JPH07102317B2 - Discharge reactor electrode - Google Patents

Discharge reactor electrode

Info

Publication number
JPH07102317B2
JPH07102317B2 JP1065267A JP6526789A JPH07102317B2 JP H07102317 B2 JPH07102317 B2 JP H07102317B2 JP 1065267 A JP1065267 A JP 1065267A JP 6526789 A JP6526789 A JP 6526789A JP H07102317 B2 JPH07102317 B2 JP H07102317B2
Authority
JP
Japan
Prior art keywords
electrode
discharge
film
dielectric
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1065267A
Other languages
Japanese (ja)
Other versions
JPH02245236A (en
Inventor
守仁 神沢
弟二 長井
宣光 北嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sapporo Breweries Ltd
Original Assignee
Sapporo Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapporo Breweries Ltd filed Critical Sapporo Breweries Ltd
Priority to JP1065267A priority Critical patent/JPH07102317B2/en
Publication of JPH02245236A publication Critical patent/JPH02245236A/en
Publication of JPH07102317B2 publication Critical patent/JPH07102317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、オゾン発生器やイオン発生器等に利用される
コロナ放電を対象とした放電反応装置の電極に関するも
のである。
TECHNICAL FIELD The present invention relates to an electrode of a discharge reaction device for corona discharge used in an ozone generator, an ion generator or the like.

〔従来技術〕[Prior art]

高圧電極と接地電極の間に誘電体を介在させ、高圧電極
又は接地電極と誘電体の間にコロナ放電を起こさせるオ
ゾン発生器等の放電反応装置には種々の形式及び構造の
ものがあるが、基本的には第1図乃至第3図に示すもの
に分類できる。
There are various types and structures of discharge reaction devices such as ozone generators that intervene a dielectric between the high-voltage electrode and the ground electrode to cause a corona discharge between the high-voltage electrode or the ground electrode and the dielectric. Basically, they can be classified into those shown in FIGS. 1 to 3.

第1図の放電反応装置は高圧電極1と接地電極2との間
に反応空間5及び誘電体3を介在させて配置した構造で
ある。高圧電極1と接地電極2の間に交流高圧電源4か
ら交流高電圧を印加し、高圧電極1と誘電体3の間の反
応空間5にコロナ放電を発生させるようになっている。
The discharge reactor shown in FIG. 1 has a structure in which a reaction space 5 and a dielectric 3 are interposed between a high voltage electrode 1 and a ground electrode 2. An AC high voltage is applied from an AC high voltage power supply 4 between the high voltage electrode 1 and the ground electrode 2 to generate a corona discharge in a reaction space 5 between the high voltage electrode 1 and the dielectric 3.

第2図の放電反応装置は、接地電極2の上に誘電体3を
配置し、その上にこの接地電極2及び誘電体3より小さ
い高圧電極1を配置し、さらにその上に反応空間5を介
在させて放電空間壁6を配置した構造である。
In the discharge reactor of FIG. 2, a dielectric 3 is arranged on a ground electrode 2, a high voltage electrode 1 smaller than the ground electrode 2 and the dielectric 3 is arranged thereon, and a reaction space 5 is further arranged thereon. This is a structure in which the discharge space wall 6 is arranged so as to be interposed.

高圧電極1と接地電極2の間に交流高圧電源4から交流
高電圧を印加し、反応空間5にコロナ放電を発生させる
ようになっている。
An AC high voltage is applied from an AC high voltage power supply 4 between the high voltage electrode 1 and the ground electrode 2 to generate a corona discharge in the reaction space 5.

第3図の放電反応装置は断面鋸歯状の高圧電極1と接地
電極2との間に誘電体3を介在させて配置した構造であ
る。高圧電極1と接地電極2の間に交流高圧電源4から
交流高電圧を印加し、高圧電極1と誘電体3の間の反応
空間5にコロナ放電を発生させるようになっている。
The discharge reactor of FIG. 3 has a structure in which a dielectric 3 is interposed between a high voltage electrode 1 having a sawtooth cross section and a ground electrode 2. An AC high voltage is applied from an AC high voltage power supply 4 between the high voltage electrode 1 and the ground electrode 2 to generate a corona discharge in a reaction space 5 between the high voltage electrode 1 and the dielectric 3.

なお、第1図乃至第3図はいずれも誘電体3の下側の電
極を接地電極としているが、交流高圧電源4の方向を入
れ換え接地電極2を高圧電極にすると共に高圧電極1を
接地電極とし、誘電体3と接地電極の間にコロナ放電を
発生させる放電装置とすることもできる。
In all of FIGS. 1 to 3, the lower electrode of the dielectric 3 is used as the ground electrode, but the direction of the AC high-voltage power supply 4 is changed to use the ground electrode 2 as the high-voltage electrode and the high-voltage electrode 1 as the ground electrode. It is also possible to use a discharge device that generates a corona discharge between the dielectric 3 and the ground electrode.

上記第1図乃至第3図の放電反応装置において、高圧電
極1は導電性を有し、コロナ放電及び反応生成物、例え
ば、オゾンの浸食に耐える必要があることから、放電密
度が比較的低い第1図に示す構造の放電反応装置では、
オーステナイト系ステンレス鋼が電極材として一般的に
使用されており、放電密度が高い第2図及び第3図に示
す構造の放電反応装置ではタングステン又はチタンが電
極材として用いられることが多い。
In the discharge reaction apparatus shown in FIGS. 1 to 3, the high-voltage electrode 1 has conductivity and needs to withstand corona discharge and erosion of reaction products such as ozone, so that the discharge density is relatively low. In the discharge reactor having the structure shown in FIG. 1,
Austenitic stainless steel is generally used as an electrode material, and tungsten or titanium is often used as an electrode material in the discharge reactor having the structure shown in FIGS. 2 and 3 which has a high discharge density.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

高圧電極1の表面は酸化力が強い高濃度オゾンと高密度
イオンの混合場に曝されるので電極が消耗したり、電極
物質が金属ヒューム或いは酸化物微粉となって吐出ガス
中に混入することがある。また、高圧電極の材質によっ
ては、その触媒作用によって原料ガス中の不純物を変質
させ、高圧電極1及び誘電体3の表面を汚染することが
ある。
The surface of the high-voltage electrode 1 is exposed to a mixed field of high-concentration ozone and high-density ions, which have strong oxidizing power, so that the electrode is consumed or the electrode substance becomes metal fume or oxide fine powder and is mixed in the discharge gas. There is. Further, depending on the material of the high-voltage electrode, the catalytic action thereof may change the impurities in the raw material gas and contaminate the surfaces of the high-voltage electrode 1 and the dielectric 3.

高圧電極1の消耗は放電反応装置の性能低下及び寿命短
縮を招き、吐出ガスへの不純物の混入は吐出ガスによる
被処理物の汚染を招き、また放電面の汚染は性能低下及
び異常放電を招く原因となる。これらの傾向は、一般に
放電密度が高いと顕著になる。
The consumption of the high-voltage electrode 1 causes the performance of the discharge reactor to be deteriorated and the service life thereof to be shortened. The inclusion of impurities in the discharge gas causes the object to be treated to be contaminated by the discharge gas, and the contamination of the discharge surface causes the performance to deteriorate and the abnormal discharge. Cause. These tendencies are generally remarkable when the discharge density is high.

本発明は上述の点に鑑みてなされたもので、上記不都合
を軽減又は排除しうる放電反応装置の電極を提供するこ
とにある。
The present invention has been made in view of the above points, and it is an object of the present invention to provide an electrode of a discharge reaction device capable of reducing or eliminating the above inconvenience.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題を解決するため本発明は、高圧電極と接地電極
の間に誘電体を介在させ、該誘電体と前記高圧電極の間
(第1図乃至第3図参照)又は誘電体と接地電極の間
(第1図乃至第3図において交流高圧電源4の方向を入
れ換え接地電極2を高圧電極にすると共に高圧電極1を
接地電極とした場合)にコロナ放電を発生させる放電反
応装置において、コロナ放電と接する側の電極材をアル
ミニウム又はアルミニウム合金とし、該電極の少なくと
もコロナ放電と接する領域を厚さ8μm以上の陽極酸化
処理膜で被覆するか、或いは該電極材をチタン又はチタ
ン合金とし、該電極の少なくともコロナ放電と接する領
域を厚さ15μm以上の陽極酸化処理膜又は厚さ5μm以
上の高温酸化処理膜で被覆したことを特徴とする。
In order to solve the above problems, the present invention interposes a dielectric between a high-voltage electrode and a ground electrode, and between the dielectric and the high-voltage electrode (see FIGS. 1 to 3) or between the dielectric and the ground electrode. In a discharge reaction device for generating a corona discharge between (when the direction of the AC high-voltage power supply 4 is changed and the ground electrode 2 is used as the high-voltage electrode and the high-voltage electrode 1 is used as the ground electrode in FIGS. 1 to 3), The electrode material on the side contacting with is aluminum or aluminum alloy, and at least the region of the electrode in contact with corona discharge is covered with an anodizing film having a thickness of 8 μm or more, or the electrode material is titanium or titanium alloy, At least a region in contact with the corona discharge is coated with an anodizing film having a thickness of 15 μm or more or a high temperature oxidation film having a thickness of 5 μm or more.

〔作用〕[Action]

本発明によると高圧電極と接地電極の間に誘電体を介在
させ、該誘電体と高圧電極又は接地電極の間にコロナ放
電を発生させる放電反応装置において、コロナ放電と接
する側の電極材をアルミニウム又はアルミニウム合金も
しくはチタン又はチタン合金とし、該電極の少なくとも
コロナ放電と接する領域を上記の如く陽極酸化処理膜又
は高温酸化処理膜で被覆することにより、電極からの超
微粒子の発生、電極材の蒸発消耗を低減し、また、電極
及び誘電体表面の汚染を防ぐことができる。その結果と
して、放電反応装置の長期間にわたる性能の安定化、寿
命の延長、吐出ガスへの不純物の混入の低減が可能にな
る。
According to the present invention, in a discharge reaction device in which a dielectric is interposed between a high voltage electrode and a ground electrode and corona discharge is generated between the dielectric and the high voltage electrode or the ground electrode, the electrode material on the side in contact with the corona discharge is aluminum. Alternatively, by forming an aluminum alloy, titanium, or titanium alloy, and coating at least a region of the electrode in contact with corona discharge with the anodizing film or the high-temperature oxidizing film as described above, generation of ultrafine particles from the electrode and evaporation of the electrode material. It is possible to reduce consumption and prevent contamination of the electrode and the dielectric surface. As a result, it becomes possible to stabilize the performance of the discharge reactor over a long period of time, extend the life of the discharge reactor, and reduce the inclusion of impurities in the discharge gas.

上記作用が生じるメカニズムは必ずしも定かでないが、
耐食性が大きく、強固で、蒸気圧が低く且つ特定の方法
(既に確立している技術である陽極酸化処理及び高温酸
化処理)で形成した絶縁性酸化物厚膜で電極表面を被覆
したことに起因していると考えられる。アルミニウム及
びアルミニウム合金或いはチタン及びチタン合金の無処
理材でも、厚さ0.01〜0.1μm程度の薄い自然酸化膜が
形成されるが、その絶縁破壊抵抗が本発明の対象とする
放電装置の付加電圧より低いため、この自然酸化膜では
破壊、微粉化し、その後の酸化膜の生成速度より破壊速
度が大きいために電極の損傷が進行する。また、人工的
に被覆した酸化膜でも、酸化物の組成、結晶構造、結晶
方位、成膜方法によって、膜の絶縁破壊抵抗、機械的強
度、耐放電性、耐化学的腐食性及び化学的活性度、電極
基材との界面強度が異なり、該電極の耐久性及び触媒作
用の強弱は酸化膜の厚さだけの問題ではない。特定の成
膜法で特定の厚さに被覆することによって、放電損傷が
殆ど無く、電極基材との界面強度が強く、絶縁破壊が起
きず、ひいては厚膜の破壊が起きなくなると考えられ
る。陽極酸化処理膜も高温酸化処理膜も電極基材の表層
を改質したものなので、溶射やスパッタリングによって
被覆した膜とは異なり、酸化膜と電極基材との界面強度
が強く、また膜厚を厚くし得ることが上記作用に大きく
寄与していると考えられる。また、電極材表面に、酸化
物であってもクロームや金を含む材質が存在するとター
ル状の有機物が生じ、これが微粉とともに、電極及び誘
電体の汚染を引き起こす傾向が認められたが、本発明の
電極被覆には、それらの金属成分が含まれないので、タ
ール状有機物の発生、付着も防げる。
Although the mechanism by which the above action occurs is not always clear,
Corrosion resistance is high, it is strong, vapor pressure is low, and it is caused by coating the electrode surface with an insulating oxide thick film formed by a specific method (anodizing treatment and high temperature oxidation treatment which are already established technologies). it seems to do. Even with untreated aluminum and aluminum alloys or titanium and titanium alloys, a thin natural oxide film having a thickness of about 0.01 to 0.1 μm is formed, but its dielectric breakdown resistance is higher than the applied voltage of the discharge device targeted by the present invention. Since it is low, the natural oxide film is broken and pulverized, and the damage speed of the oxide film is higher than the subsequent generation speed of the oxide film. In addition, even with an artificially coated oxide film, the dielectric breakdown resistance, mechanical strength, discharge resistance, chemical corrosion resistance, and chemical activity of the film depend on the oxide composition, crystal structure, crystal orientation, and film formation method. The interface strength with the electrode substrate is different, and the durability and strength of the catalytic action of the electrode are not the only problem of the thickness of the oxide film. It is considered that by coating with a specific thickness by a specific film forming method, there is almost no discharge damage, the interface strength with the electrode base material is strong, dielectric breakdown does not occur, and eventually the thick film does not break. Since both the anodized film and the high-temperature oxidized film are obtained by modifying the surface layer of the electrode substrate, unlike the film coated by thermal spraying or sputtering, the interface strength between the oxide film and the electrode substrate is strong, and the film thickness is It is considered that the increase in thickness contributes significantly to the above action. Further, on the surface of the electrode material, even if it is an oxide, if a material containing chrome or gold is present, a tar-like organic substance is generated, and this tends to cause contamination of the electrode and the dielectric material together with the fine powder. Since these metal components are not included in the electrode coating, the generation and adhesion of tar-like organic substances can be prevented.

〔実施例〕〔Example〕

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

本実施例では、放電反応装置は放電密度を高くし易い、
つまり電極材にとって過酷となる第3図に示す構造のも
のを用い、コロナ放電と接する側の高圧電極1をアルミ
ニウム又はアルミニウム合金製とし、該高圧電極1の表
面を陽極酸化処理膜で被覆するか、或いは高圧電極1を
チタン製とし、該高圧電極1の表面を陽極酸化処理膜又
は高温酸化処理膜で被覆した。
In this example, the discharge reactor is easy to increase the discharge density,
That is, the structure shown in FIG. 3 which is harsh for the electrode material is used, and the high-voltage electrode 1 on the side in contact with the corona discharge is made of aluminum or an aluminum alloy, and the surface of the high-voltage electrode 1 is covered with an anodized film. Alternatively, the high-voltage electrode 1 was made of titanium, and the surface of the high-voltage electrode 1 was covered with an anodized film or a high-temperature oxidized film.

第4図は第3図に示す構造の放電反応装置において、高
圧電極1をアルミニウム,アルミニウム合金製又はチタ
ン製としその表面に上記処理膜を形成した本実施例と各
種比較例との実験結果を示す図である。同図において、
各実施例及び比較例は高圧電極1に下記の電極を用い、
2W/cm2以上の高密度放電及び150mg/Nl以上の高濃度オゾ
ンの複合場で5000時間運転して、超微粉の発生状態、電
極の浸食状態、電極及び誘電体の汚染状態を観察した結
果を示している。
FIG. 4 shows the experimental results of the present embodiment and various comparative examples in which the high-voltage electrode 1 is made of aluminum, aluminum alloy or titanium and the treatment film is formed on the surface of the discharge reactor having the structure shown in FIG. FIG. In the figure,
In each Example and Comparative Example, the following electrode was used for the high voltage electrode 1,
The result of observing the generation state of ultra-fine powder, the erosion state of the electrode, and the contamination state of the electrode and dielectric by operating for 5000 hours in the complex field of high-density discharge of 2 W / cm 2 or more and high-concentration ozone of 150 mg / Nl or more Is shown.

実施例Aはアルミニウム電極の表面に膜厚約40μmの硬
質アルマイト膜を陽極酸化処理により形成したものであ
る。
In Example A, a hard alumite film having a thickness of about 40 μm was formed on the surface of an aluminum electrode by anodizing treatment.

実施例Bはアルミニウム電極の表面に膜厚約20μmの硬
質アルマイト膜を陽極酸化処理により形成したものであ
る。
In Example B, a hard alumite film having a thickness of about 20 μm was formed on the surface of an aluminum electrode by anodizing treatment.

実施例Cはアルミニウム合金(Al−Mg系)電極の表面に
膜厚約8μmの硬質アルマイト膜を陽極酸化処理により
形成したものである。
In Example C, a hard alumite film having a thickness of about 8 μm was formed on the surface of an aluminum alloy (Al—Mg type) electrode by anodizing treatment.

実施例Dはアルミニウム電極の表面に膜厚約20μmの硫
酸アルマイト膜を陽極酸化処理により形成したものであ
る。
In Example D, an alumite sulfate film having a thickness of about 20 μm was formed on the surface of an aluminum electrode by anodizing treatment.

比較例Eはアルミニウム電極の表面を無処理としたもの
である。
In Comparative Example E, the surface of the aluminum electrode was untreated.

比較例Fはアルミニウム電極の表面に、MBV法(Na2CO3
とNa2CrO4の混合液による化成処理の一つ)により膜厚
約1μmの化成処理膜を形成したものである。
In Comparative Example F, the MBV method (Na 2 CO 3
And it is obtained by forming a chemical conversion film having a thickness of about 1μm by Na one 2 chemical conversion treatment with a mixture of CrO 4).

実施例Gはチタン電極の表面に、硫酸,リン酸混合液に
より膜厚約15μmの陽極酸化処理膜を形成したものであ
る。
In Example G, an anodized film having a thickness of about 15 μm was formed on the surface of a titanium electrode by using a mixed solution of sulfuric acid and phosphoric acid.

比較例Hはチタン電極の表面に、硫酸,リン酸混合液に
より膜厚約5μmの陽極酸化処理膜を形成したものであ
る。
In Comparative Example H, an anodized film having a film thickness of about 5 μm was formed on the surface of a titanium electrode with a mixed solution of sulfuric acid and phosphoric acid.

実施例Jはチタン電極の表面に、大気中、温度950℃に
おいて膜厚約5μmの高温酸化処理膜を形成したもので
ある。
In Example J, a high temperature oxidation-treated film having a film thickness of about 5 μm was formed on the surface of a titanium electrode in the air at a temperature of 950 ° C.

比較例Kはチタン電極の表面を無処理としたものであ
る。
In Comparative Example K, the surface of the titanium electrode was untreated.

比較例Lは18−8ステンレス鋼電極を無処理としたもの
である。
Comparative Example L is an 18-8 stainless steel electrode untreated.

比較例Mはタングステン箔電極を無処理としたものであ
る。
In Comparative Example M, the tungsten foil electrode was untreated.

第4図から明らかなように、電極にアルミニウムの無処
理材又は化成処理材を用いた比較例E.F及びチタンの無
処理材又は18−8ステンレス鋼の無処理材或いはタング
ステン箔の無処理材を用いた比較例K,L,Mでは、5000時
間の運転において超微粉の発生、電極の浸食又は電極や
誘電体の汚染のいずれかの不都合が発生している。一
方、電極としてアルミニウム或いはアルミニウム合金に
厚さ8μm以上の陽極酸化処理膜を被覆したものを用い
た実施例A,B,C,Dでは何れの不都合も認められない。ま
た、電極としてチタンに陽極酸化処理膜または高温酸化
処理膜を被覆した実施例G,J,比較例Hの内実施例G,Jで
はいずれの不都合も発生せず、比較例Hでは極軽微の超
微粉発生及びその誘電体への付着が認められた。
As is apparent from FIG. 4, a comparative example EF in which an aluminum untreated material or a chemical conversion treated material was used for the electrode, a titanium untreated material, an 18-8 stainless steel untreated material, or a tungsten foil untreated material was used. In Comparative Examples K, L, and M used, inconveniences such as generation of ultrafine powder, erosion of electrodes, and contamination of electrodes and dielectrics occurred during operation for 5000 hours. On the other hand, in Examples A, B, C and D using aluminum or aluminum alloy coated with an anodizing film having a thickness of 8 μm or more as the electrode, no inconvenience is observed. In addition, in Examples G and J in which titanium is coated with an anodized film or a high-temperature oxidized film as an electrode, and in Examples G and J of Comparative Examples H, no inconvenience occurs, and in Comparative Example H, it is extremely slight. Generation of ultrafine powder and its adhesion to the dielectric were observed.

なお、全ての実施例において、運転開始初期の放電開始
電圧、放電電圧と電流の関係、オゾン濃度及び生成量は
比較例E,K,Lと、計測可能精度内で同じであった。ま
た、5000時間の運転後には、比較例K,Mにおいて、放電
電流の増減、オゾン生成量の減少等なんらかの経時変化
が認められたのに対し、実施例A,B,C,D,G,J及び比較例
Hで経時変化は認められなかった。
In all of the examples, the discharge start voltage at the beginning of the operation, the relationship between the discharge voltage and the current, the ozone concentration, and the production amount were the same as those of the comparative examples E, K, and L within the measurable accuracy. Also, after 5000 hours of operation, in Comparative Examples K, M, while some increase or decrease in discharge current, some change with time such as a decrease in ozone production was observed, while in Examples A, B, C, D, G, No change with time was observed in J and Comparative Example H.

なお、前記実施例に用いた表面処理膜の形成技術はいず
れも既に確立されており、処理コストも低く、処理によ
る電極材の変形がないことは、本発明を実施する上で極
めて有利である。
It should be noted that all the techniques for forming the surface-treated film used in the above-mentioned examples are already established, the treatment cost is low, and there is no deformation of the electrode material due to the treatment, which is extremely advantageous in carrying out the present invention. .

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、コロナ放電と接す
る側の導電性電極に、アルミニウム又はアルミニウム合
金を用いその放電面を厚さ8μm以上の陽極酸化処理膜
で被覆するか、或いはチタン又はチタン合金を用いその
放電面を厚さ15μm以上の陽極酸化処理膜又は厚さ5μ
m以上の高温酸化処理膜で被覆することによって、該電
極から微粉の発生、ヒュームの発生及び該電極又は該電
極と対向する誘電体の汚染を防止或いは軽減できる。そ
してこれらは、本発明の対象とする放電反応装置の吐出
物の清浄化、安定性能の維持、長寿命化をもたらすとい
う優れた効果をもたらす。特に、高密度放電、高濃度オ
ゾンの複合場においてこの効果は大きい。
As described above, according to the present invention, the conductive electrode on the side in contact with the corona discharge is made of aluminum or aluminum alloy and its discharge surface is covered with an anodizing film having a thickness of 8 μm or more, or titanium or titanium is used. Anodized film with a thickness of 15 μm or more or a thickness of 5 μ
By coating with a high temperature oxidation-treated film of m or more, generation of fine powder from the electrode, generation of fumes, and contamination of the electrode or a dielectric facing the electrode can be prevented or reduced. And, these bring about the excellent effects of cleaning the discharge products of the discharge reactor targeted by the present invention, maintaining stable performance, and prolonging the service life. In particular, this effect is great in a combined field of high-density discharge and high-concentration ozone.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第3図はそれぞれ本発明が対象とする放電反
応装置の基本構造例を示す図、第4図は本発明の実施例
と比較例の実験結果を示す図である。 図中、1……高圧電極、2……接地電極、3……誘電
体、4……交流高圧電源、5……反応空間、6……放電
空間壁。
1 to 3 are views showing examples of the basic structure of a discharge reaction device targeted by the present invention, and FIG. 4 is a view showing experimental results of examples of the present invention and comparative examples. In the figure, 1 ... High-voltage electrode, 2 ... Ground electrode, 3 ... Dielectric material, 4 ... AC high-voltage power supply, 5 ... Reaction space, 6 ... Discharge space wall.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長井 弟二 東京都中央区銀座7丁目10番1号 サッポ ロビール株式会社内 (72)発明者 北嶋 宣光 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (56)参考文献 特開 昭63−114991(JP,A) 特開 昭52−108392(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teiji Nagai 7-10-1, Ginza, Chuo-ku, Tokyo Inside Sapporo Robot Co., Ltd. (72) Inventor Norimitsu Kitajima 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa Stock company Ebara Research Institute (56) Reference JP-A-63-114991 (JP, A) JP-A-52-108392 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高圧電極と接地電極の間に誘電体を介在さ
せ、該誘電体と前記高圧電極又は前記接地電極の間にコ
ロナ放電を発生させる放電反応装置において、前記コロ
ナ放電と接する側の電極材をアルミニウム又はアルミニ
ウム合金とし、該電極の少なくともコロナ放電と接する
領域を厚さ8μm以上の陽極酸化処理膜で被覆したこと
を特徴とする放電反応装置の電極。
1. A discharge reaction device in which a dielectric is interposed between a high-voltage electrode and a ground electrode to generate a corona discharge between the dielectric and the high-voltage electrode or the ground electrode, in a side in contact with the corona discharge. An electrode of a discharge reaction device, wherein the electrode material is aluminum or an aluminum alloy, and at least a region of the electrode in contact with corona discharge is covered with an anodizing film having a thickness of 8 μm or more.
【請求項2】高圧電極と接地電極の間に誘電体を介在さ
せ、該誘電体と前記高圧電極又は前記接地電極の間にコ
ロナ放電を発生させる放電反応装置において、前記コロ
ナ放電と接する側の電極材をチタン又はチタン合金と
し、該電極の少なくともコロナ放電と接する領域を厚さ
15μm以上の陽極酸化処理膜又は厚さ5μm以上の高温
酸化処理膜で被覆したことを特徴とする放電反応装置。
2. A discharge reaction device in which a dielectric is interposed between a high-voltage electrode and a ground electrode to generate a corona discharge between the dielectric and the high-voltage electrode or the ground electrode, on a side in contact with the corona discharge. The electrode material is titanium or a titanium alloy, and at least the region of the electrode in contact with corona discharge has a thickness
A discharge reactor characterized by being coated with an anodized film having a thickness of 15 μm or more or a high temperature oxidation film having a thickness of 5 μm or more.
JP1065267A 1989-03-17 1989-03-17 Discharge reactor electrode Expired - Lifetime JPH07102317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1065267A JPH07102317B2 (en) 1989-03-17 1989-03-17 Discharge reactor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1065267A JPH07102317B2 (en) 1989-03-17 1989-03-17 Discharge reactor electrode

Publications (2)

Publication Number Publication Date
JPH02245236A JPH02245236A (en) 1990-10-01
JPH07102317B2 true JPH07102317B2 (en) 1995-11-08

Family

ID=13281978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1065267A Expired - Lifetime JPH07102317B2 (en) 1989-03-17 1989-03-17 Discharge reactor electrode

Country Status (1)

Country Link
JP (1) JPH07102317B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549874A (en) * 1992-04-23 1996-08-27 Ebara Corporation Discharge reactor
US9039985B2 (en) * 2011-06-06 2015-05-26 Mks Instruments, Inc. Ozone generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108392A (en) * 1976-03-09 1977-09-10 Ishikawajima Harima Heavy Ind Co Ltd Discharge electrode for producing ozone
JP2542587B2 (en) * 1986-11-01 1996-10-09 新菱冷熱工業株式会社 Ozone generator and method for producing ozone water using the same

Also Published As

Publication number Publication date
JPH02245236A (en) 1990-10-01

Similar Documents

Publication Publication Date Title
AU754373B2 (en) Thermal spray coated substrate for use in an electrical energy storage device and method
US8337958B2 (en) Manufacturing process of electrodes for electrolysis
TW200533596A (en) Ozone generating apparatus
TW200307061A (en) Electrode for gas evolution and method for its production
WO2012070687A1 (en) Method for manufacturing surface treatment metal material
JP7092280B2 (en) Conductive member and its manufacturing method
JP5438818B2 (en) Ozone generator and ozone generation method
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
JPH07102317B2 (en) Discharge reactor electrode
KR101729229B1 (en) Stainless Steel Electrodes for Alkaline Water Electrolysis and Preparation Method thereof
JP3259869B2 (en) Electrode substrate for electrolysis and method for producing the same
JP2005089779A (en) Electrode for electrolysis and manufacturing method therefor
JP3267742B2 (en) Discharge reactor
US5827580A (en) Low temperature formation of electrode having electrically conductive metal oxide surface
EA007032B1 (en) Arrangement of an electrode, method for making same, and use thereof
EP2610367A1 (en) Method for producing electrically-conducting material with modified surface
JP7114516B2 (en) Metal materials for separators, fuel cell separators and fuel cells
JPS6389405A (en) Production of hyperfine oxide particles
JP2799541B2 (en) Discharge reactor
WO2019215944A1 (en) Electrode for electrolysis use, and electric device and ozone generating device each provided with same
Topala et al. Nanostructures obtained using electric discharges at atmospheric pressure
JPH022694A (en) Gas laser equipment
JP2005220019A (en) Discharge cell for ozone generator
JP2893158B2 (en) Discharge reactor
JP3257872B2 (en) Electrode substrate for electrolysis and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 14