JPH07112438B2 - Method for producing amino acid by fermentation using amino acid-producing bacterium with improved growth - Google Patents

Method for producing amino acid by fermentation using amino acid-producing bacterium with improved growth

Info

Publication number
JPH07112438B2
JPH07112438B2 JP57040367A JP4036782A JPH07112438B2 JP H07112438 B2 JPH07112438 B2 JP H07112438B2 JP 57040367 A JP57040367 A JP 57040367A JP 4036782 A JP4036782 A JP 4036782A JP H07112438 B2 JPH07112438 B2 JP H07112438B2
Authority
JP
Japan
Prior art keywords
amino acid
producing
fermentation
consumption rate
brevibacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57040367A
Other languages
Japanese (ja)
Other versions
JPS58158185A (en
Inventor
昌彦 唐沢
修 戸坂
茂穂 池田
寛依 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP57040367A priority Critical patent/JPH07112438B2/en
Publication of JPS58158185A publication Critical patent/JPS58158185A/en
Publication of JPH07112438B2 publication Critical patent/JPH07112438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/02Preparation of hybrid cells by fusion of two or more cells, e.g. protoplast fusion
    • C12N15/03Bacteria

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 本発明はプロトプラスト融合法により生育速度及び発酵
速度の改善されたアミノ酸生産菌を培養することを特徴
とする発酵法によるアミノ酸の製造方法に関する。
The present invention relates to a method for producing an amino acid by a fermentation method, which comprises culturing an amino acid-producing bacterium whose growth rate and fermentation rate are improved by the protoplast fusion method.

アミノ酸発酵にはグルタミン酸発酵のように発酵時間の
短いものもあるが、大部分のアミノ酸発酵では長時間の
発酵を必要とし、通常3〜4日間を要している。従来、
高生産性のアミノ酸生産菌の育種は人工変異を繰り返し
て行い夫々のアミノ酸発酵に有用な性質を付与すること
によって行われるが、一般にアミノ酸の生産性が高くな
るにつれて、即ち、人工変異の頻度が多くなるに従って
変異株の生育速度が低下し発酵が遅くなることが大きな
欠点であった。
Some amino acid fermentations, such as glutamic acid fermentation, have a short fermentation time, but most amino acid fermentations require a long fermentation time, usually 3 to 4 days. Conventionally,
Breeding of highly productive amino acid-producing bacteria is performed by repeating artificial mutation to impart useful properties to each amino acid fermentation, but generally, as the productivity of amino acids increases, that is, the frequency of artificial mutation increases. The major drawback is that the growth rate of the mutant strain decreases and the fermentation becomes slower as the number increases.

本発明者等は高生産性でかつ生育速度の速い実用的な変
異株を育種することを目的として種々研究を重ねた結果
ブレビバクテリウム、又はコリネバクテリウム属に属す
る生育の遅いアミノ酸生産菌のプロトプラストと生育の
速い微生物のプロトプラストを細胞融合せしめることに
より、アミノ酸生産性が高く、かつ生育の早い変異株が
育種できることを発見した。本発明はこの発見に基いて
完成されたものである。
The present inventors have carried out various studies for the purpose of breeding a practical mutant strain having a high productivity and a fast growth rate, which results in Brevibacterium, or a slow-growing amino acid-producing bacterium belonging to the genus Corynebacterium. It was discovered that by fusing cell fusion of protoplasts and protoplasts of fast-growing microorganisms, mutants with high amino acid productivity and fast growth can be bred. The present invention has been completed based on this discovery.

生育を改善すべき微生物としては次のようなブレビバク
テリウム、又はコリネバクテリウム属のアミノ酸生産菌
が挙げられる。
Examples of microorganisms whose growth should be improved include the following Brevibacterium or Corynebacterium genus amino acid-producing bacteria.

ブレビバクテリウム・ラクトフエルメンタムAJ11082 (FERM-P3840)(AECr.,CCLr,Ala-) (リジン生産菌) ブレビバクテリウム・フラバムAJ11345(FERM−P4948) (2TAr,SGr,His-,アルギニノールr) (L−アルギニン生産菌) ブレビバクテリウム・フラバムAJ11055(FERM−P3673) (α−AHVr,2TAr,βHLr) (L−イソロイシン生産菌) ブレビバクテリウム・フラバムB1−1(FERM−P213) (α−AHVr,lle-) (L−スレオニン生産菌) コリネバクテリウム・アセトアシドフイラムAJ11342 (FERM−P4945)(SDr,DSr) (L−アルギニン生産菌) コリネバクテリウム・アセトアシドフイラムAJ3390 (FERM−P1569)(2TAr,Lys-) (L−ヒステジン生産菌) 尚、括弧内の符号は以下に示す性質の略号である。Brevibacterium increases lactofermentum AJ11082 (FERM-P3840) (AEC r, CCL r, Ala -.) ( Lysine-producing bacterium) Brevibacterium flavum AJ11345 (FERM-P4948) (2TA r, SG r, His -, Argininol r ) (L-arginine producing bacterium) Brevibacterium flavum AJ11055 (FERM-P3673) (α-AHV r , 2TA r , βHL r ) (L-isoleucine producing bacterium) Brevibacterium flavum B1-1 (FERM) -P213) (α-AHV r, lle -) (L- threonine-producing bacteria) Corynebacterium aceto reeds Waldorf Ilam AJ11342 (FERM-P4945) (SD r, DS r) (L- arginine-producing bacteria) Corynebacterium - aceto reed Zadoff Ilam AJ3390 (FERM-P1569) (2TA r, Lys -) (L- Hisutejin producing bacteria) Reference symbol in parentheses is an abbreviation for properties shown below.

AECr:S−(2−アミノエチル)−システイン耐性 CCLr:α−クロロカプロラクタム耐性 Ala- :L−アラニン要求性 2TA:2−チアゾールアラニン耐性 SGr :スルファグアニジン耐性 α−AHVr:α−アミノ−β−ヒドロキシ−吉草酸耐性 β−HLr :β−ハイドロキシロイシン耐性 lle-:L−イソロイシン要求性 SDr :スルファダイアジン耐性 DSr :ジアミノサクシネート耐性 上記アミノ酸生産菌はアミノ酸発酵工業で使用されてい
る実用的な高生産性の変異株であるが、いずれも生育速
度が遅く、ほとんどのアミノ酸発酵が72時間以上を必要
としている。
AEC r: S- (2- aminoethyl) - cysteine resistance CCL r: alpha-chloro-caprolactam resistant Ala -: L-alanine requirement 2TA: 2-thiazolealanine resistance SG r: sulfaguanidine resistance α-AHV r: α - amino -β- hydroxy - valerate resistant β-HL r: β- hydroxylase leucine resistance lle -: L-isoleucine auxotrophic SD r: sulfadiazine resistant DS r: diamino succinate resistance above amino acid-producing bacterium amino acid fermentation Although they are practical and highly productive mutants used in industry, they all have slow growth rates and most amino acid fermentations require 72 hours or more.

例えば上記変異株の生育速度を特定培地に於るグルコー
ス消費速度で表わすと第1表に示す如くであり、グルコ
ース消費速度はいずれも0.35g/dl以下であり、グルタミ
ン酸生産菌が0.48であるのと比較すると著しく低いこと
がわかる。
For example, the growth rate of the above mutant strain is represented by the glucose consumption rate in the specific medium as shown in Table 1. The glucose consumption rate is 0.35 g / dl or less and the glutamic acid producing bacterium is 0.48. It turns out that it is remarkably low compared with.

第1表に示すグルコース消費速度は以下の方法に従って
測定した値である。
The glucose consumption rate shown in Table 1 is a value measured according to the following method.

第2表に示す特定の培地300mlを1.0l容の小型ジャーフ
ァーメンターに張り込み、110℃で10分間滅菌した。こ
の培地に夫々の種培養液を30ml接種し、31.5℃で通気攪
拌培養(1/2V.V.M.,攪拌数1000rpm)し、培養液中のグ
ルコース濃度を経時的に測定して単位時間当りのグルコ
ース消費速度を求めた。
300 ml of the specific medium shown in Table 2 was placed in a small jar fermenter having a volume of 1.0 l and sterilized at 110 ° C for 10 minutes. 30 ml of each seed culture solution was inoculated into this medium, and aeration stirring culture (1/2 V.VM, stirring number 1000 rpm) was performed at 31.5 ° C, and the glucose concentration in the culture solution was measured with time to measure glucose per unit time. The consumption rate was calculated.

尚、一般に、微生物の生育速度は特定培地で培養した場
合の単位時間当りの微生物菌体の増加量で示されるが、
発酵速度の改良を目的とする本発明では、発酵速度とよ
り密接な関係にある糖消費速度で示す。
In general, the growth rate of microorganisms is indicated by the amount of increase in microbial cells per unit time when cultured in a specific medium,
In the present invention intended to improve the fermentation rate, the sugar consumption rate is more closely related to the fermentation rate.

一方、生育の速い微生物としてはブレビバクテリウム、
又はコリネバクテリウム属に属し、そのグルコース消費
速度が第1表の特定培地で0.4g/dl以上のものであれば
どんな菌株であっても使用できるが、特に次に示すよう
なコリネフオームのL−グルタミン酸生産菌が望まし
い。
On the other hand, Brevibacterium,
Alternatively, any strain can be used as long as it belongs to the genus Corynebacterium and has a glucose consumption rate of 0.4 g / dl or more in the specific medium shown in Table 1. Especially, as shown below, coryneform L- Glutamic acid-producing bacteria are preferred.

ブレビバクテリウム・ラクトフェルメンタムATCC 13869 ブレビバクテリウム・フラバム ATCC 14067 ブレビバクテリウム・デバリカタム ATCC 14020 ブレビバクテリウム・サッカロリテイカム ATCC 14066 コリネバクテリウム・グルタミクム ATCC 13032 コリネバクテリウム・アセトアシドフィラムATCC 13870 上記の野性株の他に薬剤耐性、栄養要求性等を有する微
生物であっても生育の速いものであれば使用できる。又
融合株を選択する場合には目印(選択マーカー)が付与
されていた方が効果的である。このような例としては次
のようなものが有る。
Brevibacterium lactofermentum ATCC 13869 Brevibacterium flavum ATCC 14067 Brevibacterium debaricatum ATCC 14020 Brevibacterium saccharolyticum ATCC 14066 Corynebacterium glutamicum ATCC 13032 Corynebacterium acetoacidophilum ATCC 13870 In addition to the above wild strains, microorganisms having drug resistance, auxotrophy and the like can be used as long as they have fast growth. When selecting a fusion strain, it is more effective if a mark (selection marker) is added. Examples of such cases include the following.

ブレビバクテリウム・ラクトフェルメンタムAJ11638 FERM−BP74(デコイニン耐性) (グルタミン酸生産菌) これら細菌の栄養細胞からフロトプラストの形成は公知
(Agr,Biol hem.,43(5)、1007〜1013,1979)の方法
に順じて行われる。生育の遅いアミノ酸生産菌と生育の
早い微生物を完全栄養培地で培養し、リゾチームに感受
性の細胞とするため、対数増殖期にペニシリン等細胞壁
合成阻害剤を添加し、再に30〜90分間培養する。
Brevibacterium lactofermentum AJ11638 FERM-BP74 (decoynin resistance) (glutamic acid-producing bacteria) The formation of flotoplasts from vegetative cells of these bacteria is known (Agr, Biol hem., 43 (5), 1007-1013, 1979). It is done according to the method. In order to make cells that are sensitive to lysozyme by culturing slow-growing amino acid-producing bacteria and fast-growing microorganisms in complete nutrient medium, add cell wall synthesis inhibitors such as penicillin during the logarithmic growth phase and incubate again for 30 to 90 minutes. .

夫々の培養液から菌体を分離し、高張液で洗滌後、同高
張液に懸濁し、これにリゾチームを2〜5mg/ml添加して
30〜37℃で15分から21時間リゾチームを作用せしめてプ
ロトプラスト化を行う。プロトプラスト化の確認は顕微
鏡で観察して行う。
Isolate the cells from each culture, wash with hypertonic solution, suspend in the hypertonic solution, and add 2-5 mg / ml of lysozyme to it.
Protoplast formation is performed by allowing lysozyme to act for 15 to 21 hours at 30 to 37 ° C. Confirmation of protoplast formation is performed by observing with a microscope.

上記高張液としては公知のものを使用すれば良く、例え
ば、0.25Mシュークロース、0.25Mコハク酸2ナトリウ
ム、100mM塩化カルシウム、20mMリン酸1カリウム、100
mMリン酸2カリウム及び5mM EDTAからなるHP液等が使用
される。
As the above hypertonic solution, a known one may be used, and for example, 0.25 M sucrose, 0.25 M disodium succinate, 100 mM calcium chloride, 20 mM 1 potassium phosphate, 100
For example, an HP solution composed of mM dipotassium phosphate and 5 mM EDTA is used.

プロトプラストの融合方法は公知の方法(Agr.Biol.Che
m.,43(5)、1007〜1013,1979)の方法に従って行えば
良いが、融合頻度が低い場合には高張液としてカルシウ
ムイオンを10〜200mM含むものを使用し、更にそのpHを
8.0〜12.0に調節した高張液を用いることにより高頻度
で融合させることができる。
The fusion method of protoplasts is a known method (Agr. Biol. Che.
m., 43 (5), 1007 to 1013, 1979), but if the fusion frequency is low, use a hypertonic solution containing calcium ions of 10 to 200 mM and further adjust the pH.
By using a hypertonic solution adjusted to 8.0 to 12.0, fusion can be performed at high frequency.

融合株の選択は親株であるアミノ酸生産菌の有している
薬剤耐性、栄養要求性等を選択マーカーとして利用し、
かつプレート上で生育の良好なるコロニーを採取するこ
とにより行なわれる。
The selection of the fusion strain utilizes drug resistance, auxotrophy and the like of the parent strain, which is an amino acid-producing bacterium, as a selection marker,
In addition, it is carried out by collecting colonies that grow well on the plate.

このようにして育種されたアミノ酸生産性が高く、かつ
生育速度の早い融合株として次のものが挙げられる。
The fused strains thus bred that have high amino acid productivity and a high growth rate include the following.

ブレビバクテリウム・ラクトフェルメンタムAJ11794 FERM−P6417(AECr,CCLr,Ala-,Decr) コリネバクテリウム・アセトアシドフィラムAJ11793 FERM−P6416(SDr,DSr) 融合株であるAJ11794及びAJ11793の単位時間当りのグル
コース消費速度は0.41及び0.42g/dlであり、親株のアミ
ノ酸生産菌が夫々0.18g/dlであるのと比較すると著しく
改善されている。
Brevibacterium lactofermentum AJ11794 FERM-P6417 (AEC r, CCL r, Ala -, Dec r) Corynebacterium aceto A Sid Fi lamb AJ11793 FERM-P6416 (SD r, DS r) is a fusion strains AJ11794 and AJ11793 The glucose consumption rate per unit time was 0.41 and 0.42 g / dl, which is a significant improvement as compared with the parent strain producing amino acid of 0.18 g / dl, respectively.

得られたアミノ酸生産菌は、通常の方法で培養さる。即
ち、培地は、炭素源、窒素源、無機イオン、栄養要求性
を満足せしめるべき栄養素更に必要によりビタミン、ア
ミノ酸等の有機微量栄養素を含有する通常のものが使用
できる。炭素源としては、グルコーズ、シュクロース、
フラクトース等の糖類及びこれらを含有する澱粉分解
物、転化糖、モラセス、果汁等が使用できる。窒素源と
しては、アンモニアガス、アンモニア水、アンモニウム
塩等が好ましい。無機イオンとしては、燐酸イオン、カ
リイオン、ナトリウムイオン、鉄イオン、マグネシウム
イオン等が、必要により適宜培地に添加される。
The obtained amino acid-producing bacterium is cultured by a usual method. That is, as the medium, a usual medium containing a carbon source, a nitrogen source, an inorganic ion, and nutrients required to satisfy nutritional requirements and, if necessary, organic micronutrients such as vitamins and amino acids can be used. Glucose, sucrose,
Sugars such as fructose and starch decomposition products containing them, invert sugar, molasses, fruit juice and the like can be used. As the nitrogen source, ammonia gas, ammonia water, ammonium salt and the like are preferable. As inorganic ions, phosphate ions, potassium ions, sodium ions, iron ions, magnesium ions and the like are appropriately added to the medium, if necessary.

糖消費速度の比較は、培養pH7.0、培養温度31.5℃で通
常行なわれる。
Comparison of sugar consumption rates is usually performed at a culture pH of 7.0 and a culture temperature of 31.5 ° C.

上記培地を使用して通常の培養条件下で培養すると良好
に生育し培養液中にアミノ酸が著量著積され、培養時間
は親株の約1/2以下に短縮することができる。
When the above medium is used for culturing under normal culturing conditions, it grows well, a large amount of amino acids are accumulated in the culture solution, and the culturing time can be shortened to about 1/2 or less of that of the parent strain.

以下、実施例にて詳細に説明する。Hereinafter, a detailed description will be given with reference to examples.

実施例1 ペプトン1.0g/dl、酵母エキス1.0g/dl、塩化ナトリウム
0.5g/dl、シュークロース0.5g/dlを含むpH7.0のCM培地
を大型試験管に10ml宛分注し、110℃で10分間加熱し
た。この培地に、ブレビバクテリウム・ラクトフェルメ
ンタムAJ11082(AECr,CCLr,Ala-のリジン生産菌)及びA
J11638(デコイニン耐性のグルタミン酸生産菌)を接種
し、31.5℃で振盪培養を行った。対数増殖中期(108個/
ml)にペニシリンGを添加(3単位/10ml)し、更に90
分間培養を続け、遠心分離して培養液から細胞を回収し
た。夫々の細胞をpH7.0のHP高張希釈液で洗滌後、これ
を5000μg/mlのリゾチーム、0.41Mシュークロース、及
び0.01M硫酸マグネシウムを含む第3表の最少培地に懸
濁し、31.5℃に静置した。プロトプラスト化は21時間で
完了した。プロトプラスト化後、プロトプラストを集
め、AJ11082のプロトプラストとAJ11638のプロトプラス
トを等量宛0.5mlのHP液に懸濁し、これに33%のポリエ
チレングリコール6000溶液を5.0ml添加し、36℃に30分
間放置してプロトプラストの融合を行った。
Example 1 Peptone 1.0 g / dl, yeast extract 1.0 g / dl, sodium chloride
A pH 7.0 CM medium containing 0.5 g / dl and sucrose 0.5 g / dl was dispensed into a large test tube in an amount of 10 ml and heated at 110 ° C. for 10 minutes. To this medium, Brevibacterium lactofermentum AJ11082 (AEC r, CCL r, Ala - lysine producing bacterium) and A
J11638 (decoynin-resistant glutamic acid-producing bacterium) was inoculated and shake-cultured at 31.5 ° C. Middle logarithmic growth (10 8 /
ml) with penicillin G added (3 units / 10 ml), then 90
The culture was continued for a minute, and the cells were recovered from the culture solution by centrifugation. After washing each cell with HP's hypertonic diluent pH 7.0, suspend the cells in the minimal medium shown in Table 3 containing 5000 μg / ml lysozyme, 0.41 M sucrose, and 0.01 M magnesium sulfate, and incubate at 31.5 ° C. I put it. Protoplasting was completed in 21 hours. After protoplast formation, the protoplasts were collected, AJ11082 protoplasts and AJ11638 protoplasts were suspended in an equal volume of 0.5 ml of HP solution, 5.0 ml of 33% polyethylene glycol 6000 solution was added to this, and left at 36 ° C for 30 minutes. Fusion of protoplasts.

融合反応液を遠心分離して融合プロトプラストを集め、
pH10.5のHP液に懸濁し、これを、デコイニン1000μg/m
l、AEC3000μg/ml及びコハク酸2ナトリウムを含んだ第
3表の高張最少寒天プレート培地に接種し、その上面を
同寒天培地(寒天0.8%)の薄層状に覆い31.5℃で10日
間培養し寒天プレート上に出現したコロニーを薬剤耐性
組み換え株(AECr,Decr)として分離した。組み換え株
の出現頻度は10-4〜10-6であった。分離した組み換え株
の内から最も生育の早い株AJ11794を選択した。
The fusion reaction solution is centrifuged to collect the fusion protoplasts,
Suspended in HP solution of pH 10.5, decoinin 1000 μg / m
l, AEC 3000 μg / ml and disodium succinate were added to the hypertonic minimal agar plate medium shown in Table 3 and the upper surface was covered with a thin layer of the same agar medium (agar 0.8%) and cultured at 31.5 ° C for 10 days. The colonies that appeared on the plate were isolated as drug-resistant recombinant strains (AEC r , Dec r ). The appearance frequency of the recombinant strain was 10 −4 to 10 −6 . The fastest growing strain AJ11794 was selected from the isolated recombinant strains.

0.5mg/dlのニコチン酸アミドを含む第2表の液体培地30
0mlを1.0l容ジャーファーメンターに張り込み、110℃で
10分間加熱滅菌した後、これにAJ11794の種培養液15ml
を接種し31.5℃で通気攪拌培養(通気量1/2VVM、攪拌数
1000rpm)を行い、L−リジンの生産量、及びグルコー
スの消費速度を測定した。その結果を第4表に示す。
Liquid medium in Table 2 containing 0.5 mg / dl nicotinamide 30
Pour 0 ml into a 1.0 liter jar fermenter at 110 ° C
After heat sterilization for 10 minutes, add 15 ml of AJ11794 seed culture.
Culture with aeration and agitation at 31.5 ° C (aeration volume 1/2 VVM, agitation number
1000 rpm) was performed to measure the amount of L-lysine produced and the rate of glucose consumption. The results are shown in Table 4.

第4表に示すように融合株AJ11794のグルコース消費速
度は0.41g/dl/hrであり、親株に比べて2.3倍であり生育
が著しく改善されており、親株に比べて発酵時間は1/2
以下に短縮されている。
As shown in Table 4, the glucose consumption rate of the fusion strain AJ11794 was 0.41 g / dl / hr, which was 2.3 times that of the parent strain and the growth was remarkably improved. The fermentation time was 1/2 that of the parent strain.
It has been shortened to:

次に融合株AJ11794のAEC及びデコイニンに対する耐性度
を調べた。第5表及び第6表に示す濃度のS−(2−ア
ミノエチル)−システィン又はデコイニンを含む最少培
地に融合株AJ11794株を接種し、31.5度で24時間振盪培
養(4ml/大型試験管)し、培養液の562nmに於る吸光度
を測定して生育度を求めた。親株AJ11082及びAJ11638を
対照として求めた相対生育度を夫々第5表及び第6表に
示す。
Next, the degree of resistance of the fusion strain AJ11794 to AEC and decoinin was examined. The fusion medium AJ11794 was inoculated into a minimal medium containing S- (2-aminoethyl) -cystine or decoinine at the concentrations shown in Tables 5 and 6, and shake cultured at 31.5 degrees for 24 hours (4 ml / large test tube). Then, the degree of growth was determined by measuring the absorbance of the culture solution at 562 nm. Tables 5 and 6 show the relative growth rates obtained using the parent strains AJ11082 and AJ11638 as controls.

第5表及び第6表に示すように融合株AJ11794は両親株
の薬剤耐性を有しており、CM培地で10代培養しても耐性
及びグルコース消費速度は安定に保持されることが確認
された。
As shown in Tables 5 and 6, it was confirmed that the fusion strain AJ11794 has the drug resistance of the parent strains, and that the resistance and the glucose consumption rate are stably maintained even after the 10th culture in CM medium. It was

実施例2 実施例1と同様の方法で、コリネバクテリウム・アセト
アシドフィラムAJ11342(SDr,DSrのL−アルギニン生産
菌)及びコリネバクテリウム・グルタミクムATCC13032
(L−グルタミン生産菌)をプロトプラスト化し、次い
でプロトプラスト融合を行った。
Example 2 Corynebacterium acetoacidophilum AJ11342 (SD r , DS r L-arginine producing bacterium) and Corynebacterium glutamicum ATCC13032 were prepared in the same manner as in Example 1.
(L-glutamine-producing bacterium) was made into protoplasts, and then protoplast fusion was performed.

融合したプロトプラストを、グルコース2.0g/dl、尿素
0.3g/dl、硫酸アンモニウム1.0g/dl、KH2PO40.1g/dl、M
gSO4・7H2O0.04g/dl、Feイオン2ppm、Mnイオン2ppm、ビ
オチン100μg/l、サイアミン・塩酸塩200μg/l、ジアミ
ノサクシネート100mg/dl、コハク酸2ナトリウム13.5g/
l及び寒天2.0g/dlを含むpH7.0の高張寒天プレートに接
種し31.5℃で培養した。次いでプレート上に生育したコ
ロニーの内最も生育の早い融合株AJ11793株を選んだ。
Fused fused protoplasts with glucose 2.0 g / dl, urea
0.3 g / dl, ammonium sulfate 1.0 g / dl, KH 2 PO 4 0.1 g / dl, M
gSO 4 · 7H 2 O0.04g / dl , Fe ions 2 ppm, Mn ions 2 ppm, biotin 100 [mu] g / l, thiamine hydrochloride 200 [mu] g / l, di-amino succinate 100 mg / dl, 2 sodium succinate 13.5 g /
It was inoculated on a hypertonic agar plate of pH 7.0 containing 1 and 2.0 g / dl of agar and cultured at 31.5 ° C. Next, of the colonies grown on the plate, the fastest growing fusion strain AJ11793 was selected.

AJ11793を50μg/dlのビオチンを含む第2表の培地で実
施例1と同様の方法で通気攪拌培養を行い、L−アルギ
ニンの蓄積量及びグルコースの消費速度を調べた、その
結果を第7表に示す。
AJ11793 was subjected to aeration and agitation culture in the medium of Table 2 containing 50 μg / dl of biotin in the same manner as in Example 1 to examine the accumulated amount of L-arginine and the consumption rate of glucose. The results are shown in Table 7. Shown in.

第7表に示すようにAJ11793はグルコース消費速度は約
2.3倍に改善され、この性質は10代培養を継続しても安
定に保持された。
As shown in Table 7, glucose consumption rate of AJ11793 is about
It was improved by 2.3 times, and this property was stably maintained even after the 10th culture.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:13) 審判番号 平5−20707 (56)参考文献 特開 昭56−109587(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C12R 1:13) Judgment number flat 5-20707 (56) References JP-A-56-109587 A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ブレビバクテリウム属又はコリネバクテリ
ウム属に属し、1.0l中にグルコース130g、KH2PO41.0g、
MgSO4・7H2O0.4g、FeSO4・7H2O0.001g、MnSO4・4H2O0.001
g、硫酸アンモニウム25g、ビオチン0.5mg、サイアミン
塩酸塩0.2mg及び総窒素濃度7.0g/dlの大豆蛋白質塩酸分
解液15.0mlを含むpH7.0の特定培地で31.5℃にて通気攪
拌培養した場合に於る単位時間当りのグルコース消費速
度が0.4g/dl未満の生育の遅いアミノ酸生産菌のプロト
プラストと、ブレビバクテリウム属又はコリネバクテリ
ウム属に属し、該特定培地でのグルコース消費速度が0.
4g/dlを越える生育の速い微生物のプロトプラストとを
細胞融合せしめることにより作成した、該特定培地に於
るグルコース消費速度が0.4g/dl以上のアミノ酸生産性
融合株を培養することを特徴とする、発酵法によるアミ
ノ酸の製造方法。
1. A genus of Brevibacterium or Corynebacterium, 130 g of glucose, 1.0 g of KH 2 PO 4 1.0 g in 1.0 liter,
MgSO 4 / 7H 2 O 0.4g, FeSO 4 / 7H 2 O 0.001g, MnSO 4 / 4H 2 O0.001
g, ammonium sulfate 25 g, biotin 0.5 mg, thiamine hydrochloride 0.2 mg and soybean protein hydrochloric acid decomposition solution 15.0 ml with total nitrogen concentration 7.0 g / dl, when aerated and stirred at 31.5 ° C. in a specific medium of pH 7.0. Glucose consumption rate per unit time is less than 0.4 g / dl protoplasts of slow-growing amino acid-producing bacteria, belonging to Brevibacterium or Corynebacterium, glucose consumption rate in the specific medium is 0.
It is characterized by culturing an amino acid-producing fusion strain having a glucose consumption rate of 0.4 g / dl or more in the specific medium, which is prepared by cell fusion with a protoplast of a fast-growing microorganism exceeding 4 g / dl. , A method for producing amino acids by fermentation.
JP57040367A 1982-03-15 1982-03-15 Method for producing amino acid by fermentation using amino acid-producing bacterium with improved growth Expired - Lifetime JPH07112438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57040367A JPH07112438B2 (en) 1982-03-15 1982-03-15 Method for producing amino acid by fermentation using amino acid-producing bacterium with improved growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57040367A JPH07112438B2 (en) 1982-03-15 1982-03-15 Method for producing amino acid by fermentation using amino acid-producing bacterium with improved growth

Publications (2)

Publication Number Publication Date
JPS58158185A JPS58158185A (en) 1983-09-20
JPH07112438B2 true JPH07112438B2 (en) 1995-12-06

Family

ID=12578664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57040367A Expired - Lifetime JPH07112438B2 (en) 1982-03-15 1982-03-15 Method for producing amino acid by fermentation using amino acid-producing bacterium with improved growth

Country Status (1)

Country Link
JP (1) JPH07112438B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002542A1 (en) * 1999-07-02 2001-01-11 Ajinomoto Co., Inc. Process for producing l-amino acid
WO2012157699A1 (en) 2011-05-18 2012-11-22 味の素株式会社 Immunostimulant for animals, feed containing same, and method for manufacturing same
WO2014185430A1 (en) 2013-05-13 2014-11-20 味の素株式会社 Method for manufacturing l-amino acid
WO2015060391A1 (en) 2013-10-23 2015-04-30 味の素株式会社 Method for producing target substance
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274293A (en) * 1985-09-28 1987-04-06 Kyowa Hakko Kogyo Co Ltd Production of l-isoleucine
JPH01120282A (en) * 1987-11-02 1989-05-12 Nakano Vinegar Co Ltd Regeneration of spheroplast of bacterium belonging to genus acetobacter
JPH01168290A (en) * 1987-12-25 1989-07-03 Nakano Vinegar Co Ltd Electrical fusion of acetic acid bacteria spheroplast
JPH01168289A (en) * 1987-12-25 1989-07-03 Nakano Vinegar Co Ltd Fusion of acetic bacteria spheroplast

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109587A (en) * 1980-02-06 1981-08-31 Kyowa Hakko Kogyo Co Ltd Acquisition of genetically recombined strain

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002542A1 (en) * 1999-07-02 2001-01-11 Ajinomoto Co., Inc. Process for producing l-amino acid
WO2012157699A1 (en) 2011-05-18 2012-11-22 味の素株式会社 Immunostimulant for animals, feed containing same, and method for manufacturing same
WO2014185430A1 (en) 2013-05-13 2014-11-20 味の素株式会社 Method for manufacturing l-amino acid
WO2015060391A1 (en) 2013-10-23 2015-04-30 味の素株式会社 Method for producing target substance
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation

Also Published As

Publication number Publication date
JPS58158185A (en) 1983-09-20

Similar Documents

Publication Publication Date Title
JP4734775B2 (en) Escherichia coli arginine-producing bacteria and method for producing L-arginine using the same
JP3006926B2 (en) Method for producing L-threonine by fermentation method
JPH05244970A (en) Production of l-glutamic acid by fermentation method
JP2817155B2 (en) Production method of L-arginine by fermentation method
JPH05304969A (en) Production of amino acid by fermentation method
JP3966583B2 (en) Method for producing L-amino acid by fermentation
JPH0488994A (en) Production of l-glutamine by fermentation
JPS6236673B2 (en)
JP2990735B2 (en) Fermentative production of L-lysine
JP3016883B2 (en) Method for producing 5'-xanthylic acid by fermentation method
JPS5816872B2 (en) Corynebacterium glutamicum mutant strain
JPH07112438B2 (en) Method for producing amino acid by fermentation using amino acid-producing bacterium with improved growth
JP3008565B2 (en) Method for producing L-glutamic acid by fermentation method
JP3717970B2 (en) Method for producing L-isoleucine by fermentation
US3871960A (en) Method of producing l-lysine by fermentation
JP2817185B2 (en) Method for producing L-ornithine by fermentation
JPH0632626B2 (en) Fermentation method for producing L-threonine
JP2578474B2 (en) Method for producing L-glutamic acid
JPS6224074B2 (en)
JPS6155958B2 (en)
JPH057493A (en) Production of l-valine by fermentation
JPS6236672B2 (en)
JPH03259088A (en) Production of l-threonine by fermentation
JP3036819B2 (en) Method for producing aromatic amino acids
JP3100763B2 (en) Method for producing L-arginine by fermentation