JPS6274293A - Production of l-isoleucine - Google Patents

Production of l-isoleucine

Info

Publication number
JPS6274293A
JPS6274293A JP60215718A JP21571885A JPS6274293A JP S6274293 A JPS6274293 A JP S6274293A JP 60215718 A JP60215718 A JP 60215718A JP 21571885 A JP21571885 A JP 21571885A JP S6274293 A JPS6274293 A JP S6274293A
Authority
JP
Japan
Prior art keywords
isoleucine
culture
medium
microorganism
produce
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60215718A
Other languages
Japanese (ja)
Inventor
Rei Furukawa
令 古川
Toshihide Nakanishi
中西 俊秀
Masahiro Sugimoto
杉本 正裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP60215718A priority Critical patent/JPS6274293A/en
Publication of JPS6274293A publication Critical patent/JPS6274293A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/02Preparation of hybrid cells by fusion of two or more cells, e.g. protoplast fusion
    • C12N15/03Bacteria

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To efficiently collect L-isoleucine produce and accumulate in a culture, by cultivating a microorganism, obtained by protoplastic fusion, having ability to produce L-isoleucine and belonging to the genus Corynebacterium in a culture medium. CONSTITUTION:A protoplastic strain, e.g. Corynebacterium glutamicum H-3859 (FERM-P No.849) or Corynebacterium glutamicum H-3860 (FERM-P No.850), obtained by protoplastic fusion between a microorganism having the ability to produce L-isoleucine and a microorganism having the ability to produce an amino acid which is a principal fermentation product other than the L- isoleucine is cultivated in a culture medium and the aimed L-isoleucine is collected from the resultant culture.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプロトプラスト融合により得たし一イソロイ/
ン生産能を有するコリネバクテリウム属に属する微生物
を用いるし一イソロイシンの製造法に関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to the isoloy/
This invention relates to a method for producing isoleucine using a microorganism belonging to the genus Corynebacterium that has the ability to produce isoleucine.

L−イソロイシンはアミノ酸製剤として医薬品として有
用である。
L-isoleucine is useful as an amino acid preparation as a medicine.

従来の技術 従来、発酵法によるし一インロインンの製造法としては
ミクロコツカス、グルタミクムに嘱し、スレオニン、メ
チオニン、ホモセリン又はロインン要求性を存する微生
物を用いる方法(特公昭38−7091号公報)、ブレ
ビバクテリウム・フラバムに属し、α−アミ7−β−ヒ
ドロキ/吉草酸耐性及びプリン又はリジン要求性を有す
る微生物を用いる方法(特開昭49−85288号公報
)、α−アミノ−β−ヒドロキ/吉草酸及び0−メチル
スレオニン相性を有するj敢生物を用いる方法(特開昭
49−93586号公報)、ブレビバクテリウム属又は
コリネバクテリウム、属に属し、α−アミノ−β−ヒド
ロキシ吉草酸耐性でかつエチオニン、2−チアゾールア
ラニン及びS−(2−アミノエチル)−L−システィン
のうち少なくとも1つに耐性を有する微生物を用いる方
法(特開昭50−101582号公報)、コリネバクテ
リウム屈に属し、イソロイノンアナログ耐性でかつメチ
オニン又はリジン要求性を有する微生物を用いる方法(
特開昭49−11452号公報)、コリネバクテリウム
属又はブレビバクテリウム属に属し、ビタミン−P耐性
を有する微生物を用いる方法(特開昭571637号公
報)、コリネバクテリウム属に属し、アルギニン要求性
を有する微生物を用いる方法(特開昭59−10629
5号公報)、コリネバクテリウム属に属し、フルオロピ
ルビン酸感受性を有する微生物を用いる方法(特開昭5
9−106294号公報)等が知られている。
Conventional technology Conventionally, fermentation methods have been used to produce loins, including Micrococcus and Glutamicum, and methods using microorganisms that have threonine, methionine, homoserine, or loin auxotrophy (Japanese Patent Publication No. 7091/1983), and Brevibacterium. A method using a microorganism belonging to U.um flavum and having α-amino-7-β-hydroxy/valeric acid resistance and purine or lysine auxotrophy (Japanese Unexamined Patent Publication No. 1985-85288), α-amino-β-hydroxy/valeric acid A method using biological organisms having compatibility with grass acid and 0-methylthreonine (Japanese Unexamined Patent Publication No. 49-93586), which belongs to the genus Brevibacterium or Corynebacterium and is resistant to α-amino-β-hydroxyvaleric acid. and a method using a microorganism resistant to at least one of ethionine, 2-thiazolealanine, and S-(2-aminoethyl)-L-cysteine (Japanese Patent Application Laid-open No. 101582/1982), which belongs to the Corynebacterium genus , a method using microorganisms that are resistant to isoloinone analogs and have methionine or lysine auxotrophy (
JP-A-49-11452), a method using microorganisms belonging to the genus Corynebacterium or Brevibacterium and having vitamin-P resistance (JP-A-571637); A method using microorganisms with
5), a method using microorganisms belonging to the genus Corynebacterium and sensitive to fluoropyruvate (Japanese Patent Laid-open No. 5
9-106294) and the like are known.

発明が解決しようとする問題点 プロトプラスト融合により得たし一イソロイシン生産能
を有するコリネバクテリウム属に属する微生物を用いる
ことにより、親株より大量にL−インロインンを製造す
る方法は開発されていない。
Problems to be Solved by the Invention No method has been developed for producing L-inroin in larger amounts than the parent strain by using a microorganism belonging to the genus Corynebacterium and having the ability to produce isoleucine obtained by protoplast fusion.

問題点を解決するための手段 本発明方法によると、プロトプラスト融合により得たし
一イソロイシン生産能を有するコリネバクテリウム属に
属する微生物を培地に培養し、培養物中にL−イソロイ
シンを生成蓄積させ、該培養物からL−イソロイシンを
収率よく採取することができる。
Means for Solving the Problems According to the method of the present invention, a microorganism belonging to the genus Corynebacterium and having the ability to produce L-isoleucine obtained by protoplast fusion is cultured in a medium, and L-isoleucine is produced and accumulated in the culture. , L-isoleucine can be collected from the culture with good yield.

本発明に用いる微生物としてはL−イソロイシン生産性
を有する微生物と主発酵生産物がL−イソロイシン以外
のアミノ酸を生産する能力を有する微生物との間のプロ
トプラスト融合株であればいずれも用いられる。
As the microorganism used in the present invention, any protoplast fusion strain between a microorganism capable of producing L-isoleucine and a microorganism capable of producing an amino acid other than L-isoleucine as a main fermentation product can be used.

具体的には、コリネバクテリウム・グルタミクム (C
orynebacterium  glutamicu
m)   H−3859(以下、I(−385’lと称
す)及びH−3860(以下、H−3860と称す)が
挙げられ、いずれも茨城県筑波郡谷田部町東1丁目1番
3の】m産省工業技術院微生物工業技術研究所に微工研
条寄第849号及び第850号として昭和60年7月1
6日に寄託されている。
Specifically, Corynebacterium glutamicum (C
orynebacterium glutamicu
m) H-3859 (hereinafter referred to as I (-385'l)) and H-3860 (hereinafter referred to as H-3860), both located at 1-1-3 Higashi, Yatabe-cho, Tsukuba-gun, Ibaraki Prefecture]m On July 1, 1985, it was submitted to the Institute of Microbial Technology, Agency of Industrial Science and Technology, Ministry of Industry, as Microtechnology Research Institute No. 849 and No. 850.
It was deposited on the 6th.

次にプロトプラスト融合株の取得例を示す。Next, an example of obtaining a protoplast fusion strain will be shown.

親株として、イソロイシン生産菌であるコリネバクテリ
ウム・グルタミクムH−3501(FERM  BP−
848)(以下、H−3501と称す)及びリジン生産
菌であるコリネバクテリウム・グルタミクムH−311
9(FERM  BP−149)(以下、H−3119
と称す)を用いる。
As a parent strain, Corynebacterium glutamicum H-3501 (FERM BP-
848) (hereinafter referred to as H-3501) and Corynebacterium glutamicum H-311, a lysine-producing bacterium.
9 (FERM BP-149) (hereinafter referred to as H-3119
) is used.

培養細胞からプロトプラストを形成させるためには例え
ば栄養培地NB(粉末ブイヨン20g1酵母エキス5g
を純水11に含みp H7,2に調整した培地)に菌を
接種し、振盪培養する。比色計によって660nmにお
ける吸光度(00)を測定し、対数増殖期の初期(OD
=0.1〜0.2)に培養液中0.1〜0.8 u /
mlの濃度になるようにペニシリンGを添加する。培養
を続けて、さらにODが0.3〜0.5に増加したとこ
ろで細胞を集菌し、55M培地〔グルコース10g5N
H,C14g、尿素2g、酵母エキス1g、I<)42
F’041 g 、 K 2 HP O43g 、 M
 g Cl 2・66H2O14,Fe50*7H20
10mg、MnSO4・4〜6日20 Q、2mg1Z
nSO4・7H200,9mg、Cu5Oa・5H20
0,4mg、NazBm○7=10Hz0 0.09m
g、(NH<)sMoeOz*−48200,04のg
、ビオチン3011!Z、サイアミン塩酸塩1mgを純
水11に含み、p H7,2に調整した培地、アミノ酸
要求性の菌の培養には、要求アミノ酸50■/mlを追
加〕で洗浄する。次に菌体をPFM培地(33M2倍希
釈液中にシュクロース0.4 M 、 M g Cl 
2  ・6H200,01Mを含み、p )i 7. 
O〜8.5に調整した培地)に再懸濁する。この細胞懸
濁液にリゾチーム(0,2〜2■/ml)を加え、30
〜37℃で16時間処理する。
In order to form protoplasts from cultured cells, for example, nutrient medium NB (20 g of powdered broth 1 5 g of yeast extract)
The bacteria are inoculated into a medium (containing 11% pure water and adjusted to pH 7.2) and cultured with shaking. The absorbance (00) at 660 nm was measured by a colorimeter, and the absorbance (00) at 660 nm was measured at
= 0.1-0.2) in culture medium at 0.1-0.8 u/
Add penicillin G to a concentration of ml. Continuing the culture, when the OD further increased to 0.3 to 0.5, the cells were harvested and added to 55M medium [glucose 10g 5N
H, C14g, urea 2g, yeast extract 1g, I<)42
F'041g, K2HP O43g, M
g Cl2・66H2O14,Fe50*7H20
10mg, MnSO4・4-6 days 20Q, 2mg1Z
nSO4・7H200, 9mg, Cu5Oa・5H20
0.4mg, NazBm○7=10Hz0 0.09m
g, (NH<)sMoeOz*-48200,04g
, Biotin 3011! Z, a medium containing 1 mg of thiamine hydrochloride in pure water 11 and adjusted to pH 7.2; for culturing amino acid-requiring bacteria, add 50 μl/ml of requisite amino acids]. Next, the bacterial cells were cultured in PFM medium (33M 2-fold diluted solution containing 0.4 M sucrose, M g Cl
2 ・6H200,01M, p)i 7.
Resuspend in medium adjusted to 0~8.5. Add lysozyme (0.2 to 2 μ/ml) to this cell suspension and
Treat at ~37°C for 16 hours.

プロトプラストの形成を光学顕微鏡で確認する。Confirm protoplast formation using an optical microscope.

融合させようとする菌株の、上記の如くして得たプロト
プラストの数を計測し1:1になるように混合し、遠心
分離によりPFM培地で洗浄後0.1mlに再懸濁する
。これに40%ポリエチレングリコール(PEG)4.
000を含むPFM培地2.5mlを加え静かに攪拌す
る。5分後、Q、3mlを例えばストレプトマイシン及
びリファンピシンをマーカーとした場合には、ストレプ
トマイシン100■/ml及びリファンビンン1■/m
lを含むPCG寒天平板培地(グルコース5g、カザミ
ノ酸5g、酵母エキス2.5g、に2HPO43,5g
、KH2PO41,5g、MgCl2・6H20064
1g5FeSOn・7H2010mg、MnSO4・4
〜6820 2mg、ZnSO4・7H200,9mg
、 Cu SO+ ・5 H2O0,4mg、 N a
zBsot・10HzOO,09mg、(N Ht )
 6 M o s 021・4 H2O0,04mg−
ビオチン30■、サイアミン塩酸塩2I+Ig、コハク
酸ナトリウム135g。
The number of protoplasts of the strain to be fused obtained as described above is counted, mixed at a ratio of 1:1, washed with PFM medium by centrifugation, and resuspended in 0.1 ml. Add to this 40% polyethylene glycol (PEG).
Add 2.5 ml of PFM medium containing 000 and stir gently. After 5 minutes, 3 ml of Q, for example, if streptomycin and rifampicin are used as markers, streptomycin 100 / ml and rifampicin 1 / ml
PCG agar plate medium containing l (5g glucose, 5g casamino acids, 2.5g yeast extract, 43.5g 2HPO)
, KH2PO41.5g, MgCl2・6H20064
1g5FeSOn・7H2010mg, MnSO4・4
~6820 2mg, ZnSO4・7H200,9mg
, Cu SO+ ・5 H2O 0.4 mg, Na
zBsot・10HzOO, 09mg, (NHt)
6 Mos 021・4 H2O0.04mg-
Biotin 30■, thiamine hydrochloride 2I+Ig, sodium succinate 135g.

寒天14gを11中に含み、p H7,4に調整した培
地に塗布する。
11 contains 14 g of agar and is applied to a medium adjusted to pH 7.4.

30℃で12日間培養後に生じてきたストレプトマイシ
ン及びリファンピシン二重耐性株のコロニーを取得する
Colonies of a streptomycin and rifampicin double resistant strain that have emerged after culturing at 30°C for 12 days are obtained.

L−イソロイシン生産菌とL−リジン生産菌の融合株2
00株を釣菌し、後述のイソロイシン生産試験にかけ、
親株よりインロイシン生産能が向上した菌株1(−38
59及びH−3860を取得する。
Fusion strain 2 of L-isoleucine-producing bacteria and L-lysine-producing bacteria
00 strain was harvested and subjected to the isoleucine production test described below.
Strain 1 (-38
59 and H-3860.

細胞融合の親株であるH−3501はアルギニン要求性
のため最小培地〔グルコース0.5%、(NH,)、5
0.0.15%、K)12PO,0,15%、K2HP
O40,05%、NaCj20.01%、Mg5O,・
7H,OO,05%、(: a Cl 2 ・2 )(
201x/ml、MnC1−48207μg/ml。
H-3501, the parent strain for cell fusion, requires minimal medium [glucose 0.5%, (NH,), 5%] because it requires arginine.
0.0.15%, K)12PO, 0.15%, K2HP
O40.05%, NaCj20.01%, Mg5O,・
7H,OO,05%, (: a Cl 2 ・2) (
201x/ml, MnC1-48207 μg/ml.

F e S C4・7 H2O10xr/ml、チアミ
ン塩酸塩0.lμg/ml、ビオチア0.03%g/m
l、寒天1.5%:I)H7,2)では生育せずその生
育にはアルギニン(50r/ml)の添加を必要とする
。又、融合株H−3860は親株と同様にその生育にア
ルギニンを必要としたが、融合株H−3859は最小培
地でも充分な生育ができるのが特徴である。
F e S C4.7 H2O10xr/ml, thiamine hydrochloride 0. lμg/ml, biothia 0.03%g/m
It does not grow on 1.5% agar: I) H7, 2) and requires the addition of arginine (50 r/ml) for growth. Furthermore, although the fusion strain H-3860 required arginine for its growth like the parent strain, the fusion strain H-3859 is characterized by its ability to grow sufficiently even in a minimal medium.

第1表に親株及び融合株の生育状況を示す。Table 1 shows the growth status of the parent strain and the fused strain.

本発明に使用する培地組成としては使用菌株の利用しう
る炭素源、窒素源、無機物その他の必要な栄養素を程良
く含有するものであれば合成培地及び天然培地のいずれ
も使用できる。
As for the medium composition used in the present invention, both synthetic and natural media can be used as long as they contain appropriate amounts of carbon sources, nitrogen sources, inorganic substances, and other necessary nutrients that can be utilized by the bacterial strain used.

炭素源としては、グルコース、シュクロース、フラクト
ース、III、デンプン、デンプン加水分解物などの炭
水化物、酢酸、プロピオン酸、ギ酸、フマール酸、リン
ゴ酸などの有機酸、メタノール、エタノール、プロパツ
ールなどのアルコールが用いられる。
Carbon sources include carbohydrates such as glucose, sucrose, fructose, III, starch, and starch hydrolysates, organic acids such as acetic acid, propionic acid, formic acid, fumaric acid, and malic acid, and alcohols such as methanol, ethanol, and propatool. is used.

窒素源としては、アンモニア、塩化アンモニウム、硫酸
アンモニウム、酢酸アンモニウム、リン酸アンモニウム
などの各種無機酸や有機酸のアンモニウム塩、尿素、ア
ミン類、その地合窒素化合物、ならびにペプトン、肉エ
キス、酵母エキス、コーン・スチーブ・リカー、カゼ・
イン加水分解物、大豆粕酸加水分解物、各種発酵菌体お
よびその消化物などが用いられる。
Nitrogen sources include ammonium salts of various inorganic and organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, and ammonium phosphate, urea, amines, and their formed nitrogen compounds, as well as peptone, meat extract, yeast extract, corn stave liquor, cold
Ino hydrolyzate, soybean meal acid hydrolyzate, various fermented microbial cells and digested products thereof, etc. are used.

無機物としては、リン酸第−カリウム、リン酸第二カリ
ウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナ
トリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カ
ルシウムなどが用いられる。
As the inorganic substance, potassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, etc. are used.

勿論本発明に使用する微生物が生育のために特定の栄養
素を必要とする場合には、その栄養素を適当1培地中に
存在させなければならないが、これらの物質は窒素源と
して例示した天然物に含まれて添加される場合がある。
Of course, if the microorganisms used in the present invention require specific nutrients for growth, those nutrients must be present in an appropriate medium, but these substances can be substituted with the natural products exemplified as nitrogen sources. May be included and added.

培養は振盪培養あるいは深部通気攪拌培養などの好気的
条件下で行なう。培養温度は通常20〜10℃、好まし
くは25〜35℃の範囲で、培地のpHは5〜9の範囲
で、好ましくは中性付近に保持することが望ましい。培
地のp)(調節は、炭酸カルシウム、無機又は有機の酸
、アルカリ溶液、尿素、アンモニア、pH緩衝剤などに
よって行う。
Cultivation is performed under aerobic conditions such as shaking culture or deep aeration agitation culture. The culture temperature is usually in the range of 20 to 10°C, preferably 25 to 35°C, and the pH of the culture medium is in the range of 5 to 9, preferably around neutrality. p) (Adjustment of the medium is carried out with calcium carbonate, inorganic or organic acids, alkaline solutions, urea, ammonia, pH buffers, etc.).

培養期間は通常2〜7日間で培養液中にL−インロイン
ンが生成蓄積する。
The culture period is usually 2 to 7 days, and L-inroin is produced and accumulated in the culture solution.

培養終了後、培養液から菌体などの沈殿物を除去し、公
知のイオン交換処理法、濃縮法、吸着法、塩析法などを
併用することにより、培養液からし一インロイシンを回
収することができる。
After the cultivation is completed, precipitates such as bacterial bodies are removed from the culture solution, and mustard-inleucine is recovered from the culture solution by using a combination of known ion exchange treatment methods, concentration methods, adsorption methods, salting-out methods, etc. be able to.

以下に実施例を示す。Examples are shown below.

実施例1 種菌として融合株)(−3859及びH−3860並び
に親株H−3501及びH−3119を用いた。
Example 1 Fusion strains (-3859 and H-3860) and parent strains H-3501 and H-3119 were used as inoculum.

これらの菌株をグルコース50g/l、酵母エキス10
 g/n 、ペプトン10g/f、尿素3g/l、食塩
2.5 g / I!、コーンステイープリカー5g/
lおよびビオチン50■/lからなる種培地(pH7,
2)20mlを含む30 Qmlml用フラスコに接種
し、28℃で24時間、ロータリーシェーカー(回転数
:210rpm)上で振盪培養した。この種培養液2n
lを29mlの下記組成の発酵培地を含む303ml容
三角フラスコに接種し、28℃で72時間*盪培饗(回
転数:210rpm)した。
These strains were mixed with glucose 50g/l and yeast extract 10g/l.
g/n, peptone 10 g/f, urea 3 g/l, salt 2.5 g/I! , cornstarch liquor 5g/
Seed medium (pH 7,
2) It was inoculated into a 30 Qml flask containing 20ml, and cultured with shaking on a rotary shaker (rotation speed: 210 rpm) at 28°C for 24 hours. This seed culture solution 2n
1 was inoculated into a 303 ml Erlenmeyer flask containing 29 ml of a fermentation medium having the following composition, and cultured at 28° C. for 72 hours (rotation speed: 210 rpm).

培養液中に生成したし一イソロインン及びL−IJジン
の債を第2表に示す。
Table 2 shows the amounts of L-isolinine and L-IJine produced in the culture solution.

発酵培地の組成 廃U蜜(グルコース換算)70g/ff、コーンステイ
ープリカー5g/L塩化アンモニウム20g/L尿素2
 g/12、K l(2P 04 2 g / n、M
g5O,−71(200,5g/ASFeSO+・7H
200,Oig#、MnCnz’4l−(200,01
g/j”、C+1SO4・5H200,01g/LCa
CL・2H20Ω、01g/l、Zn5O*・7)(2
01,mg/j!、 NiC1!z  1a+g/j!
、モリブデン酸77%7−4水塩1mg/l’、C0C
L・6t(201mg/β、パントテン酸カルンウム1
0mg/l、ニコチン酸1mg/ff、ビオチン50γ
/A)、I)H7,4 なおアルギニン要求株の場合は、アルギニン塩酸塩を0
.5 g ’、l’l添加。
Composition of fermentation medium Waste honey (glucose equivalent) 70g/ff, cornstarch liquor 5g/L ammonium chloride 20g/L urea 2
g/12, K l (2P 04 2 g/n, M
g5O, -71 (200,5g/ASFeSO+・7H
200, Oig#, MnCnz'4l-(200,01
g/j”, C+1SO4・5H200,01g/LCa
CL・2H20Ω, 01g/l, Zn5O*・7) (2
01,mg/j! , NiC1! z 1a+g/j!
, molybdic acid 77% 7-tetrahydrate 1 mg/l', C0C
L・6t (201mg/β, carunium pantothenate 1
0mg/l, nicotinic acid 1mg/ff, biotin 50γ
/A), I) H7,4 In the case of arginine auxotrophic strains, arginine hydrochloride was added to 0.
.. 5 g', l'l added.

第2表 (Arg”):アルギニン非要求性 (Arg−)  ・アルギニン要求性 融合株!−(−3860を用いて得たL−インロインン
含有培養液200mlから遠心分離により、菌体その他
の不純物を除いた上澄液を強酸性陽イオン交換樹脂ダイ
ヤイオン5KI(H”型)(三菱化成社製)のカラムに
通し、L−イソロイシンを吸着させ、水洗後0.5規定
のアンモニア水で溶出して、L−イソロイシン画分を集
め、濃縮してp H6,02の等電点で晶出させること
により純度99%のし一インロイシン850mgを得た
Table 2 (Arg"): Non-arginine auxotrophic (Arg-) - Arginine auxotrophic fusion strain!- The removed supernatant liquid was passed through a column of strongly acidic cation exchange resin Diaion 5KI (H” type) (manufactured by Mitsubishi Kasei Corporation) to adsorb L-isoleucine, and after washing with water, it was eluted with 0.5N ammonia water. The L-isoleucine fractions were collected, concentrated, and crystallized at an isoelectric point of pH 6.02 to obtain 850 mg of inleucine with a purity of 99%.

発明の効果 本発明方法により収率よくL−イソロイシンをi尋るこ
とができる。
Effects of the Invention By the method of the present invention, L-isoleucine can be obtained in good yield.

Claims (3)

【特許請求の範囲】[Claims] (1)プロトプラスト融合により得たL−イソロイシン
生産能を有するコリネバクテリウム属に属する微生物を
培地に培養し、培養物中にL−イソロイシンを生成蓄積
させ、該培養物からL−イソロイシンを採取することを
特徴とするL一イソロイシンの製造法。
(1) Cultivating a microorganism belonging to the genus Corynebacterium having the ability to produce L-isoleucine obtained by protoplast fusion in a medium, producing and accumulating L-isoleucine in the culture, and collecting L-isoleucine from the culture. A method for producing L-isoleucine, characterized by the following.
(2)プロトプラスト融合がL−イソロイシン生産性を
有する微生物と主発酵生産物がL−イソロイシン以外の
アミノ酸を生産する能力を有する微生物との間で行われ
ることを特徴とする特許請求の範囲第1項記載の製造法
(2) Protoplast fusion is carried out between a microorganism capable of producing L-isoleucine and a microorganism capable of producing an amino acid other than L-isoleucine as a main fermentation product. Manufacturing method described in section.
(3)該アミノ酸がL−リジンであることを特徴とする
特許請求の範囲第2項記載の製造法。
(3) The production method according to claim 2, wherein the amino acid is L-lysine.
JP60215718A 1985-09-28 1985-09-28 Production of l-isoleucine Pending JPS6274293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60215718A JPS6274293A (en) 1985-09-28 1985-09-28 Production of l-isoleucine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60215718A JPS6274293A (en) 1985-09-28 1985-09-28 Production of l-isoleucine

Publications (1)

Publication Number Publication Date
JPS6274293A true JPS6274293A (en) 1987-04-06

Family

ID=16677024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60215718A Pending JPS6274293A (en) 1985-09-28 1985-09-28 Production of l-isoleucine

Country Status (1)

Country Link
JP (1) JPS6274293A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044409A1 (en) 2006-10-10 2008-04-17 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
WO2008102572A1 (en) 2007-02-20 2008-08-28 Ajinomoto Co., Inc. Method for production of l-amino acid or nucleic acid
WO2009088049A1 (en) 2008-01-10 2009-07-16 Ajinomoto Co., Inc. Method for production of desired substance by fermentation process
WO2009093703A1 (en) 2008-01-23 2009-07-30 Ajinomoto Co., Inc. Method of producing l-amino acid
WO2011013707A1 (en) 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid
WO2014185430A1 (en) 2013-05-13 2014-11-20 味の素株式会社 Method for manufacturing l-amino acid
WO2015005406A1 (en) 2013-07-09 2015-01-15 味の素株式会社 Method for manufacturing useful substance
WO2015050234A1 (en) 2013-10-02 2015-04-09 味の素株式会社 Ammonia control apparatus and ammonia control method
WO2015060391A1 (en) 2013-10-23 2015-04-30 味の素株式会社 Method for producing target substance
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
CN111925953A (en) * 2019-12-30 2020-11-13 河南工业大学 Glutamic acid producing strain and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158184A (en) * 1982-03-15 1983-09-20 Ajinomoto Co Inc Fusion of protoplast of bacterium
JPS58158185A (en) * 1982-03-15 1983-09-20 Ajinomoto Co Inc Breeding of amino acid-producing bacteria having improved rate of growth
JPS59113894A (en) * 1982-12-17 1984-06-30 Kyowa Hakko Kogyo Co Ltd Preparation of l-glutamic acid by fermentation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158184A (en) * 1982-03-15 1983-09-20 Ajinomoto Co Inc Fusion of protoplast of bacterium
JPS58158185A (en) * 1982-03-15 1983-09-20 Ajinomoto Co Inc Breeding of amino acid-producing bacteria having improved rate of growth
JPS59113894A (en) * 1982-12-17 1984-06-30 Kyowa Hakko Kogyo Co Ltd Preparation of l-glutamic acid by fermentation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044409A1 (en) 2006-10-10 2008-04-17 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
WO2008102572A1 (en) 2007-02-20 2008-08-28 Ajinomoto Co., Inc. Method for production of l-amino acid or nucleic acid
EP2749652A2 (en) 2008-01-10 2014-07-02 Ajinomoto Co., Inc. A method for producing a target substance by fermentation
WO2009088049A1 (en) 2008-01-10 2009-07-16 Ajinomoto Co., Inc. Method for production of desired substance by fermentation process
WO2009093703A1 (en) 2008-01-23 2009-07-30 Ajinomoto Co., Inc. Method of producing l-amino acid
WO2011013707A1 (en) 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid
WO2014185430A1 (en) 2013-05-13 2014-11-20 味の素株式会社 Method for manufacturing l-amino acid
WO2015005406A1 (en) 2013-07-09 2015-01-15 味の素株式会社 Method for manufacturing useful substance
EP3521433A1 (en) 2013-07-09 2019-08-07 Ajinomoto Co., Inc. Process for producing l-glutamic acid
WO2015050234A1 (en) 2013-10-02 2015-04-09 味の素株式会社 Ammonia control apparatus and ammonia control method
WO2015060391A1 (en) 2013-10-23 2015-04-30 味の素株式会社 Method for producing target substance
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
CN111925953A (en) * 2019-12-30 2020-11-13 河南工业大学 Glutamic acid producing strain and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3006926B2 (en) Method for producing L-threonine by fermentation method
KR960016135B1 (en) Process for producing l-isoleucine
US4996147A (en) Process for producing L-threonine by fermentation
JPH05304969A (en) Production of amino acid by fermentation method
PL106285B1 (en) METHOD OF L-LYSINE PRODUCTION ON AEROBIC FARMING WAY
JPS6274293A (en) Production of l-isoleucine
JP3717970B2 (en) Method for producing L-isoleucine by fermentation
JPS62195293A (en) Production of l-isoleucine by fermentation method
EP0595163B1 (en) Process for producing L-isoleucine
JPH02131589A (en) Production of l-threonine by fermentation method
JPS5886094A (en) Preparation of l-lysine by fermentation
JP3006939B2 (en) Method for producing L-lysine
JPH01199589A (en) Production of l-lysine by fermentation method
JP2877414B2 (en) Method for producing L-threonine by fermentation
US5034319A (en) Process for producing L-arginine
JPS6249038B2 (en)
EP0445830A2 (en) Process for producing L-threonine
JP3029868B2 (en) Method for producing L-alanine by fermentation method
JP3100763B2 (en) Method for producing L-arginine by fermentation
JP3006907B2 (en) Method for producing L-alanine by fermentation method
JP2995816B2 (en) Production method of L-lysine by fermentation method
JPS62265988A (en) Production of l-arginine by fermentation
JPH055476B2 (en)
JPS63273487A (en) Production of l-threonine
JPS63160592A (en) Production of l-valine