JPH07115738A - Control device for charging generator - Google Patents

Control device for charging generator

Info

Publication number
JPH07115738A
JPH07115738A JP5258024A JP25802493A JPH07115738A JP H07115738 A JPH07115738 A JP H07115738A JP 5258024 A JP5258024 A JP 5258024A JP 25802493 A JP25802493 A JP 25802493A JP H07115738 A JPH07115738 A JP H07115738A
Authority
JP
Japan
Prior art keywords
output
voltage
circuit
time constant
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5258024A
Other languages
Japanese (ja)
Inventor
Naoyuki Takahashi
直行 高橋
Masatoshi Masumoto
正寿 桝本
Masanori Tsuchiya
雅範 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP5258024A priority Critical patent/JPH07115738A/en
Publication of JPH07115738A publication Critical patent/JPH07115738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To prevent the erroneous operation in load-response control when an electric load is cut off by making the time constant of an integrating circuit longer than the time constant of a field winding in the direction, where a potential is dropped, when the RWM output for controlling a power switch is selected at the lower value of the divided-voltage output of deviation, which is obtained from the deviation between the output voltage of a battery and a preset voltage, and an integrated voltage. CONSTITUTION:The output voltage of a battery 6 is inputted through a terminal S and divided by resistors 541 and 542. The deviation obtained by comparison 546 with a standard voltage 547 is inputted into a minimum-value input circuit 57 through a deviation-voltage dividing circuit 55. Meanwhile, the value obtained by integrating 56 the deviation is inputted into the minimum-value input circuit 57. The obtained minimum value is compared 58 with a sawtooth signal 59. The integration time constant of the integrating circuit 56 is set longer than the time constant of the field winding 4. The ON/OFF of a power MOS-FET are controlled with the output of the comparator 8, and the current of the field winding 4 is adjusted. The output of an armature winding 2 is rectified, and the battery 6 is charged. Thus, the rapid fluctuation of the charging voltage when a load 8 is cut off 7 is prevented, and adverse effects on the battery are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は充電発電機の制御装置に
係り、特に負荷変動の大きい内燃機関によって駆動され
るに好適な車両用充電発電機の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a controller for a charging generator, and more particularly to a controller for a vehicle charging generator suitable for being driven by an internal combustion engine having a large load fluctuation.

【0002】[0002]

【従来の技術】自動車にはランプ類及びアクチュエータ
類の電気的負荷に電力を供給するためにバッテリ及びバ
ッテリ充電用発電機が搭載されている。この発電機は、
一般にエンジンが発生する駆動トルクの回転力を利用し
て回転磁界を励磁し、この界磁巻線の発生する回転磁界
によって生じるバッテリの電圧を所定値に維持するよう
に制御されている。
2. Description of the Related Art An automobile is equipped with a battery and a battery charging generator for supplying electric power to electric loads of lamps and actuators. This generator is
Generally, the rotating magnetic field is excited by utilizing the rotational force of the driving torque generated by the engine, and the voltage of the battery generated by the rotating magnetic field generated by the field winding is controlled to be a predetermined value.

【0003】しかしながら、一般にランプスイッチを入
れるなどで電気的負荷が大きくなると、発電量もその分
上げる必要があるので上記の界磁巻線に流れる電流が急
激に大きくなるように制御される。すると発電機の仕事
量が増えるため駆動トルクも大きくなり、エンジンの発
生するトルクとのバランスが崩れ、エンジンの発生トル
クが更にその分増えるまでの間エンジン回転が落ち込む
現象が現れ、最悪の場合としてはエンジンストールが発
生する可能性がある。特にアイドリング状態では、エン
ジンの発生トルクと発電機を含めた補機類の駆動トルク
のバランスが保たれた上で、エンジンはある所定の回転
数になるように制御されているので、回転制御の応答速
度以上の急激なトルク変動は問題となる。
However, in general, when the electric load becomes large by turning on the lamp switch or the like, the amount of power generation also needs to be increased accordingly, so that the current flowing through the field winding is controlled so as to suddenly increase. Then, since the work of the generator increases, the driving torque also increases, the balance with the torque generated by the engine is lost, and the engine rotation falls until the torque generated by the engine further increases by that amount. May cause an engine stall. Especially in the idling state, the engine is controlled so as to have a predetermined rotational speed while maintaining the balance between the engine generated torque and the drive torque of the auxiliary machinery including the generator. Rapid torque fluctuations above the response speed pose a problem.

【0004】このような現象を抑制するために、電気負
荷が急に大きくなったときに上記の界磁巻線に流れる電
流の急激な上昇を抑制し、エンジンに対する発電機の発
生トルクの急激な変動を抑えるように制御する、いわゆ
る負荷応答制御が考えられるに至った。
In order to suppress such a phenomenon, a sudden increase in the current flowing through the field winding is suppressed when the electric load suddenly increases, and the torque generated by the generator for the engine is suddenly increased. So-called load response control, which controls to suppress fluctuations, has been conceived.

