 1 and 2 and the battery of Comparative Example 1 manufactured as described above.

まず、上記電池に使用された正極を一定量のプロピレン
カーボネート中に浸漬し、それら全体を80℃の恒温槽中
に48時間入れ、発生するガス量を測定した。その結果を
二酸化マンガンの処理を行っていない比較例1の電池の
正極のガス発生量を100とした比較で第1表に示す。
First, the positive electrode used in the above battery was immersed in a fixed amount of propylene carbonate, and the whole was placed in a constant temperature bath at 80 ° C. for 48 hours, and the amount of generated gas was measured. The results are shown in Table 1 as a comparison with the gas generation amount of the positive electrode of the battery of Comparative Example 1 not treated with manganese dioxide as 100.

第1表に示すように、二酸化マンガンをポリ酸で処理し
た実施例1〜2では、ガス発生量がポリ酸による処理を
していない比較例1の約半分程度に抑えられる。
As shown in Table 1, in Examples 1 to 2 in which manganese dioxide was treated with polyacid, the amount of gas generated was suppressed to about half of that in Comparative Example 1 not treated with polyacid.

つぎに、前記実施例1〜2の電池および比較例1の電池
を各10個ずつ80℃で48時間貯蔵し、貯蔵による電池総高
の増加を調べた。貯蔵前の電池総高はいずれの電池も1.
52±0.02mmの範囲内にあり、貯蔵により電池総高が1.56
mmを超えたものを総高不良として、第2表に総高不良発
生電池個数を示した。なお、第2表中の数値の分母は試
験に供した電池個数を示し、分子は総高不良が発生した
電池個数を示す。
Next, each of the batteries of Examples 1 and 2 and the battery of Comparative Example 1 was stored for 10 hours at 80 ° C. for 48 hours, and the increase in the total cell height due to the storage was examined. The total battery height before storage is 1.
Within the range of 52 ± 0.02 mm, the total battery height is 1.56 due to storage
Table 2 shows the total number of batteries with high defectiveness, in which those exceeding mm were regarded as total defectiveness. The denominator of the numerical values in Table 2 indicates the number of batteries used in the test, and the numerator indicates the number of batteries in which the total height failure occurred.

第2表に示すように、二酸化マンガンをポリ酸で処理し
ていない比較例1の電池では、試験に供したすべての電
池に貯蔵による総高不良が発生したが、本発明の実施例
1〜2の電池では、総高不良がまったく発生しなかっ
た。
As shown in Table 2, in the battery of Comparative Example 1 in which manganese dioxide was not treated with polyacid, the total height failure due to storage occurred in all the batteries subjected to the test. In the battery of No. 2, no total height failure occurred.

また、上記実施例1〜2の電池を25℃、抵抗15kΩで放
電終止電圧2.5Vまで連続放電させたときの放電持続時間
を測定した。その結果を第3表に示す。また、第3表に
おいては、比較例1で製造した電池を電池製造直後に3.
2Vまで予備放電して高電位部分を除去することによって
二酸化マンガンとプロピレンカーボネートとの反応を抑
制するようにした電池(比較例2)を前記と同条件で放
電させ、その放電持続時間を測定した結果を併せて示し
た。
Further, the discharge duration time was measured when the batteries of Examples 1 and 2 were continuously discharged at 25 ° C. and a resistance of 15 kΩ to a discharge end voltage of 2.5 V. The results are shown in Table 3. In addition, in Table 3, the battery produced in Comparative Example 1 was tested immediately after 3.
A battery (Comparative Example 2) in which the reaction between manganese dioxide and propylene carbonate was suppressed by pre-discharging to 2 V to remove the high-potential portion was discharged under the same conditions as above, and the discharge duration was measured. The results are also shown.

第3表に示すように、実施例1〜2の電池は、予備放電
した比較例2の電池より長い放電持続時間を有してい
て、二酸化マンガンをポリ酸で処理したことによる放電
容量低下は認められなかった。
As shown in Table 3, the batteries of Examples 1 and 2 had a longer discharge duration than the battery of Comparative Example 2 which was pre-discharged, and the decrease in discharge capacity due to the treatment of manganese dioxide with polyacid was observed. I was not able to admit.

上記のようなポリ酸による二酸化マンガンの処理は、多
量の二酸化マンガンを一度に処理することができ、製造
直後の電池を1個ずつ所定電圧まで放電する予備放電に
よる場合に比べて、作業性が良く、生産性が優れてい
た。
The treatment of manganese dioxide with a polyacid as described above can treat a large amount of manganese dioxide at once, and has a workability higher than that in the case of pre-discharge in which each battery immediately after production is discharged to a predetermined voltage one by one. It was good and had excellent productivity.

二酸化マンガンと電解液溶媒との反応は、電解液溶媒と
してプロピレンカーボネート、エチレンカーボネート、
γ−ブチロラクトンなどを用いた場合に生じるので、本
発明は電解液溶媒としてプロピレンカーボネート、エチ
レンカーボネート、γ−ブチロラクトンなどを含む有機
溶媒を電解液溶媒として用いた場合にその効果を顕著に
発揮するものであるが、二酸化マンガンをポリ酸で処理
することによって、二酸化マンガン表面の水分、表面官
能基などによる高電位が生じなくなり、平坦な放電特性
を有する電池が得られるようになるので、本発明をプロ
ピレンカーボネートやエチレンカーボネート、γ−ブチ
ロラクトンを含まない有機溶媒に用いる有機電解液電池
の製造に適用してもよい。
The reaction between manganese dioxide and the electrolyte solvent is propylene carbonate, ethylene carbonate as the electrolyte solvent,
Since it occurs when using γ-butyrolactone or the like, the present invention remarkably exhibits its effect when an organic solvent containing propylene carbonate, ethylene carbonate, γ-butyrolactone or the like is used as the electrolytic solution solvent. However, by treating manganese dioxide with a polyacid, moisture on the surface of manganese dioxide, high potential due to surface functional groups, etc. are not generated, and a battery having flat discharge characteristics can be obtained. It may be applied to the production of an organic electrolyte battery used in an organic solvent that does not contain propylene carbonate, ethylene carbonate, or γ-butyrolactone.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、二酸化マンガン
をポリ酸で処理することによって、二酸化マンガンのプ
ロピレンカーボネートなどに対する反応性を低下させ、
二酸化マンガンとプロピレンカーボネートなどとの反応
を抑制して、電池内部でのガス発生を抑制し、貯蔵性の
優れた電池を生産性よく製造することができるようにな
った。
As described above, according to the present invention, by treating manganese dioxide with a polyacid, the reactivity of manganese dioxide with respect to propylene carbonate and the like is reduced,
It has become possible to suppress the reaction between manganese dioxide and propylene carbonate or the like to suppress gas generation inside the battery, and to manufacture a battery having excellent storage properties with high productivity.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る有機電解液電池の一例を示す断面
図である。 1……負極、5……正極
FIG. 1 is a sectional view showing an example of the organic electrolyte battery according to the present invention. 1 ... Negative electrode, 5 ... Positive electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウムなどのアルカリ金属を負極活物質
とする負極、二酸化マンガンを正極活物質とする正極お
よび有機電解液を備えてなる有機電解液電池の製造にあ
たり、二酸化マンガンをポリ酸で処理することを特徴と
する有機電解液電池の製造方法。
1. A manganese dioxide is treated with a polyacid in the production of an organic electrolyte battery comprising a negative electrode using an alkali metal such as lithium as a negative electrode active material, a positive electrode using manganese dioxide as a positive electrode active material, and an organic electrolyte solution. A method for manufacturing an organic electrolyte battery, comprising:
【請求項2】ポリ酸がタングステン酸またはモリブデン
酸である請求項1記載の有機電解液電池の製造方法。
2. The method for producing an organic electrolyte battery according to claim 1, wherein the polyacid is tungstic acid or molybdic acid.
JP63091197A 1988-04-12 1988-04-12 Method for manufacturing organic electrolyte battery Expired - Fee Related JPH07118316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63091197A JPH07118316B2 (en) 1988-04-12 1988-04-12 Method for manufacturing organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63091197A JPH07118316B2 (en) 1988-04-12 1988-04-12 Method for manufacturing organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH01264172A JPH01264172A (en) 1989-10-20
JPH07118316B2 true JPH07118316B2 (en) 1995-12-18

Family

ID=14019719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63091197A Expired - Fee Related JPH07118316B2 (en) 1988-04-12 1988-04-12 Method for manufacturing organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH07118316B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471598B2 (en) * 2010-03-02 2014-04-16 ソニー株式会社 Non-aqueous electrolyte battery
JP5533321B2 (en) * 2010-03-02 2014-06-25 ソニー株式会社 Nonaqueous electrolyte and nonaqueous electrolyte battery
JP5533035B2 (en) 2010-03-02 2014-06-25 ソニー株式会社 Nonaqueous electrolyte composition and nonaqueous electrolyte battery
JP5625389B2 (en) * 2010-03-02 2014-11-19 ソニー株式会社 Non-aqueous electrolyte battery
US20110311879A1 (en) * 2010-06-17 2011-12-22 Sony Corporation Nonaqueous electrolyte and nonaqueous electrolyte battery
JP5601058B2 (en) * 2010-07-07 2014-10-08 ソニー株式会社 Nonaqueous electrolyte battery and nonaqueous electrolyte
JP2012142154A (en) * 2010-12-28 2012-07-26 Sony Corp Lithium ion secondary battery, power tool, electric vehicle and power storage system

Also Published As

Publication number Publication date
JPH01264172A (en) 1989-10-20

Similar Documents

Publication Publication Date Title
JPH0487156A (en) Nonaqueous electrolyte battery
JPH07118316B2 (en) Method for manufacturing organic electrolyte battery
US4668594A (en) Rechargeable electrochemical apparatus and positive electrode thereof
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP3245886B2 (en) Non-aqueous electrolyte secondary battery
JP2940015B2 (en) Organic electrolyte secondary battery
JP3512114B2 (en) Organic electrolyte for organic electrolyte battery and organic electrolyte battery using the same
JP3418715B2 (en) Organic electrolyte secondary battery
JP2636115B2 (en) Manufacturing method of non-aqueous electrolyte battery
JPH07142088A (en) Lithium secondary battery
JPH01294375A (en) Charging/discharging method for lithium secondary battery
JPH0355770A (en) Lithium secondary battery
JPH0230070A (en) Organic electrolytic battery and manufacture thereof
JPH10312813A (en) Organic electrolyte battery
JPH07107862B2 (en) Polyaniline battery
JPH01264171A (en) Manufacture of organic electrolyte battery
JPH0290473A (en) Lithium secondary battery
JP3306121B2 (en) Non-aqueous electrolyte battery
JP3163444B2 (en) Lithium secondary battery
JPH0410365A (en) Lithium secondary battery
JPH0494066A (en) Organic electrolyte battery
JPH05275083A (en) Lithium cell
JPS62283571A (en) Nonaqueous solvent secondary cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees