JPH0699568B2 - Thermoplastic resin molding - Google Patents

Thermoplastic resin molding

Info

Publication number
JPH0699568B2
JPH0699568B2 JP60270751A JP27075185A JPH0699568B2 JP H0699568 B2 JPH0699568 B2 JP H0699568B2 JP 60270751 A JP60270751 A JP 60270751A JP 27075185 A JP27075185 A JP 27075185A JP H0699568 B2 JPH0699568 B2 JP H0699568B2
Authority
JP
Japan
Prior art keywords
molded product
thermoplastic resin
temperature
thermal conductivity
nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60270751A
Other languages
Japanese (ja)
Other versions
JPS62131033A (en
Inventor
信賢 落合
健一 樋上
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP60270751A priority Critical patent/JPH0699568B2/en
Publication of JPS62131033A publication Critical patent/JPS62131033A/en
Publication of JPH0699568B2 publication Critical patent/JPH0699568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温環境下での使用に際して、優れた特性を
有する熱可塑性樹脂成形品に関する。
TECHNICAL FIELD The present invention relates to a thermoplastic resin molded article having excellent properties when used in a high temperature environment.

〔従来の技術と問題点〕[Conventional technology and problems]

熱可塑性樹脂は、その優れた加工性から、例えば射出成
形することにより、容易に複雑な形状をした成形品を得
ることが可能である。この特性を活して、金属や熱硬化
性樹脂を用いて作られた部品が、熱可塑性樹脂に代わり
つつある。特に自動車分野では、燃費向上のための軽量
化、加工性向上のため、これら部品の熱可塑性樹脂への
移行が顕著である。
Due to its excellent processability, a thermoplastic resin can be easily injection molded to obtain a molded product having a complicated shape. Taking advantage of this characteristic, parts made of metal or thermosetting resin are being replaced by thermoplastic resin. Particularly in the automobile field, the shift to thermoplastic resins for these parts is remarkable in order to reduce the weight for improving fuel efficiency and improve the processability.

しかし、熱可塑性樹脂を用いることで、加工費の節減や
デザインの自由度が増えるなどの利点があるものの、当
該樹脂を用いて得られた成形品は高温下で使用すると、
熱により成形品が変形したり、成形品自身が溶融したり
して、使用することができないことも良く知られてい
る。
However, by using a thermoplastic resin, although there are advantages such as reduction of processing cost and flexibility of design, when a molded product obtained using the resin is used at high temperature,
It is also well known that the molded product cannot be used because it is deformed by heat or the molded product itself melts.

この様な問題に対処するため、より耐熱性の高いポリマ
ーが検討されたり、繊維や鉱石粉末で強化された熱可塑
性樹脂が検討されたりしているが、前者はあまりにも高
価であるし、後者は全く効果がなかった。
In order to deal with such problems, polymers with higher heat resistance have been investigated, and thermoplastic resins reinforced with fiber or ore powder have been investigated, but the former is too expensive and the latter Had no effect.

この様な事情から、発熱する装置に使用される部品、例
えば発熱体のカバーや、発熱体に直接接して使われる部
品などでは、いまだ熱可塑性樹脂が採用されていない。
本発明で言う発熱する装置とは、例えば、自動車のアン
ダーフード部品、すなわちモーターのカバー、フアン、
ギア、フアンカバー、ギアカバーなど、又、発電機のフ
アンやフアンカバー、消音器のカバーなどがあげられ
る。
Under these circumstances, thermoplastic resins have not yet been used in parts used in devices that generate heat, such as covers for heating elements and parts used in direct contact with heating elements.
The heat generating device referred to in the present invention is, for example, an underhood part of an automobile, that is, a motor cover, a fan,
Gear, fan cover, gear cover, etc., generator fan, fan cover, muffler cover, etc.

〔問題を解決するための手段及び作用〕[Means and Actions for Solving Problems]

本願発明者らは、成形品の熱伝導度を0.35kcal/mhr℃以
上にすると、高温化での変形や溶融を防止できることを
見い出し、本願発明を成すに至ったのである。
The inventors of the present application have found that when the thermal conductivity of a molded product is 0.35 kcal / mhr ° C. or higher, deformation and melting at high temperatures can be prevented, and the present invention has been completed.

すなわち、本願発明は、フィラーが充填された熱可塑性
樹脂の成形品であって、かつ、該成形品の熱伝導度が0.
35kcal/mhr℃であることを特徴とする、発熱する装置に
使用する、黒鉛が充填された熱可塑性樹脂成形品に関す
るものである。
That is, the present invention is a molded product of a thermoplastic resin filled with a filler, and the thermal conductivity of the molded product is 0.
The present invention relates to a graphite-filled thermoplastic resin molded article for use in a device that generates heat, characterized by having a temperature of 35 kcal / mhr ° C.

本発明でいう熱伝導度は、SS−TC−18B改良型Schroder
式熱伝導測定装置(柴山科学器械製)によって測定した
値であり、この値が小さくなると高温環境下での使用に
耐えなくなる傾向があり、大きくなるとより高温での使
用が可能になる。実用上、熱伝導度は、0.35kcal/mhr℃
以上が必要であり、好ましくは、0.45kcal/mhr℃以上で
あり、さらに好ましくは、0.70kcal/mhr℃以上である。
The thermal conductivity referred to in the present invention is SS-TC-18B improved Schroder.
It is the value measured by a thermal conductivity measurement device (made by Shibayama Scientific Instruments). When this value becomes small, it tends to be unusable in high temperature environment, and when it becomes large, it can be used at higher temperature. Practically, the thermal conductivity is 0.35kcal / mhr ℃
The above is necessary, preferably 0.45 kcal / mhr ° C or higher, and more preferably 0.70 kcal / mhr ° C or higher.

本発明でいう熱可塑性樹脂は、通常の成形温度において
可塑化し得る樹脂であれば使用できるが、本願発明の効
果をさらに高めるには、融点が160℃以上であれば、尚
好ましい。
The thermoplastic resin referred to in the present invention can be used as long as it is a resin that can be plasticized at a normal molding temperature, but in order to further enhance the effect of the present invention, a melting point of 160 ° C. or higher is more preferable.

本願発明に用いられる樹脂を具体的に挙げるとナイロン
6や、ナイロン66、ナイロン46などで代表されるポリア
ミド類や、ポリエチレンテレフタレートや、ポリブチレ
ンテレフタレートで代表されるポリエステル類がある。
この様ないわゆるエンプラ樹脂の他に、ポリプロピレン
などの汎用プラスチックも使用することができる。
Specific examples of the resin used in the present invention include polyamides represented by nylon 6, nylon 66, nylon 46 and the like, polyesters represented by polyethylene terephthalate and polybutylene terephthalate.
In addition to such so-called engineering plastic resins, general-purpose plastics such as polypropylene can also be used.

中でも好ましいのは、耐熱性、機械的特性において秀れ
ているポリアミドやポリエステルである。さらに好まし
いのは、融点のより高いナイロン66やナイロン46又は、
ナイロン66やナイロン46と、ポリアミド形成モノマーと
共重合化したポリアミド類である。
Among these, polyamide and polyester, which are excellent in heat resistance and mechanical properties, are preferable. More preferred is nylon 66 or nylon 46 with a higher melting point, or
Polyamides that are copolymerized with nylon 66 or nylon 46 and a polyamide-forming monomer.

本願発明でいう0.35kcal/mhr℃以上の熱伝導度をもった
成形品は、熱伝導が0.35kcal/mhr℃以上の熱可塑性樹脂
ペレットを成形加工することによって得られる。
The molded product having a thermal conductivity of 0.35 kcal / mhr ° C or higher as referred to in the present invention is obtained by molding a thermoplastic resin pellet having a thermal conductivity of 0.35 kcal / mhr ° C or higher.

この熱伝導性の高い熱可塑性樹脂は、熱可塑性樹脂に熱
伝導性の高い黒鉛を充填することで得られる。
The thermoplastic resin having high thermal conductivity can be obtained by filling the thermoplastic resin with graphite having high thermal conductivity.

又、機械的特性を発現させるために、ガラス繊維を同時
に配合した熱可塑性樹脂を用いると、尚効果的である。
更に鉱石粉末を同時に配合した熱可塑性樹脂を用いるこ
とも効果的である。
Further, it is still more effective to use a thermoplastic resin in which glass fibers are blended at the same time in order to exhibit mechanical properties.
It is also effective to use a thermoplastic resin in which ore powder is blended at the same time.

当然のことながら、本発明を損わない範囲で、一般に知
られた添加剤、例えば耐熱剤、耐候剤、難燃剤、潤滑剤
を少量添加することはさしつかえない。
As a matter of course, it is permissible to add a small amount of generally known additives such as a heat-resistant agent, a weather-resistant agent, a flame retardant, and a lubricant within a range not impairing the present invention.

又、本願発明を更に効果的にするには、成形品の表面積
と厚みの比が500以上であることが望ましい。
Further, in order to make the present invention more effective, it is desirable that the surface area / thickness ratio of the molded product is 500 or more.

以下本発明の効果を実施例にて説明する。The effects of the present invention will be described below with reference to examples.

まず、例中の壁面温度、並びに接触温度について説明す
る。
First, the wall surface temperature and the contact temperature in the examples will be described.

(1)壁面温度 実施例及び比較例で示す方法にて作成したペレツトを使
用し、射出成形機にて、深さ60mm内径120mm×80mm、厚
み2mmのボツクス型成形品を成形した。第1図に示すよ
うに23℃の恒温室内で成形品の開口部を下にして耐火レ
ンガの上に置き、一定の熱量を発するヒーターを内臓し
て発熱させた。
(1) Wall surface temperature Using the pellets prepared by the method shown in Examples and Comparative Examples, a box-type molded product having a depth of 60 mm, an inner diameter of 120 mm × 80 mm, and a thickness of 2 mm was molded by an injection molding machine. As shown in FIG. 1, the molded article was placed on a refractory brick with the opening of the molded article facing downward in a thermostatic chamber at 23 ° C., and a heater for generating a certain amount of heat was incorporated to generate heat.

あらかじめヒーター上方の成形品の壁面に貼り付けた熱
電対により温度を測定し、平衡に達した温度を壁面温度
とした。
The temperature was measured in advance with a thermocouple attached to the wall surface of the molded product above the heater, and the temperature at which equilibrium was reached was taken as the wall surface temperature.

(2)接触温度 実施例及び比較例で示す方法にて作成したペレツトを使
用し、射出成形機にて110mm×130mm、厚さ3mmの平板状
成形品を成形した。
(2) Contact temperature Using the pellets prepared by the methods shown in the examples and comparative examples, a flat plate molded product of 110 mm × 130 mm and a thickness of 3 mm was molded by an injection molding machine.

第2図に示すようにステンレス製の丸棒にヒーターを巻
きつけ、その上に耐熱材を巻きつけ保温した。ステンレ
スの丸棒と成形品の間に熱電対を固定し、ステンレスの
丸棒と平板をボルトで一定トルクにて締めつけた。ヒー
ターを発熱させ、熱電対により温度を測定し、平衡に達
した温度を接触温度とした。
As shown in FIG. 2, a heater was wound around a stainless steel round bar, and a heat resistant material was wound around it to keep it warm. A thermocouple was fixed between the stainless steel rod and the molded product, and the stainless steel rod and the flat plate were tightened with bolts at a constant torque. The heater was caused to generate heat, the temperature was measured with a thermocouple, and the temperature at which equilibrium was reached was taken as the contact temperature.

〔実施例−1〕 旭化成工業(株)製ナイロン66と熱伝導性フイラーとし
て東海カーボン(株)製黒鉛(平均粒径約50μ)を第1
表に示した組成比で混合し、この混合物を一軸押出機に
てロープ状に押出し、これを切断してペレツトを得、射
出成形機にて成形品を得た。この成形品の壁面温度、接
触温度を測定した。これらの試料は、熱伝導度が0.35、
0.45、0.7、0.9kcal/mhr℃であった。
[Example-1] Nylon 66 manufactured by Asahi Kasei Kogyo Co., Ltd. and graphite manufactured by Tokai Carbon Co., Ltd. (average particle size of about 50 µ) as a heat conductive filler
The mixture was mixed at the composition ratio shown in the table, and the mixture was extruded into a rope shape by a uniaxial extruder, cut into pellets, and a molded product was obtained by an injection molding machine. The wall temperature and contact temperature of this molded product were measured. These samples have a thermal conductivity of 0.35,
The values were 0.45, 0.7 and 0.9 kcal / mhr ° C.

〔比較例−1〕 旭化成工業(株)製ナイロン66 75vol%と、熱伝導性
フイラーとして東海カーボン(株)製黒鉛(平均粒径約
50μ)を第1表に示した組成比で混合し、実施例−1と
同様にして成形品を得、壁面温度、接触温度を測定し
た。この試料は、熱伝導度が0.2、0.3kcal/mhr℃であっ
た。
[Comparative Example-1] Nylon 66 75 vol% manufactured by Asahi Kasei Corporation and graphite manufactured by Tokai Carbon Co., Ltd. as a thermal conductive filler
50 μ) was mixed in the composition ratio shown in Table 1, a molded product was obtained in the same manner as in Example-1, and the wall surface temperature and the contact temperature were measured. This sample had a thermal conductivity of 0.2 and 0.3 kcal / mhr ° C.

これら実施例−1、比較例−1の結果を第1表にまとめ
て示した。
The results of Example-1 and Comparative Example-1 are summarized in Table 1.

〔実施例−2〕 熱伝導性フイラーとして東海カーボン(株)製黒鉛(平
均粒径約50μ)25vol%と、ポリプロピレン、又はナイ
ロン6、又はナイロン66、又はナイロン46を75vol%混
合し、この混合物を一軸押出機にてロープ状に押出し、
これを切断してペレツトを得、射出成形機にて成形品を
得た。この成形品の壁面温度、接触温度を測定した。こ
れらの試料は熱伝導度が、0.35kcal/mhr℃であった。
[Example-2] 25 vol% graphite (average particle size: about 50 µ) manufactured by Tokai Carbon Co., Ltd. as a thermally conductive filler and 75 vol% polypropylene, nylon 6, nylon 66, or nylon 46 were mixed, and this mixture was used. Is extruded into a rope with a single-screw extruder,
This was cut to obtain a pellet, and a molded product was obtained with an injection molding machine. The wall temperature and contact temperature of this molded product were measured. The thermal conductivity of these samples was 0.35 kcal / mhr ° C.

〔比較例−2〕 熱伝導性フイラーとして東海カーボン(株)製黒鉛(平
均粒径約50μ)25vol%と、ポリエチレンを75vol%混合
し、実施例−2と同様にして成形品を得、壁面温度、接
触温度を測定した。この試料は、熱伝導度が0.35kcal/m
hr℃であった。
[Comparative Example-2] 25 vol% graphite (average particle size of about 50 µ) manufactured by Tokai Carbon Co., Ltd. as a heat conductive filler and 75 vol% polyethylene were mixed, and a molded product was obtained in the same manner as in Example-2. The temperature and contact temperature were measured. This sample has a thermal conductivity of 0.35 kcal / m
It was hr ° C.

これら実施例−2、比較例−2の結果を第2表にまとめ
て示した。
The results of these Example-2 and Comparative Example-2 are summarized in Table 2.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は、それぞれ成形品の壁面温度及び接
触温度の測定態様を示す図である。図において、 1.成形品 2.ヒーター 3.温度測定位置 である。
FIG. 1 and FIG. 2 are views showing measurement modes of wall surface temperature and contact temperature of a molded product, respectively. In the figure, 1. Molded product 2. Heater 3. Temperature measurement position.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱伝導度が0.35kcal/mhr℃以上を示す、発
熱する装置に使用する、黒鉛が充填された熱可塑性樹脂
成形品。
1. A thermoplastic resin molded product filled with graphite, which is used in a heat generating device and has a thermal conductivity of 0.35 kcal / mhr ° C. or higher.
JP60270751A 1985-12-03 1985-12-03 Thermoplastic resin molding Expired - Fee Related JPH0699568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60270751A JPH0699568B2 (en) 1985-12-03 1985-12-03 Thermoplastic resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60270751A JPH0699568B2 (en) 1985-12-03 1985-12-03 Thermoplastic resin molding

Publications (2)

Publication Number Publication Date
JPS62131033A JPS62131033A (en) 1987-06-13
JPH0699568B2 true JPH0699568B2 (en) 1994-12-07

Family

ID=17490469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60270751A Expired - Fee Related JPH0699568B2 (en) 1985-12-03 1985-12-03 Thermoplastic resin molding

Country Status (1)

Country Link
JP (1) JPH0699568B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0667625T3 (en) * 1994-02-09 1997-10-27 Frisetta Polymer Gmbh & Co Kg Electrostatically coated polyamide material, use and process for its manufacture
JP3714751B2 (en) * 1997-01-14 2005-11-09 旭化成ケミカルズ株式会社 Thermoplastic resin exothermic molded product
JP4759122B2 (en) 2000-09-12 2011-08-31 ポリマテック株式会社 Thermally conductive sheet and thermally conductive grease
JP4714371B2 (en) 2001-06-06 2011-06-29 ポリマテック株式会社 Thermally conductive molded body and method for producing the same
JP4772239B2 (en) 2001-10-02 2011-09-14 ポリマテック株式会社 Graphitized carbon powder and thermally conductive composite composition
TW200827377A (en) 2006-12-26 2008-07-01 Asahi Kasei Chemicals Corp Radiating material and radiating sheet molded from radiating material
US10125237B2 (en) 2008-05-23 2018-11-13 Hitachi Chemical Company, Ltd. Heat radiation sheet and heat radiation device
KR101815719B1 (en) 2010-06-17 2018-01-08 히타치가세이가부시끼가이샤 Heat transfer sheet, manufacturing method for heat transfer sheet, and heart radiation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117234A (en) * 1982-01-05 1983-07-12 Meidensha Electric Mfg Co Ltd Heat-conductive material
JPS59168042A (en) * 1983-03-15 1984-09-21 Matsushita Electric Works Ltd Resin composition

Also Published As

Publication number Publication date
JPS62131033A (en) 1987-06-13

Similar Documents

Publication Publication Date Title
JPH0699568B2 (en) Thermoplastic resin molding
CN100432146C (en) Injection-molded object
EP0071765A2 (en) Polybutylene terephthalate molding compositions and articles molded therefrom
US3218371A (en) Blends of (1) epsilon caprolactam, (2) rubbery butadiene-acrylonitrile copolymers, and (3) resinous styrene-acrylonitrile copolymers
TW370550B (en) Method of preparing solventless, thermoplastic silicone pellets
JPH0627158B2 (en) Radiation-crosslinkable fluororesin composition
JPH04370148A (en) Reinforced black polyamide resin composition of good appearance
JP3254808B2 (en) Polyoxymethylene resin composition
JPS5883048A (en) Polyester resin composition
JPS58219255A (en) Tubular polyester
CN112080121B (en) Light-colored heat-conducting thermoplastic resin and preparation method thereof
JPH0655885B2 (en) Polyamide resin composition for thin molded products
JP3324323B2 (en) Polyphenylene sulfide resin stator
CN110240786A (en) A kind of PBT composite and preparation method thereof with good laser mark performance
Heidary et al. Hydrodegradable polyethylene terephthalate
JPH0948909A (en) Resin composition for extrusion molding and extrudate thereof
JPH06229474A (en) Shift folk jaw
Jones et al. Polymeric Positive Temperature Coefficient(PTC) Heaters for Automotive Applications
JPS5373245A (en) Inorganic filler-containing resin compositions having improved thermal stability
JPS54103457A (en) Polyester resin composition and its production
JP3122552B2 (en) Resin composition
JPS63317548A (en) Polyester polymer composition
JPH03284925A (en) Method for forming polyphenylene sulfide resin
Fujimoto et al. Solid Polymerization of Nylon 66
JP3714751B2 (en) Thermoplastic resin exothermic molded product

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees