JPH0710643A - Method for jointing silicon carbide material - Google Patents

Method for jointing silicon carbide material

Info

Publication number
JPH0710643A
JPH0710643A JP15906693A JP15906693A JPH0710643A JP H0710643 A JPH0710643 A JP H0710643A JP 15906693 A JP15906693 A JP 15906693A JP 15906693 A JP15906693 A JP 15906693A JP H0710643 A JPH0710643 A JP H0710643A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon
joining
porous silicon
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15906693A
Other languages
Japanese (ja)
Other versions
JP2891042B2 (en
Inventor
Kazuhiro Minagawa
和弘 皆川
Tadahisa Arahori
忠久 荒堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15906693A priority Critical patent/JP2891042B2/en
Publication of JPH0710643A publication Critical patent/JPH0710643A/en
Application granted granted Critical
Publication of JP2891042B2 publication Critical patent/JP2891042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a uniform, low-impurity heat-resistant jig or the like of high joint strength for semiconductor production by such a process that carbon deposited by thermally decomposing a carbon-contg. gas introduced into the gap resulted from engaging the projection of a silicon carbide material with the recess of a second silicon carbide material is impregnated with a silicon melt to effect reaction. CONSTITUTION:Firstly, the recess (through hole) of a porous silicon carbide material 11 is engaged with the projection 12a of a second silicon carbide material 12. Second, a carbon-contg. gas (e.g. methane, ethane, propane) is introduced into a gap 13 resulted from the above engagement and thermally decomposed to effect deposition of carbon. Finally, the materials 11, 12 in combination with the resultant gap 13 is impregnated with silicon melt to effect reaction and development of sintered silicon carbide in the gap.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化珪素質材料の接合方
法に関し、より詳細には炭化珪素粉末等から成形した複
数個の多孔質炭化珪素質成形体を反応焼結法により接合
する炭化珪素質材料の接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining silicon carbide-based materials, and more particularly to a method for joining a plurality of porous silicon carbide-based compacts formed from silicon carbide powder or the like by a reaction sintering method. The present invention relates to a method for joining quality materials.

【0002】[0002]

【従来の技術】炭化珪素材料は高温強度等に優れるた
め、構造材料として種々の用途に用いられている。しか
し、この炭化珪素材料は難加工性材料であり、一旦焼結
体を得た後、これを切削加工して一定形状の製品を作製
するのは極めて困難である。また複雑な形状を有する炭
化珪素成形体を作製した後、これを焼成することにより
炭化珪素焼結体を製造するのも容易ではない。従って、
通常は幾つかの焼結体を接合することにより複雑な形状
のものを作製している。
2. Description of the Related Art Silicon carbide materials are excellent in high temperature strength and the like, and are therefore used for various purposes as structural materials. However, this silicon carbide material is a difficult-to-process material, and it is extremely difficult to cut a sintered body once to obtain a product having a fixed shape. Moreover, it is not easy to manufacture a silicon carbide sintered body by firing a silicon carbide molded body having a complicated shape. Therefore,
Usually, a complicated shape is produced by joining several sintered bodies.

【0003】この接合方法の一つとして、複数個の炭化
珪素成形体を重ね合わせ、この重ね合わされた部分に非
酸化性雰囲気下で溶融シリコンを含浸させて接合する方
法(特開昭63−17268号公報)が提案されてい
る。
As one of the joining methods, a plurality of silicon carbide compacts are superposed, and the superposed portions are impregnated with molten silicon in a non-oxidizing atmosphere and then joined (JP-A-63-17268). Issue).

【0004】しかし前記方法においては、炭化珪素成形
体の接合部付近の性状や溶融シリコンの含浸方法によっ
ては溶融シリコンが接合部に十分浸透しなかったり、接
合部がシリコンのみで形成されるため充分な接合強度が
得られないという問題があった。
However, in the above method, the molten silicon may not sufficiently penetrate into the bonded portion or the bonded portion may be formed of only silicon, depending on the properties of the silicon carbide molded body near the bonded portion and the method of impregnating the molten silicon. There is a problem that a good bonding strength cannot be obtained.

【0005】このような接合部の強度が充分でないとい
う問題点を克服するため、複数の成形体を炭化珪素粉末
あるいは炭化珪素と炭素粉末とを含む樹脂により接合し
た後、溶融シリコンを含浸させる方法(特開昭55−3
384号公報、特開平2−64063号公報)が提案さ
れている。
In order to overcome the problem that the strength of the bonded portion is not sufficient, a method of bonding a plurality of compacts with silicon carbide powder or a resin containing silicon carbide and carbon powder, and then impregnating molten silicon (JP-A-55-3
No. 384 and Japanese Patent Laid-Open No. 2-64063) have been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかし、炭化珪素粉末
だけを用いて接合する方法では、接合部の強度が充分と
は言えず、炭化珪素と炭素粉末とを用いて接合する方法
では、添加される炭素粉末が大きいため、反応焼結時に
炭化珪素の生成による急激な体積膨張をもたらして割れ
が発生したり、未反応炭素が残留する等の課題があっ
た。
However, in the method of joining using only silicon carbide powder, the strength of the joining portion cannot be said to be sufficient, and in the method of joining using silicon carbide and carbon powder, it is added. The large amount of carbon powder causes problems such as rapid volume expansion due to generation of silicon carbide during reaction sintering, cracking, and residual unreacted carbon.

【0007】さらに、前記炭化珪素の接合に用いられる
樹脂および炭素粉末には原料および製造工程から混入す
る不純物が存在しており、得られる接合体の純度が低下
するという課題もあった。
Further, the resin and carbon powder used for joining the silicon carbide have impurities mixed in from the raw material and the manufacturing process, and there is a problem that the purity of the obtained joined body is lowered.

【0008】本発明はこのような課題に鑑みなされたも
ので、簡単な方法で、均一な密度や強度を有し、接合部
の接合強度も十分高く、不純物の混入がない接合体を得
ることができる炭化珪素質材料の接合方法を提供するこ
とを目的としている。
The present invention has been made in view of the above problems, and it is possible to obtain a bonded body having a uniform density and strength, a bonding strength of a bonding portion being sufficiently high, and no impurities mixed therein by a simple method. It is an object of the present invention to provide a method for joining silicon carbide based materials capable of performing the above.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る炭化珪素質材料の接合方法は、多孔質炭
化珪素質成形体の凸部と凹部を嵌合させて接合する炭化
珪素質材料の接合方法において、嵌合された前記多孔質
炭化珪素質成形体の隙間部に炭素含有ガスを熱分解させ
て炭素を析出させ、この後前記隙間部を含む前記多孔質
炭化珪素質成形体に溶融シリコンを含浸、反応させるこ
とを特徴としている(以下、第1の接合方法と記す)。
In order to achieve the above object, a method for joining a silicon carbide based material according to the present invention is a silicon carbide in which a convex portion and a concave portion of a porous silicon carbide based molded article are fitted and joined together. In a method for joining a porous material, a carbon-containing gas is thermally decomposed in a gap portion of the fitted porous silicon carbide-based molded body to deposit carbon, and thereafter, the porous silicon carbide-based molding including the gap portion is formed. It is characterized in that the body is impregnated with molten silicon and reacted (hereinafter referred to as the first joining method).

【0010】また本発明に係る炭化珪素質材料の接合方
法は、多孔質炭化珪素質成形体の凸部と凹部を嵌合させ
て接合する炭化珪素質材料の接合方法において、前記多
孔質炭化珪素質成形体の凸部及び/又は凹部に炭素含有
ガスを熱分解させて炭素を析出させ、この後前記炭化珪
素質成形体を嵌合し、嵌合部を含む前記多孔質炭化珪素
質成形体に溶融シリコンを含浸、反応させることを特徴
としている(以下、第2の接合方法と記す)。
The method for joining silicon carbide-based materials according to the present invention is the method for joining silicon carbide-based materials in which the convex portions and the concave portions of the porous silicon carbide-based molded body are fitted and joined. The carbon-containing gas is thermally decomposed into the convex portions and / or the concave portions of the green compact to deposit carbon, and then the silicon carbide compact is fitted to the porous silicon carbide compact including the fitting portion. It is characterized in that molten silicon is impregnated into and reacted with the molten silicon (hereinafter referred to as a second joining method).

【0011】まず、本発明の第1の接合方法について説
明する。本発明の第1の接合方法においては、嵌合され
た前記多孔質炭化珪素質成形体の隙間部に炭素含有ガス
を熱分解させて炭素を析出させる。
First, the first joining method of the present invention will be described. In the first joining method of the present invention, carbon-containing gas is thermally decomposed in the gap portion of the fitted porous silicon carbide-based compact to deposit carbon.

【0012】前記多孔質炭化珪素質成形体は、炭化珪素
単独、炭化珪素と炭素との複合材又は炭化珪素とシリコ
ンとの複合材から構成される。
The porous silicon carbide molding is composed of silicon carbide alone, a composite material of silicon carbide and carbon, or a composite material of silicon carbide and silicon.

【0013】前記多孔質炭化珪素質成形体が炭化珪素単
独又は炭化珪素とシリコンより構成されるものである場
合、その密度は、1.5〜2.2g/cm3 であること
が好ましい。この場合、前記多孔質炭化珪素質成形体
は、炭化珪素粉末に適量の樹脂等の結合剤を加えて成形
し、予備焼成(仮焼)を行って前記樹脂を消失させるこ
とにより得られる。原料として用いられる炭化珪素粉末
は、α型、β型のいずれでもよく、また前記α型炭化珪
素粉末とβ型炭化珪素粉末との混合物であってもよい。
When the porous silicon carbide molded body is composed of silicon carbide alone or composed of silicon carbide and silicon, its density is preferably 1.5 to 2.2 g / cm 3 . In this case, the porous silicon carbide-based molded body is obtained by adding an appropriate amount of a binder such as a resin to silicon carbide powder, molding the mixture, and performing preliminary firing (calcination) to eliminate the resin. The silicon carbide powder used as a raw material may be either α type or β type, or may be a mixture of the α type silicon carbide powder and the β type silicon carbide powder.

【0014】前記多孔質炭化珪素質成形体が、炭化珪素
と炭素との複合材から構成されるものである場合、前記
炭化珪素に対する前記炭素の割合は0〜10wt%であ
ることが好ましく、その密度は1.4〜2.1g/cm
3 であることが好ましい。前記多孔質炭化珪素質成形体
も、炭化珪素粉末及び炭素粉末に適量の結合剤等を加え
て成形し、予備焼成を行うことにより得られる。この場
合、原料の炭素粉末としては、黒鉛、カーボンブラック
等が用いられる他、結合剤として添加した樹脂等を適当
な雰囲気で加熱することにより炭素化させることもでき
る。炭化珪素粉末は、前記炭化珪素単独の場合に構成さ
れる前記成形体の原料粉末と同様のものでよい。また、
半導体用治具等は高純度を要求される製品であるため、
接合によりこれらの製品を製造する場合には、炭化珪素
粉末や炭素も高純度のものを用いる必要があり、その純
度は半導体に有害な元素が1ppm以下程度が好まし
い。
When the porous silicon carbide molded body is composed of a composite material of silicon carbide and carbon, the ratio of the carbon to the silicon carbide is preferably 0 to 10 wt%. Density is 1.4 to 2.1 g / cm
It is preferably 3 . The porous silicon carbide-based molded product can also be obtained by adding an appropriate amount of a binder or the like to silicon carbide powder and carbon powder, and molding and pre-baking. In this case, graphite, carbon black, or the like is used as the raw material carbon powder, or it can be carbonized by heating a resin or the like added as a binder in an appropriate atmosphere. The silicon carbide powder may be the same as the raw material powder of the compact formed when the silicon carbide is used alone. Also,
Since jigs for semiconductors are products that require high purity,
When manufacturing these products by bonding, it is necessary to use high-purity silicon carbide powder and carbon, and the purity is preferably about 1 ppm or less of elements harmful to semiconductors.

【0015】前記した構成の複数の多孔質炭化珪素質成
形体は、それぞれ凸部や凹部が形成されており、前記凸
部と凹部を嵌合させ、嵌合された前記多孔質炭化珪素質
成形体の隙間部に、炭素含有ガスを熱分解させて炭素を
析出させる。
The plurality of porous silicon carbide-based compacts having the above-described structure are respectively formed with a convex portion and a concave portion, and the convex portion and the concave portion are fitted to each other, and the fitted porous silicon carbide-based molded article is formed. The carbon-containing gas is thermally decomposed in the space of the body to deposit carbon.

【0016】前記多孔質炭化珪素質成形体の凹部は貫通
孔でも構わない。嵌合させた後に形成される嵌合部の隙
間は、その幅が0.1〜1mm程度であるのが好まし
い。
The recess of the porous silicon carbide molding may be a through hole. It is preferable that the width of the fitting portion formed after fitting is about 0.1 to 1 mm.

【0017】前記炭素含有ガスとしては、例えばメタ
ン、エタン、プロパン、ブタン、エチレン、アセチレン
等の炭化水素ガス、モノクロロエチレン、ジクロロエチ
レン、テトラクロロエタン、トリクロロエタン等のハロ
ゲン化炭化水素ガス等が挙げられる。
Examples of the carbon-containing gas include hydrocarbon gases such as methane, ethane, propane, butane, ethylene and acetylene, halogenated hydrocarbon gases such as monochloroethylene, dichloroethylene, tetrachloroethane and trichloroethane.

【0018】前記炭素含有ガスは、通常600〜100
0℃程度の温度で熱分解するため、例えば前記炭素含有
ガスを熱分解する温度より低い温度で、炭素を析出させ
る系内に導入し、前記多孔質炭化珪素質成形体の温度を
熱分解可能な所定の温度に設定する。これにより、前記
炭素含有ガスは前記多孔質炭化珪素質成形体の隙間部に
近づくと温度が上昇して分解され、炭素を析出させる。
前記多孔質炭化珪素質成形体の内部にも多少は炭素が析
出するが、後の工程でシリコンと反応し、むしろ強度が
高くなるために問題はない。炭素の析出量は、前記多孔
質炭化珪素質成形体の温度やガス流量等を調整すること
により、制御することができる。
The carbon-containing gas is usually 600 to 100.
Since it is thermally decomposed at a temperature of about 0 ° C., it can be introduced into the system for precipitating carbon at a temperature lower than the temperature at which the carbon-containing gas is thermally decomposed, and the temperature of the porous silicon carbide-based compact can be thermally decomposed. Set to a predetermined temperature. As a result, the carbon-containing gas is decomposed due to an increase in temperature as it approaches the gap of the porous silicon carbide-based compact, and carbon is deposited.
Although some carbon will be deposited inside the porous silicon carbide molded body, there is no problem because it reacts with silicon in a later step and rather increases the strength. The amount of carbon deposited can be controlled by adjusting the temperature, gas flow rate, and the like of the porous silicon carbide-based compact.

【0019】前記隙間部に析出させる炭素の量は、前記
隙間部全体の体積に対し5〜40体積%が好ましい。前
記隙間部の体積が5体積%未満では反応焼結による効果
が十分でないために接合強度が充分でなく、40体積%
を越えると反応焼結によって生成する炭化珪素の容積が
前記隙間部の容積を越えるためクラックが発生する場合
がある。
The amount of carbon deposited in the gap is preferably 5 to 40% by volume with respect to the entire volume of the gap. If the volume of the gap is less than 5% by volume, the effect of the reaction sintering is not sufficient, resulting in insufficient bonding strength.
If it exceeds, the volume of silicon carbide generated by reaction sintering exceeds the volume of the gap portion, and thus cracks may occur.

【0020】熱分解反応によって生成する炭素粉末は、
黒鉛粉末やカーボンブラック等よりも粒径が細かく、ア
モルファス状であるため溶融シリコンと極めて容易に反
応し、形成される炭化珪素とシリコンの複合体も高強度
のものとなる。また、析出する炭素は高純度の炭素含有
ガスを原料としているので、金属不純物が存在せず極め
て高純度である。
The carbon powder produced by the thermal decomposition reaction is
Since the particle size is smaller than that of graphite powder or carbon black and it is amorphous, it reacts extremely easily with molten silicon, and the composite of silicon carbide and silicon formed also has high strength. In addition, since the precipitated carbon is made of a high-purity carbon-containing gas as a raw material, it has an extremely high purity with no metal impurities.

【0021】この後、前記工程により炭素の析出した前
記隙間部に溶融シリコンを含浸させて反応させる接合処
理を行い、前記嵌合部に反応焼結炭化珪素を生成させ
る。
After that, a joining process is performed in which molten silicon is impregnated in the gap portion where the carbon is deposited in the above step to cause a reaction, and reactive sintered silicon carbide is generated in the fitting portion.

【0022】前記接合処理はAr等の不活性ガスあるい
は減圧下で行うことができるが、溶融シリコン含浸性の
改善のためには減圧下で行うことが好ましい。溶融させ
るシリコンも高純度のものが好ましく、高純度の製品を
得ようとする場合には、Fe、Ni、Cr、Cu、N
a、K、Mo等の不純物の濃度が1ppm程度以下のも
のを使用する必要がある。
The above-mentioned joining treatment can be carried out under an inert gas such as Ar or under reduced pressure, but it is preferable to carry out under reduced pressure in order to improve the molten silicon impregnation property. The silicon to be melted is also preferably of high purity, and when a high-purity product is to be obtained, Fe, Ni, Cr, Cu, N
It is necessary to use those in which the concentration of impurities such as a, K and Mo is about 1 ppm or less.

【0023】加熱温度は1450〜1600℃程度が好
ましく、また加熱時間は、前記多孔質炭化珪素質成形体
の寸法、組成、仮焼温度によって異なるが、30分間〜
20時間程度が好ましい。さらに昇温速度も前記多孔質
炭化珪素質成形体の寸法、肉厚によって適宜調整され
る。
The heating temperature is preferably about 1450 to 1600 ° C., and the heating time varies depending on the size, composition, and calcination temperature of the porous silicon carbide molded body, but is 30 minutes to
About 20 hours is preferable. Furthermore, the rate of temperature rise is appropriately adjusted depending on the size and wall thickness of the porous silicon carbide molded body.

【0024】嵌合された前記多孔質炭化珪素質成形体に
溶融させた金属シリコンを含浸させると前記隙間部内部
の炭素と反応して、炭化珪素を生じながら緻密化が起こ
り、前記多孔質炭化珪素質成形体及び反応終了後に残留
する前記隙間部の気孔にさらに金属シリコンが充填さ
れ、緻密な接合体となる。この時、前記隙間部には熱分
解炭素が存在するため、前記隙間部の体積は実質的に減
少し、毛細管現象による溶融シリコンの含浸はより容易
となる。また仮焼時に樹脂等の炭素分により前記多孔質
炭化珪素質成形体表面の酸素が除去されるため、溶融シ
リコンと前記多孔質炭化珪素質成形体とのぬれ性が改善
され、接合がより容易となる。
When the fitted porous silicon carbide molded body is impregnated with molten metallic silicon, it reacts with the carbon inside the gap to generate densification while generating silicon carbide, and the porous carbonized The silicon-based compact and the pores in the gap remaining after the completion of the reaction are further filled with metallic silicon to form a dense bonded body. At this time, since pyrolytic carbon is present in the gap, the volume of the gap is substantially reduced, and the impregnation of the molten silicon by the capillary phenomenon becomes easier. Further, since oxygen on the surface of the porous silicon carbide molded body is removed by the carbon content of the resin or the like during calcination, the wettability between the molten silicon and the porous silicon carbide molded body is improved, and bonding is easier. Becomes

【0025】前記第1の接合方法により、前記した簡単
な方法で、高強度な接合体が得られる。また、得られた
接合体は炭化珪素成形体とシリコンのみからなり、ホッ
トプレスのプレスロッド等と接触することはなく、析出
する炭素材料も高純度であるので、高純度な製品を得る
ことができる。
According to the first joining method, a high-strength joined body can be obtained by the above-mentioned simple method. Further, the obtained joined body is composed only of the silicon carbide molded body and silicon, does not come into contact with the press rod of the hot press, etc., and the deposited carbon material is also of high purity, so that a high-purity product can be obtained. it can.

【0026】次に、本発明の第2の接合方法について説
明する。本発明の第2の接合方法では、多孔質炭化珪素
質成形体の凸部と凹部を嵌合させて接合する炭化珪素質
材料の接合方法において、嵌合させる前記多孔質炭化珪
素質成形体の凸部及び/又は凹部に、まず炭素含有ガス
を熱分解させて炭素を析出させておき、この後前記炭化
珪素質成形体を嵌合する。
Next, the second joining method of the present invention will be described. In the second joining method of the present invention, in the joining method of the silicon carbide based material, wherein the convex portion and the concave portion of the porous silicon carbide based molded article are fitted and joined, the porous silicon carbide based molded article to be fitted is First, the carbon-containing gas is thermally decomposed to deposit carbon in the convex portion and / or the concave portion, and then the silicon carbide molding is fitted.

【0027】この場合に用いられる多孔質炭化珪素質成
形体、炭素含有ガス等は第1の接合方法と同様である。
また、多孔質炭化珪素質成形体の凸部及び/又は凹部に
炭素を析出させる際の炭素含有ガスの熱分解の条件は、
第1の接合方法と同じか、若干高い温度で行われる。
The porous silicon carbide compact, the carbon-containing gas and the like used in this case are the same as in the first joining method.
In addition, the conditions for the thermal decomposition of the carbon-containing gas when depositing carbon on the convex portions and / or concave portions of the porous silicon carbide-based molded body are as follows:
It is performed at the same temperature as the first joining method or slightly higher temperature.

【0028】その後は、前記第1の接合方法と同様に溶
融シリコンを含浸、反応させ、嵌合部に反応焼結炭化珪
素を生成させる。このときの条件も前記第1の接合方法
の場合の条件と同様でよい。
After that, molten silicon is impregnated and reacted in the same manner as in the first joining method to produce reaction-bonded silicon carbide in the fitting portion. The conditions at this time may be the same as the conditions in the case of the first joining method.

【0029】前記第2の接合方法により、簡単な方法
で、高強度な接合体が得られる。また、得られた接合体
は炭化珪素成形体とシリコンのみからなり、他の焼結用
部材と接触することはなく、析出する炭素材料も高純度
であるので、高純度な製品を得ることができる。
With the second joining method, a high-strength joined body can be obtained by a simple method. Further, the obtained joined body is composed only of the silicon carbide molded body and silicon, does not come into contact with other sintering members, and the deposited carbon material is also of high purity, so that a high-purity product can be obtained. it can.

【0030】[0030]

【作用】上記構成の第1の接合方法によれば、多孔質炭
化珪素質成形体の凸部と凹部を嵌合させて接合する炭化
珪素質材料の接合方法において、嵌合された前記多孔質
炭化珪素質成形体の隙間部に炭素含有ガスを熱分解させ
て炭素を析出させ、この後前記隙間部を含む前記多孔質
炭化珪素質成形体に溶融シリコンを含浸、反応させるの
で、複雑な装置を必要とせず、簡単な方法で、均一な密
度や強度を有し、接合部の接合強度も十分高い接合体が
得られる。
According to the first joining method of the above construction, in the joining method of the silicon carbide based material, the projections and the recesses of the porous silicon carbide based molded article are fitted and joined to each other. A carbon-containing gas is thermally decomposed in the gap portion of the silicon carbide molded body to deposit carbon, and thereafter, the porous silicon carbide molded body including the gap portion is impregnated with molten silicon to cause a reaction. It is possible to obtain a bonded body having a uniform density and strength and a sufficiently high bonding strength at the bonding portion by a simple method without the need for.

【0031】また高純度の炭化珪素や結合剤を用いた場
合、接合過程で不純物の混入がないので、極めて純度の
高い半導体製造用の耐熱性治具等が得られる。
When high-purity silicon carbide or a binder is used, impurities are not mixed in during the joining process, so that a heat-resistant jig or the like for semiconductor manufacture having an extremely high purity can be obtained.

【0032】また、上記構成の第2の炭化珪素質材料の
接合方法によれば、多孔質炭化珪素質成形体の凸部と凹
部を嵌合させて接合する炭化珪素質材料の接合方法にお
いて、前記多孔質炭化珪素質成形体の凸部及び/又は凹
部に炭素含有ガスを熱分解させて炭素を析出させ、この
後前記炭化珪素質成形体を嵌合し、嵌合部を含む前記多
孔質炭化珪素質成形体に溶融シリコンを含浸、反応させ
るので、簡単な方法で、均一な密度や強度を有し、接合
部の接合強度も十分高い接合体が得られる。
According to the second method for joining silicon carbide based materials having the above structure, in the method for joining silicon carbide based materials in which the convex portion and the concave portion of the porous silicon carbide based molded article are fitted and joined to each other, The carbon-containing gas is pyrolyzed to the convex portions and / or the concave portions of the porous silicon carbide molded body to deposit carbon, and then the silicon carbide molded body is fitted to the porous silicon carbide molded body including the fitting portion. Since the silicon carbide molded body is impregnated with molten silicon and reacted, a bonded body having a uniform density and strength and a sufficiently high bonding strength at the bonded portion can be obtained by a simple method.

【0033】また高純度の炭化珪素や結合剤を用いた場
合、接合過程で不純物の混入がないので、極めて純度の
高い半導体製造用の耐熱性治具等が得られる。
Further, when high-purity silicon carbide or a binder is used, impurities are not mixed in during the joining process, so that a heat-resistant jig or the like for semiconductor manufacture having an extremely high purity can be obtained.

【0034】[0034]

【実施例】以下に、本発明に係る炭化珪素質材料の接合
方法の実施例を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for joining silicon carbide based materials according to the present invention will be described below with reference to the drawings.

【0035】[実施例1〜4]平均粒径30μmのα型
炭化珪素粉80重量%に結合剤としてフェノール樹脂1
0重量%と溶剤メタノール10重量%とを加えて混練
し、乾燥、造粒を行った。この造粒操作で得られた粉末
を2種類の金型に充填し、金型プレスにより500kg
/cm2 の条件で加圧成形した。
Examples 1 to 4 80% by weight of α-type silicon carbide powder having an average particle size of 30 μm and phenol resin 1 as a binder
0% by weight and 10% by weight of methanol as a solvent were added, kneaded, dried and granulated. The powder obtained by this granulation operation is filled in two types of dies, and 500 kg is applied by a die press.
It was pressure-molded under the condition of / cm 2 .

【0036】次いで前記工程で得られた成形体に、窒素
雰囲気下で1000℃、30分間の脱脂処理を施し、ま
たこの処理により前記フェノール樹脂の一部を炭素化
し、凸部又は凹部(貫通孔)を有する2個の多孔質炭化
珪素質成形体を作製した。そして、得られた2個の前記
多孔質炭化珪素質成形体の凸部と貫通孔とを嵌合させ
た。
Next, the molded body obtained in the above step is subjected to a degreasing treatment in a nitrogen atmosphere at 1000 ° C. for 30 minutes, and by this treatment, a part of the phenol resin is carbonized to produce a convex portion or a concave portion (through hole). 2) were produced. Then, the projections and the through holes of the two obtained porous silicon carbide moldings were fitted together.

【0037】図1は嵌合された前記多孔質炭化珪素質成
形体を示した断面図である。
FIG. 1 is a sectional view showing the fitted porous silicon carbide molded body.

【0038】多孔質炭化珪素質成形体11は中央部に貫
通孔を有する円板状成形体であり、多孔質炭化珪素質成
形体12は二つの異なる直径の円柱により構成された成
形体であり、上部の円柱12aは下部の円柱12bより
直径も長さも小さく、多孔質炭化珪素質成形体11の貫
通孔と嵌合できるような大きさに形成されている。ま
た、図1に示しているように、嵌合部分には幅dの隙間
部13が形成されている。
The porous silicon carbide molded body 11 is a disk-shaped molded body having a through hole in the central portion, and the porous silicon carbide molded body 12 is a molded body composed of two cylinders having different diameters. The upper cylinder 12a is smaller in diameter and length than the lower cylinder 12b, and is formed in such a size that it can be fitted into the through hole of the porous silicon carbide molding 11. Further, as shown in FIG. 1, a gap portion 13 having a width d is formed in the fitting portion.

【0039】この嵌合された多孔質炭化珪素質成形体1
1、12に、メタンガス50%、水素50%の雰囲気
下、この多孔質炭化珪素質成形体11、12の温度を9
00℃に設定して2〜20時間熱分解処理し、隙間部1
3に熱分解炭素を析出させた。
This fitted porous silicon carbide molding 1
1 and 12 in an atmosphere of 50% methane gas and 50% hydrogen, the temperature of the porous silicon carbide compacts 11 and 12 was set to 9
Set the temperature to 00 ° C and pyrolyze for 2 to 20 hours.
Pyrolytic carbon was deposited on No. 3.

【0040】その後、隙間部13に炭素が析出した多孔
質炭化珪素質成形体11、12に、1500℃において
溶融シリコンを含浸させたところ、炭素が析出した隙間
部13及び多孔質炭化珪素質成形体11、12の内部ま
でシリコンの充填した接合体が得られた。
After that, when the porous silicon carbide moldings 11 and 12 in which carbon was deposited in the gaps 13 were impregnated with molten silicon at 1500 ° C., the gaps 13 in which carbon was deposited and the porous silicon carbide moldings were formed. A bonded body in which the insides of the bodies 11 and 12 were filled with silicon was obtained.

【0041】表1に隙間部13の幅d、シリコン溶融液
の含浸高さH及び隙間部13への炭素析出量(体積%)
の接合条件と、得られた接合体の隙間部13へのシリコ
ンの充填状態の程度及び曲げ強度とを示している。
Table 1 shows the width d of the gap 13, the impregnation height H of the silicon melt, and the amount of carbon deposited in the gap 13 (volume%).
And the degree of the filling state of silicon into the gap portion 13 of the obtained joined body and the bending strength.

【0042】なお含浸高さは、容器中にシリコン及び嵌
合された多孔質炭化珪素質成形体11、12を入れてシ
リコンを溶融させ、この嵌合された多孔質炭化珪素質成
形体11、12中にシリコン溶融液を含浸させた際の含
浸前のシリコン溶融液表面から嵌合された多孔質炭化珪
素質成形体11、12の最も高い位置までの距離を示
す。また曲げ強度は、接合部が中心となるように試験片
(3mm×4mm×40mm)を切り出し、この試験片
を使用して3点曲げ強度を測定することにより得られた
値である。
As for the impregnation height, the silicon and the fitted porous silicon carbide moldings 11 and 12 are put into a container to melt the silicon, and the fitted porous silicon carbide molding 11 and 12 shows the distance from the surface of the silicon melt before impregnation when the silicon melt was impregnated into 12 to the highest position of the fitted porous silicon carbide-based compact 11, 12. Further, the bending strength is a value obtained by cutting out a test piece (3 mm × 4 mm × 40 mm) so that the joint portion becomes the center, and measuring the three-point bending strength using this test piece.

【0043】[比較例1〜3]隙間部13への炭素析出
量が異なる他は、実施例1の場合と同様に実験を行い、
接合体を得た。
[Comparative Examples 1 to 3] An experiment was conducted in the same manner as in Example 1 except that the amount of carbon deposited in the gap 13 was different.
A joined body was obtained.

【0044】上記実施例と同様に、表1に接合条件と得
られた接合体の物性等とを示している。
Similar to the above example, Table 1 shows the joining conditions and the physical properties of the obtained joined body.

【0045】[実施例5〜7]隙間部13の幅dを0.
8mmとし、炭素析出処理を900℃、8〜40時間と
してその析出量を変化させた以外は実施例1の場合と同
様に実験し、接合体を得た。
[Examples 5 to 7] The width d of the gap portion 13 was set to 0.
A bonded body was obtained by conducting the same experiment as in Example 1 except that the carbon deposition was 8 mm, the carbon deposition treatment was 900 ° C., and the deposition amount was changed for 8 to 40 hours.

【0046】上記実施例と同様に、表1に接合条件と得
られた接合体の物性等とを示している。
Similar to the above examples, Table 1 shows the joining conditions and the physical properties of the obtained joined body.

【0047】[0047]

【表1】 [Table 1]

【0048】[比較例4]炭素の析出を行わなかった他
は、実施例5の場合と同様に実験した。しかし隙間部1
3にはシリコンが充填されず、接合することができなか
った。
[Comparative Example 4] The same experiment as in Example 5 was carried out except that carbon was not deposited. However, the gap 1
3 was not filled with silicon and could not be bonded.

【0049】[実施例8]用いたα型炭化珪素粉末の不
純物含有量が1ppm以下である他は、実施例1の場合
と同様に実験を行い、接合体を得た。
[Example 8] A bonded body was obtained by conducting the same experiment as in Example 1 except that the impurity content of the α-type silicon carbide powder used was 1 ppm or less.

【0050】表2に、接合条件と得られた接合体の物性
等とを示している。
Table 2 shows the joining conditions and the physical properties of the obtained joined body.

【0051】[比較例5]熱分解炭素処理を行わず、隙
間部13に黒鉛粉末とフェノール樹脂の混合物を充填し
た以外は実施例1の場合と同様に実施し、接合体を得
た。
[Comparative Example 5] A bonded body was obtained in the same manner as in Example 1 except that the space 13 was not filled with the pyrolytic carbon and the mixture of the graphite powder and the phenol resin was filled.

【0052】同じく表2に接合条件と得られた接合体の
物性等とを示している。
Similarly, Table 2 shows the joining conditions and the physical properties of the obtained joined body.

【0053】[0053]

【表2】 [Table 2]

【0054】[実施例9〜11]実施例1と同様にし
て、2個の多孔質炭化珪素質成形体11、12を作製し
た。次に、得られた多孔質炭化珪素質成形体12の上部
の円柱12a部分を、メタンガス50%、水素ガス50
%の雰囲気下、多孔質炭化珪素質成形体12の温度を9
00℃に設定して1〜15時間処理し、円柱12a部分
に熱分解炭素を析出させた。
[Examples 9 to 11] Two porous silicon carbide moldings 11 and 12 were prepared in the same manner as in Example 1. Next, the columnar 12a at the upper part of the obtained porous silicon carbide-based molded body 12 was filled with 50% methane gas and 50% hydrogen gas.
%, The temperature of the porous silicon carbide-based compact 12 is set to 9%.
It was set to 00 ° C. and treated for 1 to 15 hours to deposit pyrolytic carbon on the column 12a.

【0055】その後、この炭素が析出した多孔質炭化珪
素質成形体12と多孔質炭化珪素質成形体11とを嵌合
し、1500℃において溶融シリコンを含浸させたとこ
ろ、隙間部13及び多孔質炭化珪素質成形体11、12
の内部までシリコンの充填した接合体が得られた。
After that, the porous silicon carbide molded body 12 having the carbon deposited thereon and the porous silicon carbide molded body 11 were fitted together and impregnated with molten silicon at 1500 ° C. Silicon carbide moldings 11 and 12
As a result, a silicon-filled bonded body was obtained.

【0056】表3に接合条件と得られた接合体の物性等
とを示している。
Table 3 shows the joining conditions and the physical properties of the obtained joined body.

【0057】[0057]

【表3】 [Table 3]

【0058】[0058]

【発明の効果】以上詳細に記述したように本発明に係る
第1の接合方法にあっては、多孔質炭化珪素質成形体の
凸部と凹部を嵌合させて接合する炭化珪素質材料の接合
方法において、嵌合された前記多孔質炭化珪素質成形体
の隙間部に炭素含有ガスを熱分解させて炭素を析出さ
せ、この後前記隙間部を含む前記多孔質炭化珪素質成形
体に溶融シリコンを含浸、反応させるので、複雑な装置
を必要とせず、簡単な方法で、均一な密度や強度を有
し、接合部の接合強度も十分高い接合体を得ることがで
きる。また高純度の炭化珪素や結合剤を用いた場合、接
合過程で不純物の混入がないので、極めて純度の高い半
導体製造用の耐熱性治具等を得ることができる。
As described above in detail, in the first joining method according to the present invention, the silicon carbide material for joining the projections and the depressions of the porous silicon carbide molding by fitting them into each other is joined. In the joining method, the carbon-containing gas is thermally decomposed in the gap of the fitted porous silicon carbide-based compact to deposit carbon, and then melted in the porous silicon carbide-based compact including the gap. Since silicon is impregnated and reacted, it is possible to obtain a bonded body that does not require a complicated device, has a uniform density and strength, and has a sufficiently high bonding strength at the bonding portion by a simple method. Further, when high-purity silicon carbide or a binder is used, impurities are not mixed in during the joining process, so that it is possible to obtain a heat-resistant jig or the like for manufacturing semiconductors of extremely high purity.

【0059】また、本発明に係る第2の接合方法にあっ
ては、多孔質炭化珪素質成形体の凸部と凹部を嵌合させ
て接合する炭化珪素質材料の接合方法において、前記多
孔質炭化珪素質成形体の凸部及び/又は凹部に炭素含有
ガスを熱分解させて炭素を析出させ、この後前記炭化珪
素質成形体を嵌合し、嵌合部を含む前記多孔質炭化珪素
質成形体に溶融シリコンを含浸、反応させるので、簡単
な方法で、均一な密度や強度を有し、接合部の接合強度
も十分高い接合体を得ることができる。また高純度の炭
化珪素や結合剤を用いた場合、接合過程で不純物の混入
がないので、極めて純度の高い半導体製造用の耐熱性治
具等を得ることができる。
Further, in the second joining method according to the present invention, in the joining method for the silicon carbide based material, the projections and the recesses of the porous silicon carbide based molded article are fitted and joined together. The carbon-containing gas is thermally decomposed into the convex portions and / or the concave portions of the silicon carbide-based molded body to deposit carbon, and then the silicon carbide-based molded body is fitted to the porous silicon carbide-based material including the fitting portion. Since the molded body is impregnated with molten silicon and reacted, a bonded body having a uniform density and strength and a sufficiently high bonding strength at the bonded portion can be obtained by a simple method. Further, when high-purity silicon carbide or a binder is used, impurities are not mixed in during the joining process, so that it is possible to obtain a heat-resistant jig or the like for manufacturing semiconductors of extremely high purity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る多孔質炭化珪素質成形体
の接合方法において、嵌合された多孔質炭化珪素質成形
体を示した断面図である。
FIG. 1 is a cross-sectional view showing a fitted porous silicon carbide molded body in a method for joining porous silicon carbide molded bodies according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11、12 多孔質炭化珪素質成形体 13 貫通孔 11, 12 Porous Silicon Carbide Formed Body 13 Through Hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔質炭化珪素質成形体の凸部と凹部を
嵌合させて接合する炭化珪素質材料の接合方法におい
て、嵌合された前記多孔質炭化珪素質成形体の隙間部に
炭素含有ガスを熱分解させて炭素を析出させ、この後前
記隙間部を含む前記多孔質炭化珪素質成形体に溶融シリ
コンを含浸、反応させることを特徴とする炭化珪素質材
料の接合方法。
1. A method for joining a silicon carbide based material in which a convex portion and a concave portion of a porous silicon carbide based molded article are fitted and joined to each other, wherein carbon is provided in a gap portion of the fitted porous silicon carbide based molded article. A method for joining silicon carbide-based materials, characterized in that the contained gas is thermally decomposed to deposit carbon, and then the porous silicon carbide-based compact including the gap is impregnated with molten silicon and reacted.
【請求項2】 多孔質炭化珪素質成形体の凸部と凹部を
嵌合させて接合する炭化珪素質材料の接合方法におい
て、前記多孔質炭化珪素質成形体の凸部及び/又は凹部
に炭素含有ガスを熱分解させて炭素を析出させ、この後
前記炭化珪素質成形体を嵌合し、嵌合部を含む前記多孔
質炭化珪素質成形体に溶融シリコンを含浸、反応させる
ことを特徴とする炭化珪素質材料の接合方法。
2. A method for joining a silicon carbide based material, which comprises fitting and joining a convex portion and a concave portion of a porous silicon carbide based molded article, wherein carbon is applied to the convex and / or concave portions of the porous silicon carbide based molded article. The contained gas is pyrolyzed to deposit carbon, after which the silicon carbide based compact is fitted, and the porous silicon carbide based compact including the fitting part is impregnated with molten silicon and reacted. A method for joining silicon carbide materials.
JP15906693A 1993-06-29 1993-06-29 Joining method of silicon carbide material Expired - Fee Related JP2891042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15906693A JP2891042B2 (en) 1993-06-29 1993-06-29 Joining method of silicon carbide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15906693A JP2891042B2 (en) 1993-06-29 1993-06-29 Joining method of silicon carbide material

Publications (2)

Publication Number Publication Date
JPH0710643A true JPH0710643A (en) 1995-01-13
JP2891042B2 JP2891042B2 (en) 1999-05-17

Family

ID=15685476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15906693A Expired - Fee Related JP2891042B2 (en) 1993-06-29 1993-06-29 Joining method of silicon carbide material

Country Status (1)

Country Link
JP (1) JP2891042B2 (en)

Also Published As

Publication number Publication date
JP2891042B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
EP1425147B1 (en) Process for making porous graphite and articles produced therefrom
US5942455A (en) Synthesis of 312 phases and composites thereof
KR950014719B1 (en) Production of metal carbide articles
EP1761475B1 (en) A process for the manufacturing of dense silicon carbide
US4265843A (en) Method of producing shaped silicon-carbide bodies
US7452389B2 (en) Carbon foam abrasives
JPS6138149B2 (en)
US4124665A (en) Method of making a tungsten carbide body
US5892236A (en) Part for ion implantation device
US5783255A (en) Method for producing shaped article of silicon carbide
JPH0734160A (en) Functionally gradint composite material of copper and carbon and production therefor
JP2891042B2 (en) Joining method of silicon carbide material
JP2708245B2 (en) Hot isostatic pressing method
JPS6186411A (en) Preparation of porous carbon plate
RU2131805C1 (en) Method of manufacturing polycrystalline product
RU2189367C2 (en) Method of manufacturing refractory carbide-containing composite
JP2000026177A (en) Production of silicon-silicon carbide ceramics
JPH0458428B2 (en)
JPH0597520A (en) Production of silicon carbide-based material
JPH01242408A (en) Silicon carbide-graphite composite material and production thereof
CN1566023A (en) Ceramic-metal and ceramic-ceramic light composite material and manufacturing method thereof
JPH03122066A (en) Silicon carbide composite material of aluminum-impregnating type and production thereof
JP2990710B2 (en) Manufacturing method of boron nitride molded body
JPH0127993B2 (en)
RU2045498C1 (en) Method for production of highly porous cellular materials based on carbide ceramics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees