JPH0711692A - Controlling method for stormwater pump - Google Patents

Controlling method for stormwater pump

Info

Publication number
JPH0711692A
JPH0711692A JP15596593A JP15596593A JPH0711692A JP H0711692 A JPH0711692 A JP H0711692A JP 15596593 A JP15596593 A JP 15596593A JP 15596593 A JP15596593 A JP 15596593A JP H0711692 A JPH0711692 A JP H0711692A
Authority
JP
Japan
Prior art keywords
pump
rainfall
rainwater
water level
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15596593A
Other languages
Japanese (ja)
Inventor
Hiroyuki Goto
浩之 後藤
Koichi Shimizu
公一 清水
Takahiro Konishi
隆裕 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP15596593A priority Critical patent/JPH0711692A/en
Publication of JPH0711692A publication Critical patent/JPH0711692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sewage (AREA)

Abstract

PURPOSE:To make it possible to control the operation of a group of stormwater pumps, corresponding to raining conditions. CONSTITUTION:A storm water exclusion equipment comprises a pipe culvert 1 where storm water flows down, and a settling basin 2 and a pump 3 continuously installed to the settling basin 2 and a group of storm water pumps 4 attached to the pump 3 and an outflow culvert 5 which leads pumped up water and drain water to a river and a water level meter 6 which measures the water level in the pipe culvert 1 and a water level meter 7w which measures the water level in the pump 3 and a radar rain gauge 8 and a control device 9. The radar rain gauge 8 outputs rainfall for every squared mesh in an area including the area under the control of the rain water exclusion facility (D2). The control device 9 computes an average rainfall based on the water level (D1) of the pipe culvert 1, the rainfall (D2) and flow out time from each mesh up to the water level gauge 6 of the pipe culvert 1 and the rate of an occupied area in the controlled area in each mesh and infers the water level (D3) of the pump 3 and pump starting level (S2) as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は雨水ポンプの制御方法に
関し、特に下水処理施設における雨水排除設備の制御に
おいて、降雨状態に対応して雨水ポンプ群を制御する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a rainwater pump, and more particularly to a method for controlling a rainwater pump group in response to a rainfall condition in controlling a rainwater removing facility in a sewage treatment facility.

【0002】[0002]

【従来の技術】下水道事業は、汚水の処理の他、雨水を
速やかに排除して都市機能の安全確保を図ることを目的
とする。特に近年、都市部の市街地化に伴う雨水浸透率
の低下によって雨水流出量が増大する傾向にあり、雨水
排除の重要性は益々高まっている。
2. Description of the Related Art The sewerage business aims to ensure the safety of urban functions by promptly removing rainwater in addition to treating sewage. Particularly in recent years, the rainwater outflow rate tends to increase due to a decrease in the rainwater infiltration rate accompanying the urbanization of urban areas, and the importance of rainwater removal is increasing more and more.

【0003】ところで、下水道処理設備では一般に、管
渠に流入した雨水をポンプ井に貯留し、貯留した雨水を
雨水ポンプ群により引き抜いて雨水処理場に供給する。
雨水ポンプ群の運転制御は通常、ポンプ井の水位に基づ
いてポンプ運転台数を制御することにより行う。この運
転台数の制御では、ポンプ井水位が急激に変動すること
も有り得るため、雨水のポンプ井への流下量を予測して
考慮しなければならない。このため、従来の制御では、
ポンプ井水位の上昇・下降情報の他、管轄地域の降雨量
等を勘案し、勘・経験により運転員がポンプ運転台数を
決定する手法をとっていた。
By the way, in a sewerage treatment facility, generally, rainwater that has flowed into a pipe is stored in a pump well, and the stored rainwater is extracted by a rainwater pump group and supplied to a rainwater treatment plant.
The operation control of the rainwater pump group is usually performed by controlling the number of pumps operating based on the water level in the pump well. In this control of the number of operating units, the water level in the pump well may change suddenly, so the amount of rainwater flowing into the pump well must be predicted and taken into consideration. Therefore, in conventional control,
In addition to the information on the rise and fall of the pump well water level, the operator decided the number of pumps to be operated based on the intuition and experience, taking into consideration the amount of rainfall in the jurisdiction.

【0004】[0004]

【発明が解決しようとする課題】上記の雨水ポンプの運
転制御では、雨水ポンプに起動をかけてから当該雨水ポ
ンプが実際に稼働し始めるまでのタイムラグを考慮し、
ポンプ井水位や降雨量の変動に従って即時に運転台数を
決定する必要がある。しかも稼働ポンプの決定にあたっ
ては、種々の吐出量を有する複数のポンプから最適な組
み合わせを選択しなければならない。このような背景か
ら、雨水ポンプの運転制御には高度の運転技術(勘や経
験)が要求される。一方、雨水ポンプ施設は運転頻度が
低いために運転員の育成に不利であり、また各下水処理
場で雨水流下特性が異なるばかりでなく、地表面工程や
管渠の接続に変更があると雨水流下特性が変化すること
を考慮すると、運転員の負担が大きいばかりでなく、雨
水ポンプ施設の効率的運用にも限度を生じ、たとえばポ
ンプ井の水位に基づくポンプ回転数制御は勿論、最適回
転数制御を実現するまでに至っていない。
In the operation control of the rainwater pump described above, the time lag from when the rainwater pump is started to when the rainwater pump actually starts operating is taken into consideration,
It is necessary to immediately determine the number of operating units according to fluctuations in pump well water level and rainfall. Moreover, in determining the operating pump, an optimum combination must be selected from a plurality of pumps having various discharge amounts. From such a background, a high level operation technique (intuition or experience) is required for the operation control of the rainwater pump. On the other hand, the rainwater pump facility is inferior to the training of operators because it is infrequently operated, and not only the rainwater flow characteristics are different at each sewage treatment plant, but also when the ground surface process and the connection of pipes are changed. Considering the change of the flow-down characteristics, not only the burden on the operator is heavy, but also the effective operation of the rainwater pump facility is limited.For example, not only the pump speed control based on the water level of the pump well but also the optimum speed It has not reached the point where control is realized.

【0005】また、雨水は、降雨後管渠内を通り、ポン
プ井へ流入してくるわけであるが、何時、どのくらいの
量がポンプ井へ流入してくるかを定量的に判断するのは
非常に難しい。したがって、ポンプ井への流入量減少時
において、ポンプの稼働台数を多めに運転しがちであ
る。
Further, rainwater flows into the pump well after it passes through the pipes after rainfall, but it is necessary to quantitatively determine when and how much it will flow into the pump well. very hard. Therefore, when the amount of inflow to the pump well is reduced, the number of operating pumps tends to be increased.

【0006】更には、通常行われているポンプ運転は、
ある水位を目標値として制御されているため、ポンプ井
への流入量減少時、稼働ポンプが最低回転数で運転され
る。従って、ポンプ積算運転時間は長くなる傾向にあ
る。
Furthermore, the pump operation that is normally performed is
Since it is controlled with a certain water level as the target value, the operating pump is operated at the minimum speed when the inflow to the pump well decreases. Therefore, the integrated pump operation time tends to be long.

【0007】本発明は、かかる問題点に鑑み、降雨状況
に柔軟に対応した雨水ポンプ群の稼働制御を可能とする
方法を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a method that enables operation control of a rainwater pump group that flexibly responds to rainfall conditions.

【0008】[0008]

【課題を解決するための手段】本発明では、管轄地域を
レーダ雨量計で測定可能な複数の区域に分割し、各区域
から管渠までの流達時間を遅延時間とする降雨量を一定
の時間間隔で夫々測定し、測定値に管轄域の占有面積率
を乗じ、これらの総和を分割区域数で除することにより
求めた平均化降雨量に基づいてポンプ群目標吐出量を求
める雨水ポンプの制御方法を採用した。
According to the present invention, a jurisdiction area is divided into a plurality of areas which can be measured by a radar rain gauge, and a rainfall amount having a delay time which is a delivery time from each area to a pipe is fixed. The rainwater pump's target discharge rate is calculated based on the averaged rainfall obtained by measuring each time interval, multiplying the measured value by the occupied area ratio of the jurisdiction, and dividing the sum by the number of divided areas. The control method was adopted.

【0009】また本発明では更に、管轄地域を複数の区
域に分割して、各区域毎に雨量計を夫々設置し、各区域
から管渠までの流達時間を遅延時間とする降雨量を一定
の時間間隔で夫々測定し、その総和を分割区域数で除す
ることにより求めた平均化降雨量に基づいてポンプ群目
標吐出量を求める方法も採用した。
Further, in the present invention, the jurisdiction area is divided into a plurality of areas, a rain gauge is installed in each area, and the amount of rainfall with a delay time which is the arrival time from each area to the pipe is constant. We also adopted a method of obtaining the target discharge rate of the pump group based on the averaged rainfall amount obtained by dividing the total by the number of divided areas by measuring at each time interval.

【0010】[0010]

【作用】以上の構成である本発明によれば、雨水ポンプ
群による雨水のポンプ目標吐出量を平均化降雨量に基づ
いて演算し、このポンプ目標吐出量に基づいて雨水ポン
プの稼働制御を行う。これらの制御を適切に行うには、
雨水流下状況を的確に把握して制御に反映する必要があ
るが、たとえば稼働制御においてポンプ稼働の必要度を
予測することで、降雨状況の急変等に柔軟に対処できる
ようする。即ち、この予測に先立ち、予め管轄地域をレ
ーダ雨量計で測定可能な複数の区域に分割しておく。そ
して、レーダ雨量計で各区域毎の降雨量を一定の時間間
隔で測定する。更に、予め各区域から管渠までの流達時
間を測定しておき、これをポンプ井への流入する際の遅
延時間として考慮すると共に、各降雨量にレーダ雨量計
の測定対象となる地域における各管轄区域の占有面積率
を乗じて時刻毎の降雨量を求める。次いで、これらの総
和を分割区域数で除することにより平均化降雨量を求め
る。この平均化降雨量に基づいてポンプ群目標吐出量を
求め、さらに雨水ポンプの稼働制御を行う。
According to the present invention having the above configuration, the pump target discharge amount of rainwater by the rainwater pump group is calculated based on the averaged rainfall amount, and the operation control of the rainwater pump is performed based on this pump target discharge amount. . To get these controls right,
It is necessary to accurately grasp the rainwater flow-down situation and reflect it in the control. For example, by predicting the necessity of pump operation in operation control, it is possible to flexibly cope with sudden changes in the rainfall situation. That is, prior to this prediction, the jurisdiction area is divided into a plurality of areas that can be measured by a radar rain gauge in advance. Then, the radar rain gauge measures the amount of rainfall in each area at regular time intervals. In addition, the arrival time from each area to the conduit is measured in advance, and this is taken into consideration as the delay time when flowing into the pump well, and the rainfall in each area is measured by the radar rain gauge. Calculate the rainfall amount at each time by multiplying the occupation area ratio of each jurisdiction. Then, the total rainfall is divided by the number of divided areas to obtain the average rainfall. Based on this average rainfall, the pump group target discharge rate is calculated, and the rainwater pump operation is controlled.

【0011】また、降雨量を前記レーダ雨量計に代え
て、分割された区域毎に雨量計を夫々設置し、各雨量計
により各区域毎の降雨量を測定する。そして、先と同様
に各区域から管渠までの流達時間を遅延時間として考慮
し、時刻毎の降雨量を求める。この降雨量の総和を分割
区域数で除することにより平均化降雨量を求める。
Further, instead of the radar rain gauge, the rain gauge is installed in each of the divided areas, and the rainfall quantity in each area is measured by each rain gauge. Then, as in the previous case, the amount of rainfall at each time is calculated by considering the arrival time from each area to the pipe as a delay time. The average rainfall is calculated by dividing the total amount of rainfall by the number of divided areas.

【0012】[0012]

【実施例】以下、本発明の実施例を説明する。この実施
例では、マンホールの水位を適宜検出し、この管渠水位
とポンプ井水位等を勘案してファジィ推論により雨水ポ
ンプの稼働制御を行うものである。
EXAMPLES Examples of the present invention will be described below. In this embodiment, the water level of the manhole is appropriately detected, and the operation control of the rainwater pump is performed by fuzzy reasoning in consideration of the pipe water level and the pump well water level.

【0013】この実施例の方法を実現する装置のシステ
ム構成の概略を図1に示す。この雨水排除設備におい
て、1は管轄地域に敷設され、雨水が流下する管渠、2
は沈砂池、3は沈砂池2に連設されるポンプ井、4はポ
ンプ井3に付設される雨水ポンプ群、5は揚排水を河川
等に導く流出渠、6は管渠1の水位を測定する水位計、
7はポンプ井3の水位を測定する水位計、8は管轄地域
の各部の雨量を測定するレーダ雨量計である。水位計6
を取り付ける管渠1は、ポンプ井3への雨水流達時間や
雨水ポンプ群4の立ち上げ時間(始動からポンプ定格吐
出量に達するまでの時間)を考慮し、予測を行うための
時間的余裕を十分に確保でき、しかもポンプ井の水位に
影響されない場所を選ぶ。9は雨水ポンプ群の稼働制御
を行う制御装置である。
FIG. 1 shows an outline of a system configuration of an apparatus for realizing the method of this embodiment. In this rainwater removal facility, 1 is laid in the jurisdiction area and 2
Is a sand basin, 3 is a pump well connected to the sand basin 2, 4 is a group of rainwater pumps attached to the pump well 3, 5 is an outflow channel that guides the discharge and drainage to a river, and 6 is the water level of the culvert 1. Water level meter,
Reference numeral 7 is a water gauge for measuring the water level of the pump well 3, and 8 is a radar rain gauge for measuring the amount of rainfall in each part of the jurisdiction. Water level gauge 6
The culvert 1 to which is attached considers the rainwater arrival time to the pump well 3 and the start-up time of the rainwater pump group 4 (the time from the start to reaching the pump rated discharge rate), and a time margin for making a prediction. Of the pump well, and select a location that is not affected by the water level of the pump well. Reference numeral 9 is a control device for controlling the operation of the rainwater pump group.

【0014】制御装置9は、管渠1の水位(D1)及び
レーダ雨量計8により測定された降雨量(D2)を入力
データとしてポンプ起動レベル推論(S2)を行う一
方、ポンプ井3の目標水位偏差(D3)および水位変化
率(D5)を受けてポンプ目標変化量推論(S3)を行
い、ポンプ群4の稼働制御(S4,S5)を行う。
The controller 9 uses the water level (D1) of the pipe 1 and the rainfall amount (D2) measured by the radar rain gauge 8 as input data to perform pump starting level inference (S2), while the target of the pump well 3 is determined. The pump target change amount inference (S3) is performed by receiving the water level deviation (D3) and the water level change rate (D5), and the operation control of the pump group 4 (S4, S5) is performed.

【0015】制御装置9に組み込まれたポンプ運転制御
フローの概略を図3に示す。この実施例では、ポンプ起
動の要否を示すポンプ起動レベルを定期的(周期Δtご
と)に予測・設定すると共に(S1,2)、制御サイク
ルΔtc(Δt>Δtc)ごとにポンプ目標変化量を求め
(S3)、それらの値に基づいてポンプ運転台数制御
(S4〜9)やポンプ回転数制御(S10)を行う。各
種の演算は、必要によりファジィ推論を用いて行う。フ
ァジィ推論において、入力項目のファジィ化やファジィ
演算、出力項目の非ファジィ化は周知の手法で行えばよ
い。
An outline of a pump operation control flow incorporated in the control device 9 is shown in FIG. In this embodiment, the pump start level indicating whether or not the pump should be started is periodically predicted (every cycle Δt) and set (S1, 2), and the pump target change amount is calculated every control cycle Δtc (Δt> Δtc). Obtained (S3), the pump operating number control (S4-9) and the pump speed control (S10) are performed based on these values. Various operations are performed using fuzzy reasoning as necessary. In the fuzzy inference, the fuzzification of the input item, the fuzzy operation, and the defuzzification of the output item may be performed by a known method.

【0016】レーダ雨量計8は、例えば図3に示すよう
に、雨水排除設備の管轄地域(実線内)を包含する地域
について正方形状のメッシュ(No.1〜No.11)
毎に降雨量を出力する(D2)。各メッシュの最遠点か
ら管渠1の水位計6までの流下時間T(i)(満管時流
速で計算)と各メッシュ内における管轄区域の占有面積
率A(i)とは予め測定されており、次のようになる。
The radar rain gauge 8 has, for example, as shown in FIG. 3, a square mesh (No. 1 to No. 11) for an area including the area covered by the rainwater removal equipment (inside the solid line).
The amount of rainfall is output for each (D2). The downflow time T (i) from the farthest point of each mesh to the water level gauge 6 in the conduit 1 (calculated by the flow velocity at full pipe) and the occupied area ratio A (i) of the jurisdiction within each mesh are measured in advance. And it looks like this:

【0017】[0017]

【表1】 [Table 1]

【0018】また、このA(i)から雨量の重み係数K
A(i)=k・A(i)が求められている。尚、kは定
数である。更に、T(i)から流達時間の順位付けを行
ない、表1のORD(i)が求められる。ここで、OR
D(i)は、同順位のものが複数あってもかまわない。
このように求められた各値が記憶装置に保存されており
(D4)、前処理演算(S12)の入力データとされ
る。
From this A (i), the weighting factor K of the rainfall amount is calculated.
A (i) = k · A (i) is required. Note that k is a constant. Further, the delivery time is ranked from T (i) to obtain ORD (i) in Table 1. Where OR
Multiple D (i) 's may have the same rank.
Each value thus obtained is stored in the storage device (D4) and is used as input data for the preprocessing operation (S12).

【0019】前処理演算(S12)においては、ある時
刻をt、計算時間ステップをΔt(例えば1分)、時刻
tにおけるi番目のメッシュのΔt間の雨量をR(t,
i)として求める。
In the preprocessing operation (S12), a certain time is t, a calculation time step is Δt (for example, 1 minute), and a rainfall amount between Δt of the i-th mesh at time t is R (t,
i) is obtained.

【0020】平均化雨量演算(S13)においては、あ
る時間毎に雨量の平均値を算出する。即ち、レーダ雨量
計により測定された降雨量をR(t,i)、各メッシュ
の時刻tにおける降雨量の総量をSUM(t)、時刻t
における平均化雨量をAVR(t)とすると、各メッシ
ュと管渠内に設置した水位計の関係を表したORD
(i)によって、時刻tにおける雨量の総量は、
In the averaged rainfall calculation (S13), the average rainfall amount is calculated every certain time. That is, the amount of rainfall measured by the radar rain gauge is R (t, i), the total amount of rainfall at time t of each mesh is SUM (t), and time t.
Letting AVR (t) be the average rainfall in the area, the ORD showing the relationship between each mesh and the water level gauge installed in the pipe.
According to (i), the total amount of rainfall at time t is

【0021】[0021]

【数1】 [Equation 1]

【0022】となる。従って、平均化雨量AVR(t)
は、
It becomes Therefore, the average rainfall AVR (t)
Is

【0023】[0023]

【数2】 [Equation 2]

【0024】となる。この平均化雨量AVR(t)を管
渠の水位と共にポンプ起動レベル推論に用いる。この推
論で使用されるファジィルールの一例を示すと、「IF
降雨量がとても多い & マンホールの水位がとても高
い THEN ポンプ起動レベルは「起動必要性とても高
い」というようになる。
It becomes This averaged rainfall AVR (t) is used together with the water level in the pipe to infer the pump activation level. An example of fuzzy rules used in this inference is "IF
Very high rainfall & very high water level in the manhole THEN Pump start level is “very high start requirement”.

【0025】一方、ポンプ目標変化量は、ポンプ井水位
偏差(水位検出値と水位目標値の偏差)とポンプ井水位
の変化率から推論される。ポンプ水位の変化率は、時間
tにおける変化率をΔH(t)とすると、次の(1)式
で表される。
On the other hand, the pump target change amount is inferred from the pump well water level deviation (deviation between the water level detection value and the water level target value) and the rate of change of the pump well water level. The rate of change of the pump water level is represented by the following equation (1), where the rate of change at time t is ΔH (t).

【0026】[0026]

【数3】 [Equation 3]

【0027】この推論で使用されるファジィルールの一
例を示すと、「IF ポンプ井水位偏差が偏り無し &
ポンプ井水位の変化率が変化無し THEN ポンプ目標
変化量=0」というようになる。
An example of the fuzzy rule used in this inference is as follows: "IF pump well water level deviation is not biased &
There is no change in the rate of change in the pump well water level. THEN Pump target change amount = 0 ”.

【0028】この後、起動ポンプ選定情報・停止ポンプ
選定情報等を設定する(S6〜9)。このとき、まず
(2)式を用いてポンプ目標変化量Qc(t)からポン
プ必要吐出量Qn(t)を求める。ただしt時(現在
時)におけるポンプ吐出量である。
After that, start pump selection information, stop pump selection information, etc. are set (S6-9). At this time, first, the required pump discharge amount Qn (t) is obtained from the target pump change amount Qc (t) using the equation (2). However, it is the pump discharge amount at time t (current time).

【0029】[0029]

【数4】 [Equation 4]

【0030】そして、このポンプ必要吐出量Qn(t)
を現在のポンプ最小吐出量Qmin(t)と比較し、その
比較結果に基づいてポンプ起動・停止指示の設定処理を
適宜選択する。Qn(t)<Qmin(t)の場合は(S
5:YES)、ポンプ運転情報等に基づいて停止ポンプ
の選定を行う(S9)。
Then, the required pump discharge amount Qn (t)
Is compared with the current minimum pump discharge amount Qmin (t), and the pump start / stop instruction setting process is appropriately selected based on the comparison result. If Qn (t) <Qmin (t), then (S
5: YES), the stop pump is selected based on the pump operation information and the like (S9).

【0031】また、Qn(t)>Qmin(t)である場合
は(S4:YES or S5:NO)、水位がポンプ
起動水位を越えているにも拘わらず1台目のポンプが起
動していない状態かどうかを確認し、該当する場合、そ
の1台目のポンプを起動すべき旨を設定する(S6)。
When Qn (t)> Qmin (t) (S4: YES or S5: NO), the first pump is running even though the water level exceeds the pump starting water level. It is confirmed whether or not there is no state, and if it is applicable, it is set that the first pump should be started (S6).

【0032】さらに、Qn(t)>Qmin(t)であって
周期Δtfに当たる場合は(S4;YES)、まず未来
起動レベル、現在起動レベル、ポンプ必要吐出量、現在
ポンプ最大吐出量、ポンプ起動情報により起動ポンプフ
ラグを設定する(S7)。ここで、ポンプを起動させて
から定格に達するための時間をtpとすると、現時点で
ポンプを操作すればtp時間後の雨水流入量に対処でき
ることから、t−(ti−tp)時のポンプ起動レベルを
現在起動レベルとし、t時のポンプ起動レベルを未来起
動レベルとする。この起動ポンプフラグの設定では、大
ポンプまたは小ポンプを停止させる場合や、現在ポンプ
が起動中であってもさらに大小ポンプを起動させる場合
を考慮した。これらのことにより降雨状況に合わせた柔
軟な制御を可能とし、急激な雨水の流入にも対処できる
ように配慮した。ルールの1つを例示すると、大きなポ
ンプを起動させるルールはたとえば、
Further, when Qn (t)> Qmin (t) and the cycle Δtf is reached (S4; YES), first, the future start level, the present start level, the required pump discharge amount, the current pump maximum discharge amount, and the pump start. The start pump flag is set based on the information (S7). Here, assuming that the time required to reach the rating after starting the pump is tp, if the pump is operated at this time, the rainwater inflow amount after tp hours can be dealt with. Therefore, the pump is started at t- (ti-tp). Let the level be the current activation level and the pump activation level at time t be the future activation level. In the setting of the startup pump flag, the case where the large pump or the small pump is stopped, or the case where the large pump or the small pump is started even if the pump is currently started is considered. With these features, flexible control according to the rainfall situation was made possible, and consideration was given so that sudden rainwater inflow could be dealt with. To illustrate one of the rules, the rule that starts a large pump is

【0033】[0033]

【数5】 [Equation 5]

【0034】というようになる。一方、小さなポンプを
起動させるルールは、
It becomes like this. On the other hand, the rule to start a small pump is

【0035】[0035]

【数6】 [Equation 6]

【0036】というようになる。また、起動中のポンプ
がある状態でさらにポンプを起動させるルールは、
It becomes like this. Also, the rule to start the pump further with the pump being started is:

【0037】[0037]

【数7】 [Equation 7]

【0038】というようになる。ここでYはポンプ起動
レベル(0:起動必要性無し,1:起動必要性あり,
2:起動必要性とても高い)、Y(t−ty)は現在起
動レベル、Y(t)は未来起動レベル(ただしty=ti
−tP)、PWはポンプ起動情報(0:ポンプ起動無し,
1:ポンプ起動中)、Qmax(t)は現在ポンプ最大吐
出量、Pf(t)は起動ポンプフラグ(0:現状維持,
1:小ポンプ起動,2:大ポンプ起動)である。この
後、設定した起動ポンプフラグの他、ポンプ積算運転時
間やポンプ運転情報等に基づいて起動ポンプを選定し、
選定したポンプの起動指示を設定する(S8)。
It becomes like this. Here, Y is the pump start level (0: no need to start, 1: need to start,
2: The need for activation is very high), Y (t-ty) is the current activation level, and Y (t) is the future activation level (where ty = ti).
-TP), PW is pump start information (0: no pump start,
1: pump is starting), Qmax (t) is the current maximum pump discharge amount, Pf (t) is a starting pump flag (0: current status is maintained,
(1: small pump start, 2: large pump start). After this, in addition to the set starting pump flag, select the starting pump based on the accumulated pump operating time, pump operating information, etc.
A start instruction for the selected pump is set (S8).

【0039】この後、以上の手法で設定されたポンプ起
動・停止指示を考慮に入れ、ポンプ必要吐出量Qn
(t)に見合ったポンプ回転数を設定し(S10)、各
ポンプの操作量を演算して出力する(S11)。このよ
うにポンプ起動レベルの演算その他にファジィ推論を導
入することにより、熟練運転者の経験や勘を制御に取り
入れることができ、特に演算に使用するデータ(前件
部)が降雨量やポンプ井水位等、ポンプ運転時に操作者
が実際に使用しているデータである点で有利である。ま
た、地表面工程や管渠の接続が変更された場合でも、フ
ァジィ推論にあたって使用するパラメータを修正するこ
とで容易に対処できる。
After that, taking into consideration the pump start / stop instructions set by the above method, the required pump discharge amount Qn
The pump rotation speed corresponding to (t) is set (S10), and the operation amount of each pump is calculated and output (S11). In this way, by introducing fuzzy reasoning in addition to the calculation of the pump activation level, the experience and intuition of a skilled driver can be incorporated into the control, and especially the data used for the calculation (the antecedent part) is the rainfall amount and the pump well. This is advantageous in that it is data that the operator actually uses when operating the pump, such as the water level. In addition, even if the ground surface process or the connection of the conduit is changed, it can be easily dealt with by modifying the parameters used in the fuzzy inference.

【0040】図4は降雨量の測定方法の他の実施例を示
したものである。
FIG. 4 shows another embodiment of the rainfall measuring method.

【0041】本実施例においては、同図に示すように、
雨水排除設備の管轄地域(実線内)を3の区域(1〜
3)に区切り、各区域毎に雨量計8を夫々設置して区域
毎の雨量を出力させる。そして、先の実施例と同様に、
計算時間ステップをΔt、時刻tにおけるi番目の区域
のΔt間の雨量R(t,i)を求める。例えば、区域1
の時間遅れを0、区域2の時間遅れをΔt、区域3の時
間遅れを2Δtとすれば、各時刻における降雨量の総和
は、
In this embodiment, as shown in FIG.
The area covered by the rainwater removal facility (within the solid line) is 3 areas (1
Divide into 3) and install a rain gauge 8 for each area to output the rainfall for each area. And, like the previous embodiment,
The calculation time step is Δt, and the rainfall amount R (t, i) between Δt of the i-th area at time t is obtained. For example, area 1
If the time delay of is 0, the time delay of area 2 is Δt, and the time delay of area 3 is 2Δt, the total amount of rainfall at each time is

【0042】[0042]

【数8】 [Equation 8]

【0043】[0043]

【数9】 [Equation 9]

【0044】[0044]

【数10】 [Equation 10]

【0045】となる。It becomes

【0046】従って、時刻tにおける平均化雨量は、Therefore, the average rainfall at time t is

【0047】[0047]

【数11】 [Equation 11]

【0048】となる。なお、図2のフローチャートのレ
ーダ雨量計D2、加工データD4、前処理演算S12を
省いて上記雨量計8のデータを平均化処理演算S13に
入力させる。前記AVR(t)を、先の実施例と同様
に、管渠の水位と共にポンプ起動レベル推論に用いる。
It becomes Note that the radar rain gauge D2, the processed data D4, and the preprocessing calculation S12 in the flowchart of FIG. 2 are omitted, and the data of the rain gauge 8 is input to the averaging processing calculation S13. The AVR (t) is used for inferring the pump activation level together with the water level in the conduit as in the previous embodiment.

【0049】以上のように、上記各実施例によれば、運
転台数制御における停止ポンプの選択や回転数制御にお
ける回転数修正ポンプの選択等に反映させることができ
る。
As described above, according to each of the above-described embodiments, it can be reflected in the selection of the stopped pump in the control of the number of operating machines, the selection of the rotation speed correction pump in the rotation speed control, and the like.

【0050】[0050]

【発明の効果】以上説明したように、本発明によれば、
管渠への降雨の流入量に極めて近い平均化雨量を得るこ
とができ、降雨量に応じて最適なポンプ稼働制御を行う
ことができ、これに伴い次のように効果を有する。
As described above, according to the present invention,
It is possible to obtain an averaged rainfall amount that is extremely close to the inflow amount of rainfall into the pipe, and it is possible to perform optimum pump operation control according to the rainfall amount, which has the following effects.

【0051】(1)雨水ポンプの適切な稼働台数や出力
調整が可能となり、雨水ポンプ施設の運用効率の向上に
寄与する。
(1) Appropriate number of operating rainwater pumps and output adjustment are possible, which contributes to improvement of operational efficiency of rainwater pump facilities.

【0052】(2)雨水ポンプの運転制御の自動化(あ
るいは半自動化)を可能とし、作業者の負担を軽減する
と共に、運転員の育成に有利である等、人的資源の確保
に寄与する。
(2) The operation control of the rainwater pump can be automated (or semi-automated), which reduces the burden on the operator and is advantageous for the training of operators, thus contributing to the securing of human resources.

【0053】(3)稼働ポンプの選択を適正に行うので
ポンプ稼働率を均一化でき、雨水ポンプの寿命が向上す
る。
(3) Since the operating pump is properly selected, the pump operating rate can be made uniform and the life of the rainwater pump is improved.

【0054】(4)ポンプ井への雨水流入量を考慮した
最適な運転台数にて運転できるので、無駄なポンプ台数
の運転が避けられ、消費電力の削減ができる。
(4) Since it is possible to operate with the optimum number of operating pumps considering the amount of rainwater flowing into the pump well, it is possible to avoid useless operation of the number of pumps and reduce power consumption.

【0055】(5)現在稼働中のポンプを最大回転数に
制御し、管渠内の貯留雨水を速やかに排除することによ
り、ポンプ積算運転時間が短縮でき、消費電力が削減で
きる。
(5) By controlling the pump currently in operation to the maximum number of revolutions and promptly removing the stored rainwater in the pipe, the pump cumulative operating time can be shortened and the power consumption can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示す機能ブロック図。FIG. 1 is a functional block diagram showing the configuration of the present invention.

【図2】ポンプ運転制御手順の概略を示すフローチャー
ト。
FIG. 2 is a flowchart showing an outline of a pump operation control procedure.

【図3】管轄地域の概略的説明図。FIG. 3 is a schematic explanatory diagram of a jurisdiction area.

【図4】他の実施例の管轄地域の概略的説明図。FIG. 4 is a schematic explanatory view of a jurisdiction area according to another embodiment.

【符号の説明】[Explanation of symbols]

1…管渠 3…ポンプ井 4…ポンプ群 6…水位計 7…水位計 8…レーダ雨量計 9…制御装置 D1…管渠水位 D2…降雨量 D3…ポンプ井水位 1 ... pipe 3 ... pump well 4 ... pump group 6 ... water level gauge 7 ... water level gauge 8 ... radar rain gauge 9 ... control device D1 ... pipe water level D2 ... rainfall D3 ... pump well water level

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 管轄地域に敷設された管渠の下流側に形
成されたポンプ井と、前記ポンプ井に付設された雨水ポ
ンプ群と、前記雨水ポンプ群による揚水を排出する流出
渠とを備えた雨水排除設備における、前記雨水ポンプ群
の制御方法において、 管轄地域をレーダ雨量計で測定可能な複数の区域に分割
し、各区域から管渠までの流達時間を遅延時間とする降
雨量を一定の時間間隔で夫々測定し、測定値に管轄域の
占有面積率を乗じ、これらの総和を分割区域数で除する
ことにより求めた平均化降雨量に基づいてポンプ群目標
吐出量を求めることを特徴とする雨水ポンプの制御方
法。
1. A pump well formed on the downstream side of a pipe laid in a jurisdiction, a group of rainwater pumps attached to the pump well, and an outflow drainage for discharging pumped water by the group of rainwater pumps. In the control method of the rainwater pump group in the rainwater removal equipment, the jurisdiction area is divided into a plurality of areas that can be measured by a radar rain gauge, and the amount of rainfall that reaches the pipe from each area as a delay time is calculated. To obtain the target discharge rate of the pump group based on the average rainfall amount obtained by measuring each at a fixed time interval, multiplying the measured value by the occupation area ratio of the jurisdiction, and dividing the sum of these by the number of divided areas A method for controlling a rainwater pump, characterized by:
【請求項2】 管轄地域を複数の区域に分割して、各区
域毎に雨量計を夫々設置し、各区域から管渠までの流達
時間を遅延時間とする降雨量を一定の時間間隔で夫々測
定し、その総和を分割区域数で除することにより求めた
平均化降雨量に基づいてポンプ群目標吐出量を求めるこ
とを特徴とする請求項1記載の雨水ポンプの制御方法。
2. The jurisdiction area is divided into a plurality of areas, a rain gauge is installed in each area, and the amount of rainfall is a fixed time interval with the delay time being the arrival time from each area to the pipe. The method for controlling a rainwater pump according to claim 1, wherein the pump group target discharge amount is obtained based on the averaged rainfall amount obtained by measuring each and dividing the sum by the number of divided areas.
JP15596593A 1993-06-28 1993-06-28 Controlling method for stormwater pump Pending JPH0711692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15596593A JPH0711692A (en) 1993-06-28 1993-06-28 Controlling method for stormwater pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15596593A JPH0711692A (en) 1993-06-28 1993-06-28 Controlling method for stormwater pump

Publications (1)

Publication Number Publication Date
JPH0711692A true JPH0711692A (en) 1995-01-13

Family

ID=15617415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15596593A Pending JPH0711692A (en) 1993-06-28 1993-06-28 Controlling method for stormwater pump

Country Status (1)

Country Link
JP (1) JPH0711692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699088B2 (en) 2002-04-10 2010-04-20 Dynaco International S.A. Door assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699088B2 (en) 2002-04-10 2010-04-20 Dynaco International S.A. Door assembly

Similar Documents

Publication Publication Date Title
CN101418787B (en) Rainwater pump control device and rainwater pump control method
JP2015105649A (en) Rainwater pump control device
JP4488970B2 (en) Operation management system for combined sewage systems
JP3839361B2 (en) Rainwater runoff coefficient prediction method, rainwater inflow prediction method, rainwater runoff coefficient prediction program, and rainwater inflow forecast program
JP4739293B2 (en) Rainwater pump control device
JPH0711692A (en) Controlling method for stormwater pump
JP3278932B2 (en) Rainwater pump controller
WO2018131303A1 (en) Sewer equipment monitoring control device and sewer pump station operation control method
JPH06193584A (en) Operation method for drainage pump
JP3294074B2 (en) Rainwater pump control device and control method
JP2861621B2 (en) Rainwater pump operation control device
JPH0968170A (en) Sewage pump control device in sewage treatment plant
JPH06102911A (en) Method and device for predicting inflow water rate in drainage pump place
JPH05265513A (en) Method for controlling, number of pumps in operation at place of drainage pump and device therefor
JP2001182665A (en) Pump operation method, pump control device and recording medium therefor
JPH0861244A (en) Rainwater drainage pump station control system
JP3413935B2 (en) Return water control device for rainwater reservoir
JP3237274B2 (en) Rainwater pump control method
JP3221243B2 (en) Rainwater pump operating number control device
JP2675637B2 (en) Pump control device
JPH06129361A (en) Method and device for controlling number of pump operating tables in water drainage pumping place
JPH0396675A (en) Operation pump number control device of fixed speed pumps
JP2006002462A (en) Pump controlling device
JPS6323391B2 (en)
JPH0826873B2 (en) Automatic pump controller