【0005】このような負荷応答制御の考え方自体は、
特公昭60-27280号公報に示されており既に公知となって
いる。また、界磁巻線に流れる界磁電流の増加量が一定
値を越えたときに界磁電流の急激な上昇を抑制するよう
に制御する技術も例えば特願平5−40930号公報で知られ
ている。
The concept itself of such load response control is as follows.
It is disclosed in Japanese Patent Publication No. 60-27280 and is already known. Further, a technique of controlling so as to suppress a rapid increase in the field current when the amount of increase in the field current flowing through the field winding exceeds a certain value is also known, for example, in Japanese Patent Application No. 5-40930. ing.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術(特願平
5−40930号)は、バッテリの出力電圧と予め定められた
設定電圧との偏差信号により偏差分圧出力と積分出力を
得、界磁巻線に供給する電流を前記の低い方の出力によ
るPWM出力で制御するすることにより界磁電流の急激
な増加を防止するものであった。また、積分出力を発生
する積分回路は電位が上昇する方向のみ界磁巻線の時定
数より長い時定数で偏差出力に応答する構成となってい
た。このため、車両電気負荷が遮断されたときの瞬間的
なバッテリ電圧の上昇により偏差分圧出力が一瞬低下
し、その後負荷遮断後の充電発電機の出力電流の安定し
た状態の偏差分圧出力に戻ろうとする働きにより(車両
電気負荷遮断時、それまで界磁巻線に流れていた界磁電
流は急に減少することが出来ず、界磁巻線の時定数によ
り徐々に減少するため)バッテリ電圧が上昇したとき積
分出力は電位が下降する方向では偏差出力に即座に応答
することから一瞬のうちに低下し積分回路の時定数によ
り徐々に上昇するため、負荷遮断後の充電発電機の出力
電流の安定する界磁電流値への急激な増加を抑制しよう
とする制御が行われる。つまり、負荷遮断時に負荷応答
制御が働き充電発電機の出力電流の不足した状態が発生
する。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
No. 5-40930) obtains a deviation voltage division output and an integral output by a deviation signal between the battery output voltage and a preset setting voltage, and supplies the current supplied to the field winding to the PWM by the lower output. The output was controlled to prevent a sharp increase in the field current. Further, the integrating circuit for generating the integrated output is configured to respond to the deviation output with a time constant longer than the time constant of the field winding only in the direction in which the potential rises. For this reason, the deviation voltage output momentarily decreases due to the instantaneous increase in the battery voltage when the vehicle electrical load is cut off, and then the deviation voltage output in a stable state of the output current of the charging generator after the load is cut off becomes Battery that tries to return (because when the electric load on the vehicle is cut off, the field current that has been flowing through the field winding cannot decrease suddenly, but gradually decreases due to the time constant of the field winding) When the voltage rises, the integrated output immediately responds to the deviation output in the direction in which the potential drops, so it drops instantly and gradually rises due to the time constant of the integrating circuit.Therefore, the output of the charging generator after the load is cut off Control is performed to suppress a rapid increase in the stable field current value of the current. That is, when the load is cut off, the load response control is activated and the output current of the charging generator is insufficient.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明では、積分出力を発生する積分回路の時定数を
電位が下降する方向にも持たせることにより車両電気負
荷遮断時の瞬間的なバッテリ電圧の上昇により偏差出力
が低下してからバッテリ電圧が安定し偏差出力が安定す
る間、積分出力はゆっくりと下降してくる構成とし界磁
電流の急激な増加を抑制する制御が働くことを防止す
る。つまり、車両電気負荷遮断時に負荷応答制御が働き
充電発電機の出力電流が不足することがない。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a time constant of an integrating circuit for generating an integrated output even in a direction in which a potential drops so that an instantaneous load when the electric load of a vehicle is cut off. While the battery voltage stabilizes and the deviation output stabilizes after the deviation output decreases due to a rise in the battery voltage, the integral output slowly decreases while the control that suppresses the sudden increase in the field current works. Prevent. That is, the load response control is activated when the vehicle electrical load is cut off, and the output current of the charging generator does not become insufficient.

【0008】[0008]

【作用】車両電気負荷遮断時、それまで界磁巻線に流れ
ていた界磁電流は急に減少することが出来ず界磁巻線の
時定数により徐々に減少する。このためバッテリ電圧は
車両負荷電流の減少により瞬間的に上昇し徐々に充電発
電機の制御電圧に低下する。
When the electric load on the vehicle is cut off, the field current that has been flowing through the field winding cannot be suddenly decreased but gradually decreases due to the time constant of the field winding. Therefore, the battery voltage instantaneously rises due to the decrease of the vehicle load current, and gradually decreases to the control voltage of the charging generator.

【0009】以上のことから、電圧偏差出力及び偏差分
圧出力は一瞬低下し界磁巻線の時定数の傾きを持って安
定した状態の電位まで上昇するように動作し、積分出力
は電位が下降する方向においても界磁巻線の時定数より
長い時定数に設定しているため偏差分圧出力が安定する
まで積分出力の値が偏差分圧出力の値を下回ることがな
い。つまり、車両電気負荷遮断時の偏差分圧出力が不安
定な状態においては偏差分圧出力により界磁巻線に流れ
る界磁電流を制御することが出来る。
From the above, the voltage deviation output and the deviation voltage division output momentarily decrease and operate so as to rise to the potential in a stable state with the slope of the time constant of the field winding, and the integral output has the potential Even in the descending direction, since the time constant is set to be longer than the time constant of the field winding, the integrated output value does not fall below the deviation partial pressure output value until the deviation partial pressure output stabilizes. That is, when the deviation voltage output when the vehicle electric load is cut off is unstable, the field current flowing through the field winding can be controlled by the deviation voltage output.

【0010】[0010]

【実施例】以下、本発明の一実施例について説明する。
図1には、充電発電機の制御装置の全体構成を示す。1
は充電発電機であり、6はバッテリ、8は車両電気負
荷、7は車両電気負荷スイッチである。充電発電制御装
置1は、制御装置5,電機子巻線2,前記電機子巻線の
出力を整流する三相全波整流器3,前記電機子巻線に磁
束を供給する界磁巻線4により構成される。制御装置5
は、B端子から抵抗器531とツェナーダイオード53
2により電源電圧VCCを発生する電源回路53,S端
子の電圧と予め設定された設定電圧との偏差を演算して
出力する偏差信号出力回路54,偏差信号出力に大きい
時定数で応答する積分回路56,抵抗器551と定電流
源552により電圧を降下させ偏差分圧出力を得る偏差
分圧回路55,偏差分圧回路55の偏差分圧出力と積分
回路56の積分出力を入力とし電位の低い方を出力する
最小値通過回路57,鋸歯状信号発生回路59,最小値
通過回路57の出力と鋸歯状信号発生回路59の出力を
比較して出力する比較器58,比較器58の出力により
界磁電流を制御するパワーMOS−FET52により構成され
る。また、界磁巻線4に並列に接続されたフライホイー
ルダイオード51はスイッチングノイズを吸収するため
に接続されている。
EXAMPLES An example of the present invention will be described below.
FIG. 1 shows the overall configuration of the control device for the charging generator. 1
Is a charging generator, 6 is a battery, 8 is a vehicle electric load, and 7 is a vehicle electric load switch. The charging power generation control device 1 includes a control device 5, an armature winding 2, a three-phase full-wave rectifier that rectifies the output of the armature winding 3, and a field winding 4 that supplies magnetic flux to the armature winding. Composed. Control device 5
Is a resistor 531 and a Zener diode 53 from the B terminal.
2, a power supply circuit 53 that generates a power supply voltage VCC, a deviation signal output circuit 54 that calculates and outputs a deviation between the voltage at the S terminal and a preset voltage, and an integration circuit that responds to the deviation signal output with a large time constant. 56, a resistor 551 and a constant current source 552 drop the voltage to obtain a deviation voltage dividing output, a deviation voltage dividing circuit 55, the deviation voltage dividing output of the deviation voltage dividing circuit 55 and the integration output of the integrating circuit 56 are input, and the potential is low. Of the minimum value passing circuit 57, the sawtooth-shaped signal generating circuit 59, the output of the minimum value passing circuit 57 and the output of the sawtooth-shaped signal generating circuit 59, and outputs the comparator 58 and the comparator 58. It is composed of a power MOS-FET 52 for controlling the magnetic current. The flywheel diode 51 connected in parallel to the field winding 4 is connected to absorb switching noise.

【0011】次に、偏差信号出力回路54の詳細動作に
ついて説明する。S端子電圧を抵抗器541,542で
分圧した値Vs1と、基準電圧Vref を発生する基準電
圧源547の値を抵抗器544,545,増幅器546
により反転増幅することにより偏差出力を得る。543
はインピーダンス整合のための増幅率1倍の増幅器であ
る。ここで、偏差信号出力Vzは数式(1)により表わ
される。
Next, the detailed operation of the deviation signal output circuit 54 will be described. The value Vs1 obtained by dividing the S terminal voltage by the resistors 541 and 542 and the value of the reference voltage source 547 that generates the reference voltage Vref are set to resistors 544, 545, and an amplifier 546.
A deviation output is obtained by inverting amplification. 543
Is an amplifier with an amplification factor of 1 for impedance matching. Here, the deviation signal output Vz is represented by Expression (1).

【0012】 Vz=Vref−((R545/R544)(Vs1−Vref)) …(1) 次に、図2に最小値通過回路57の詳細動作について説
明する。最小値通過回路57は、ベース57a,57b
を入力とし、エミッタが定電流源571に接続されコレ
クタが接地された一対のPNPトランジスタ572,5
73と、前記PNPトランジスタ572,573のコレ
クタがベースに接続されコレクタがVCCへ、エミッタ
が定電流源575に接続されたNPNトランジスタ57
4のエミッタ57cが出力となっている。ここで、一対
のPNPトランジスタ572,573はベース電位の低
いPNPトランジスタが導通状態となり、ベース電位の
高いPNPトランジスタは非導通となるため。PNPト
ランジスタ572,573のコレクタ電位は入力57
a,57bのうち低い電位にPNPトランジスタのベー
ス−エミッタ間電圧を加えた値となる。更に、PNPト
ランジスタ572,573とNPNトランジスタ574のコ
レクタ−エミッタ間電圧を定電流源571,575の電流値
の調整により同じ値とすることにより、出力57cは5
7a,57bのうち低い電位が出力される。
Vz = Vref − ((R545 / R544) (Vs1−Vref)) (1) Next, the detailed operation of the minimum value passing circuit 57 will be described with reference to FIG. The minimum value passing circuit 57 includes bases 57a and 57b.
Input, the emitter is connected to the constant current source 571 and the collector is grounded.
73 and the collectors of the PNP transistors 572 and 573 are connected to the base, the collector is connected to VCC, and the emitter is connected to the constant current source 575.
The 4th emitter 57c is an output. Here, in the pair of PNP transistors 572 and 573, the PNP transistor having a low base potential is in a conductive state, and the PNP transistor having a high base potential is in a non-conductive state. The collector potential of the PNP transistors 572 and 573 is input 57.
It has a value obtained by adding the base-emitter voltage of the PNP transistor to the lower potential of a and 57b. Further, by adjusting the collector-emitter voltages of the PNP transistors 572 and 573 and the NPN transistor 574 to the same value by adjusting the current values of the constant current sources 571 and 575, the output 57c is 5
The lower potential of 7a and 57b is output.

【0013】次に、図3に積分回路56の詳細動作につ
いて説明する。定電流源565にカソードが接続された
二つのダイオードは各々、以下の様にアノードが接続さ
れている。入力56aおよび定電流源563にアノード
が接続されたダイオード562,定電流源566,コンデン
サ567,出力56bに接続されているダイオード56
4。入出力電圧56a,56bが1Vで安定している状
態で入力電圧56aが1Vから4Vにステップ状に変化
した場合、二つのダイオードはダイオード562が導通
状態、ダイオード564が非導通状態となるため定電流
源566の電流はコンデンサ567に充電され、定電流
源563の電流はダイオード562を介して定電流源5
65に流れ込む。このため、出力電圧56bは下記の時
定数Tuによりゆっくりと1Vから4Vに上昇する。コ
ンデンサ567の容量C1を0.4μF、定電流源56
6の電流値I1を0.25μA、定電流源563の電流
値I2を1.75μA,定電流源565の電流値I3を
1.75μAとしたときの充電時定数Tuは数式(2)
で表わされる。
Next, the detailed operation of the integrating circuit 56 will be described with reference to FIG. Each of the two diodes whose cathodes are connected to the constant current source 565 has their anodes connected as follows. A diode 562 whose anode is connected to the input 56a and the constant current source 563, a constant current source 566, a capacitor 567, and a diode 56 which is connected to the output 56b.
4. When the input voltage 56a changes stepwise from 1V to 4V while the input / output voltages 56a and 56b are stable at 1V, the two diodes are fixed because the diode 562 is in the conducting state and the diode 564 is in the non-conducting state. The current of the current source 566 is charged in the capacitor 567, and the current of the constant current source 563 is transmitted through the diode 562 to the constant current source 5
It flows into 65. Therefore, the output voltage 56b slowly rises from 1V to 4V due to the following time constant Tu. The capacitance C1 of the capacitor 567 is 0.4 μF, and the constant current source 56
When the current value I1 of 6 is 0.25 μA, the current value I2 of the constant current source 563 is 1.75 μA, and the current value I3 of the constant current source 565 is 1.75 μA, the charging time constant Tu is the mathematical expression (2).
It is represented by.

【0014】 Tu=(0.4μF×(4V−1V))/0.25μA=4.8秒 …(2) 入出力電圧56a,56bが4Vで安定している状態で
入力電圧56aが4Vから1Vにステップ状に変化した
場合、二つのダイオードはダイオード562が非導通状
態、ダイオード564が導通状態となるため定電流源5
66の電流およびコンデンサ567の電荷がダイオード
564を介して定電流源565により放電される。この
ため、出力電圧56bは下記の時定数により4Vから1
Vに下降する。コンデンサ567の容量C1を0.4μ
F 、定電流源566の電流値I1を0.25μA、定電
流源563の電流値I2を1.75μA、定電流源56
5の電流値I3を1.75μA としたときの放電時定数
Tdは数式(3)で表わされる。
Tu = (0.4 μF × (4V-1V)) / 0.25 μA = 4.8 seconds (2) When the input voltage 56a and the input voltage 56a are stable at 4V, the input voltage 56a changes from 4V. When the voltage changes stepwise to 1 V, the diode 562 of the two diodes becomes non-conductive and the diode 564 becomes conductive, so that the constant current source 5
The current of 66 and the charge of the capacitor 567 are discharged by the constant current source 565 through the diode 564. For this reason, the output voltage 56b changes from 4V to 1 with the following time constant.
Descend to V. Set the capacitance C1 of the capacitor 567 to 0.4μ
F, the current value I1 of the constant current source 566 is 0.25 μA, the current value I2 of the constant current source 563 is 1.75 μA, the constant current source 56
The discharge time constant Td when the current value I3 of No. 5 is 1.75 μA is represented by the mathematical expression (3).

【0015】 Td=(0.4μF×(4V−1V))/(1.75μA−0.25μA)=0.8秒 …(3) また、積分回路56の出力電圧56bの値が入力電圧5
6aの値に到達した後は、上記の充放電のバランスが安
定した状態となり、その状態を保持する。
Td = (0.4 μF × (4V−1V)) / (1.75 μA−0.25 μA) = 0.8 seconds (3) Further, the value of the output voltage 56 b of the integrating circuit 56 is the input voltage 5
After reaching the value of 6a, the above-mentioned charge / discharge balance is in a stable state, and the state is maintained.

【0016】ここで、図2に従来の負荷応答制御回路の
車両電気負荷投入、遮断時の各入出力端子の応答につい
て説明する。バッテリ6の出力端子電圧が安定している
定常時は、偏差信号出力回路54の出力が安定している
ため積分回路56の入力電圧と出力電圧は等しい値とな
っている。ここで、パワーMOS−FET52は最小値通過回路
57の出力と鋸歯状信号発生回路59の出力を比較器5
8にて比較したPWM出力で駆動されるため、定常時は
偏差分圧回路55の偏差分圧出力により界磁電流が制御
される。
The response of each input / output terminal when the vehicle electric load is turned on and off by the conventional load response control circuit will be described with reference to FIG. When the output terminal voltage of the battery 6 is stable, the output of the deviation signal output circuit 54 is stable, so that the input voltage and the output voltage of the integrating circuit 56 are equal. Here, the power MOS-FET 52 outputs the output of the minimum value passing circuit 57 and the output of the sawtooth signal generating circuit 59 to the comparator 5
Since it is driven by the PWM output compared in 8, the field current is controlled by the deviation voltage dividing output of the deviation voltage dividing circuit 55 in the steady state.

【0017】また、時間t0において車両電気負荷が投
入されバッテリ電圧が低下すると、偏差信号出力回路5
4の出力は瞬時に上昇するため積分回路56の出力は大
きい時定数によりゆっくりと偏差出力に応答する。一
方、偏差分圧回路55の偏差分圧出力は偏差信号に即座
に応答するため、偏差分圧出力が積分回路56の出力電
圧を越えたときからパワーMOS−FET52は積分回路56の
積分出力により制御され、界磁電流はゆっくりと増加す
る。
At time t0, when the vehicle electrical load is turned on and the battery voltage drops, the deviation signal output circuit 5
Since the output of 4 rises instantaneously, the output of the integrating circuit 56 responds slowly to the deviation output due to the large time constant. On the other hand, since the deviation voltage division output of the deviation voltage divider circuit 55 immediately responds to the deviation signal, the power MOS-FET 52 outputs the integration voltage of the integration circuit 56 from when the deviation voltage division output exceeds the output voltage of the integration circuit 56. It is controlled and the field current increases slowly.

【0018】更に、時間t1において車両電気負荷が遮
断されると、それまで界磁巻線に流れていた界磁電流は
界磁巻線のインダクタンス分により急に減少することが
出来ず界磁巻線の時定数により減少してくるため、車両
電気負荷を遮断した瞬間は充電発電機の出力電流が過剰
状態となりバッテリ電圧は瞬時に上昇し界磁巻線の時定
数をもって充電発電機の発電電圧に下降してくる。この
とき、偏差信号出力回路54の偏差出力はバッテリ電圧
の上昇により一瞬0V付近まで低下し、その後負荷遮断
後のバッテリ電圧の安定した状態の偏差出力に上昇す
る。一方、積分回路56の積分出力は電位が下降する方
向では偏差出力に即座に応答する構成となっているた
め、0V付近まで一旦低下し、積分器の時定数をもって
ゆっくりと上昇する。つまり、車両電気負荷遮断時に充
電発電機は一旦発電を停止し負荷応答動作によりゆっく
りと出力電流を定常状態に増加させることとなる。負荷
応答動作はバッテリからの電流の持ち出しが大きくなり
バッテリの性能を悪化させる要因となり、また、バッテ
リ電圧の変動によるヘッドランプ等のちらつきなどの問
題を生じる。
Further, when the electric load of the vehicle is cut off at time t1, the field current flowing in the field winding up to that point cannot be suddenly reduced due to the inductance of the field winding, so that the field winding cannot be reduced. Since it decreases with the time constant of the line, the output current of the charging generator becomes excessive at the moment when the electric load of the vehicle is cut off, the battery voltage rises instantaneously, and the generated voltage of the charging generator has the time constant of the field winding. Come down to. At this time, the deviation output of the deviation signal output circuit 54 momentarily drops to near 0 V due to the rise of the battery voltage, and then rises to the deviation output in a stable state of the battery voltage after the load is cut off. On the other hand, since the integrated output of the integrator circuit 56 is configured to immediately respond to the deviation output in the direction in which the potential drops, it temporarily drops to around 0 V and slowly rises with the time constant of the integrator. That is, when the vehicle electrical load is cut off, the charging generator temporarily stops generating power and slowly increases the output current to a steady state by the load response operation. The load response operation causes a large amount of current to be taken out from the battery, which deteriorates the performance of the battery, and causes a problem such as flicker of a headlamp due to fluctuations in the battery voltage.

【0019】次に、図3に本発明の負荷応答制御回路の
車両電気負荷投入、遮断時の各入出力端子の応答波形に
ついて説明する。車両電気負荷投入時、出力電流が安定
した状態における動作は従来品と同じである。時間t1
にて車両電気負荷が遮断された場合、前記の様にバッテ
リ電圧は瞬時に上昇し界磁巻線の時定数により充電発電
機の発電電圧に下降してくる。このとき、偏差信号出力
回路54の偏差出力は一瞬0V付近まで低下し、その後
負荷遮断後のバッテリ電圧の安定した状態の偏差出力に
上昇する。積分回路56は電位が下降する方向において
界磁巻線の時定数以上の時定数に設定しているため、車
両電気負荷負遮断時に偏差信号出力回路54の出力が一
瞬0V付近まで低下し、その後負荷遮断後のバッテリ電
圧の安定した状態の偏差出力に界磁巻線の時定数の傾き
で上昇してくるまで、偏差分圧回路55の偏差分圧出力
は積分回路56の積分出力より低い電位となるため最小
値通過回路57の出力は偏差分圧回路55の出力とな
り、界磁巻線4に供給する界磁電流を制御するパワーMO
S−FET52は鋸歯状信号発生回路59と偏差分圧回路55
の出力を比較器58により比較した出力により制御され
る。このとき、偏差分圧回路55の出力はバッテリ電圧
に即座に応答するため、車両電気負荷遮断時、負荷応答
制御に突入することなく即座に充電発電機の出力電流を
負荷遮断後の安定した状態の値にすることが出来る。
Next, FIG. 3 will be used to explain the response waveforms of the input / output terminals of the load response control circuit of the present invention when the vehicle electrical load is turned on and off. When the electric load is applied to the vehicle, the operation when the output current is stable is the same as the conventional product. Time t1
When the vehicle electrical load is cut off, the battery voltage instantly rises and falls to the generated voltage of the charging generator due to the time constant of the field winding as described above. At this time, the deviation output of the deviation signal output circuit 54 momentarily drops to around 0 V, and then rises to the deviation output in a stable state of the battery voltage after the load is cut off. Since the integrating circuit 56 is set to a time constant that is equal to or greater than the time constant of the field winding in the direction in which the potential drops, the output of the deviation signal output circuit 54 momentarily drops to around 0V when the vehicle electrical load is negatively cut off, and then The deviation voltage output of the deviation voltage dividing circuit 55 is lower than the integration output of the integrating circuit 56 until the deviation output in a stable state of the battery voltage after the load is cut off increases with the slope of the time constant of the field winding. Therefore, the output of the minimum value passing circuit 57 becomes the output of the deviation voltage dividing circuit 55, and the power MO that controls the field current supplied to the field winding 4 is obtained.
The S-FET 52 includes a sawtooth signal generating circuit 59 and a deviation voltage dividing circuit 55.
Is controlled by the output obtained by comparing the output of the above-mentioned by the comparator 58. At this time, since the output of the deviation voltage dividing circuit 55 immediately responds to the battery voltage, when the vehicle electrical load is cut off, the output current of the charging generator is immediately kept stable after the load is cut off without entering load response control. Can be set to the value of.

【0020】[0020]

【発明の効果】車両電気負荷遮断時のバッテリ電圧の不
安定な領域における負荷応答制御の誤動作によるバッテ
リ電圧の変動量,バッテリ電流の持ち出し量を低減する
ことにより、バッテリ寿命の悪化,ランプ系負荷のちら
つきを防止する。
EFFECTS OF THE INVENTION By reducing the fluctuation amount of the battery voltage and the carry-out amount of the battery current due to the malfunction of the load response control in the unstable region of the battery voltage when the electric load of the vehicle is cut off, the deterioration of the battery life, the load of the lamp system load Prevent flicker.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】図1における最小値通過回路57の詳細図であ
る。
FIG. 2 is a detailed diagram of a minimum value passing circuit 57 in FIG.

【図3】図1における積分回路56の詳細図である。FIG. 3 is a detailed diagram of an integrating circuit 56 in FIG.

【図4】従来品の動作波形図である。FIG. 4 is an operation waveform diagram of a conventional product.

【図5】開発品の動作波形図である。FIG. 5 is an operation waveform diagram of the developed product.

【符号の説明】[Explanation of symbols]

1…充電発電制御装置、2…電機子巻線、3…三相全波
整流器、4…界磁巻線、5…制御装置、6…バッテリ、
7…車両電気負荷スイッチ、8…車両電気負荷、51…
フライホイールダイオード、52…パワーMOS−FET、5
3…電源回路、54…偏差信号出力回路、55…偏差分
圧回路、56…積分回路、57…最小値通過回路、58
…比較器、59…鋸歯状信号発生回路。
DESCRIPTION OF SYMBOLS 1 ... Charging power generation control device, 2 ... Armature winding, 3 ... Three-phase full-wave rectifier, 4 ... Field winding, 5 ... Control device, 6 ... Battery,
7 ... Vehicle electric load switch, 8 ... Vehicle electric load, 51 ...
Flywheel diode, 52 ... Power MOS-FET, 5
3 ... Power supply circuit, 54 ... Deviation signal output circuit, 55 ... Deviation voltage dividing circuit, 56 ... Integrating circuit, 57 ... Minimum value passing circuit, 58
... comparator, 59 ... sawtooth signal generating circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桝本 正寿 茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモティブエンジニアリング 株式会社内 (72)発明者 土屋 雅範 茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモティブエンジニアリング 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masatoshi Masumoto 2477 Kashima Yatsu, Katsuta-shi, Ibaraki Pref. 3 Hitachi Hitachi Engineering Co., Ltd. 2477 Address 3 Hitachi Automotive Engineering Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】バッテリの出力電圧と予め定められた設定
電圧との偏差により偏差分圧出力と積分出力を得、パワ
ースイッチ制御用PWM出力に前記出力電位の低い方が
選ばれる制御回路において、積分出力を発生する積分回
路の時定数を電位が下降する方向は少なくとも界磁巻線
の時定数以上の長さとすることを特徴とする充電発電機
の制御装置。
1. A control circuit in which a deviation voltage divided output and an integral output are obtained by a deviation between an output voltage of a battery and a predetermined set voltage, and a lower output potential is selected for a PWM output for power switch control, A control device for a charging generator, wherein a time constant of an integrating circuit that generates an integrated output is at least longer than a time constant of a field winding in a direction in which a potential drops.
【請求項2】エンジンの回転により回転し回転磁界をつ
くる界磁巻線と、前記回転磁界を受けて電流を発生し整
流器を介してバッテリを充電する電機子巻線と、前記バ
ッテリの電圧又は前記整流器の電圧を検出する電圧検出
回路と、基準電圧を発生する基準電圧発生回路と、前記
電圧検出回路の出力電圧と前記基準電圧とを入力として
作動増幅した検出電圧を発生する作動増幅回路と、一定
の電圧領域内において予め設定された周期で鋸歯状電圧
を発生する鋸歯状信号発生回路と、前記作動増幅回路の
出力に界磁巻線の時定数より長い時定数で応答する積分
回路と、前記積分回路の出力と前記作動増幅回路の出力
の分圧電圧とを比較し、どちらか低い方の電圧値を出力
する最小値通過回路と、前記鋸歯状信号発生回路の出力
と前記最小値通過回路の出力を比較する比較器のPWM
出力により、前記界磁巻線に供給する電流を制御する電
流制御回路において、前記積分回路の時定数を電位が上
昇する方向では界磁巻線の時定数より長く、電位が下降
する方向では少なくとも界磁巻線の時定数に設定するこ
とを特徴とする車両用充電発電機の制御装置。
2. A field winding that rotates by an engine rotation to create a rotating magnetic field, an armature winding that receives the rotating magnetic field to generate a current and charges a battery through a rectifier, and a voltage of the battery or A voltage detection circuit that detects the voltage of the rectifier, a reference voltage generation circuit that generates a reference voltage, and an operation amplification circuit that generates a detection voltage that is operationally amplified by using the output voltage of the voltage detection circuit and the reference voltage as inputs. A sawtooth signal generating circuit that generates a sawtooth voltage at a preset cycle in a constant voltage region, and an integrating circuit that responds to the output of the operation amplification circuit with a time constant longer than the time constant of the field winding. , A minimum value passing circuit for comparing the output of the integrating circuit and the divided voltage of the output of the operation amplifying circuit and outputting the lower voltage value, the output of the sawtooth signal generating circuit and the minimum value Passing Comparator PWM for comparing the output of the road
In the current control circuit that controls the current supplied to the field winding by the output, the time constant of the integrating circuit is longer than the time constant of the field winding in the direction in which the potential increases, and at least in the direction in which the potential decreases. A control device for a vehicle charging generator, which is set to a time constant of a field winding.
【請求項3】請求項2において、積分回路は入力端子と
放電電流キャンセル用定電流源とアノードが接続された
第一のダイオードと、出力端子と充電用定電流源とコン
デンサとアノードが接続された第二のダイオードと、二
つのダイオードのカソードが放電用定電流源に接続され
ていることを特徴とする車両用充電発電機の制御装置。
3. The integrator circuit according to claim 2, wherein an input terminal, a first diode to which a discharge current canceling constant current source and an anode are connected, an output terminal, a charging constant current source, a capacitor and an anode are connected. A control device for a vehicle charging generator, wherein the second diode and the cathodes of the two diodes are connected to a constant current source for discharging.
JP5258024A 1993-10-15 1993-10-15 Control device for charging generator Pending JPH07115738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5258024A JPH07115738A (en) 1993-10-15 1993-10-15 Control device for charging generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5258024A JPH07115738A (en) 1993-10-15 1993-10-15 Control device for charging generator

Publications (1)

Publication Number Publication Date
JPH07115738A true JPH07115738A (en) 1995-05-02

Family

ID=17314476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5258024A Pending JPH07115738A (en) 1993-10-15 1993-10-15 Control device for charging generator

Country Status (1)

Country Link
JP (1) JPH07115738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734653B2 (en) 2000-10-13 2004-05-11 Denso Corporation Voltage regulator for alternator and method of controlling power generation of alternator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734653B2 (en) 2000-10-13 2004-05-11 Denso Corporation Voltage regulator for alternator and method of controlling power generation of alternator
US6815933B2 (en) 2000-10-13 2004-11-09 Denso Corporation Voltage regulator for alternator and method of controlling power generation of alternator

Similar Documents

Publication Publication Date Title
US5444354A (en) Charging generator control for vehicles
US5886500A (en) Vehicle generator controller
JP3537833B2 (en) Control device for vehicle alternator
US4839576A (en) Controller for AC generator in vehicles
JPH0423491B2 (en)
JPH05934B2 (en)
KR19990072557A (en) Charging generator controller for vehicles
US4248200A (en) Ignition system for internal combustion engine
JP4316568B2 (en) Vehicle generator control system
US6232758B1 (en) Load drive control apparatus
US4492213A (en) Ignition system for internal combustion engines
US6707275B2 (en) Automative generator control apparatus
JPH0687632B2 (en) Control device for vehicle alternator
US6965222B2 (en) Current controller for inductive load
US4570199A (en) Protection circuit for voltage regulator of vehicle mounted generator
JPH07115738A (en) Control device for charging generator
JPS5816019B2 (en) Denatsuchiyosouchi
JPH08214599A (en) Voltage controller of magnet-type generator
JP3289411B2 (en) Voltage control device for vehicle generator
JP3429434B2 (en) Battery voltage regulator
JP3140270B2 (en) Power generation voltage regulator for automobile
JP2751208B2 (en) Power generation control device for vehicles
JP3192020B2 (en) Control device for vehicle charging generator
JPH0739200A (en) Voltage controller for automotive generator
US4695786A (en) Voltage regulator for an alternator having an auxiliary stage for starting the alternator at a low rotational speed