JPH069803A - Method for carrying out surface treatment of polymer material - Google Patents

Method for carrying out surface treatment of polymer material

Info

Publication number
JPH069803A
JPH069803A JP19293192A JP19293192A JPH069803A JP H069803 A JPH069803 A JP H069803A JP 19293192 A JP19293192 A JP 19293192A JP 19293192 A JP19293192 A JP 19293192A JP H069803 A JPH069803 A JP H069803A
Authority
JP
Japan
Prior art keywords
polymer material
fluorine
rubber
containing gas
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19293192A
Other languages
Japanese (ja)
Inventor
Seiichi Yokoi
誠一 横井
Mototsuna Kanzaki
基維 神崎
Hideto Idegami
英斗 井手上
Ryuichi Endo
隆一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIYAMA KK
Tokyo Gas Co Ltd
Nishiyama Corp
Original Assignee
NISHIYAMA KK
Tokyo Gas Co Ltd
Nishiyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIYAMA KK, Tokyo Gas Co Ltd, Nishiyama Corp filed Critical NISHIYAMA KK
Priority to JP19293192A priority Critical patent/JPH069803A/en
Publication of JPH069803A publication Critical patent/JPH069803A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To safely and simply fluorinate the surface of a polymer material without requiring any pretreatment as well as post treatment by irradiating the surface of the polymer material with direct current plasma in the presence of a fluorine-containing gas in a vacuum atmosphere. CONSTITUTION:A substrate 3 is provided in a bell-jar 2 arranged on a support base 1 and a cathode 4 and an anode 5 are opposed on the substrate 3 and 0.5-2.5KV direct current high voltage is applied between the cathode 4 and the anode 5. On the other hand, the pressure of the interior of the bell-jar 2 is reduced by a vacuum pump 7 and 0.1-1Torr fluorine-containing gas (e.g. CF4, NF3, SF6, C2F4 or C2F6-is fed from a gas bomb 8. Ah-i polymer material 9 (e.g. isoprene rubber or ethylene propylene rubber) to be surface-treated is put on the surface of the cathode 4 and the fluorine-containing gas is introduced under a prescribed partial pressure and when a prescribed direct current voltage is applied, the fluorine-containing gas is activated and decomposed to produce plasma. Thereby, fluorine attaches to the surface of the polymer material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は直流プラズマを用いてゴ
ムやプラスチックなどの高分子材料の表面をフッ素化す
る高分子材料の表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a surface of a polymer material, such as rubber or plastic, which is fluorinated with direct current plasma.

【0002】[0002]

【従来の技術】ゴムやプラスチックなどの高分子材料は
その安定性、軽量性、遮断性などさまざまなすぐれた特
性を有する極めて汎用性の高い材料であり、広く用いら
れているが、最近はこれらの物性に加えてさらに特殊な
性質が要求される傾向にある。
2. Description of the Related Art Polymer materials such as rubber and plastic are extremely versatile materials having various excellent properties such as stability, light weight and barrier property, and are widely used. In addition to the physical properties of, there is a tendency for more special properties to be required.

【0003】この種の高分子材料の中でもフッ素ゴム
は、耐熱性、表面はっ水性、すべり性、耐水性、耐薬品
性などのすぐれた物性を有する特殊なゴムであるが、極
めて高価である。このフッ素ゴムの物性のうち、耐熱性
以外の物性は表面物性であることから、従来より天然ゴ
ムなどの安価な一般ゴムの表面をフッ素化処理すること
によりフッ素ゴムのすぐれた物性を有する安価なゴムを
製造しようとする提案が種々なされている。
Among these types of polymer materials, fluororubber is a special rubber having excellent physical properties such as heat resistance, surface water repellency, slip resistance, water resistance and chemical resistance, but it is extremely expensive. . Of the physical properties of this fluororubber, the physical properties other than heat resistance are surface physical properties. Therefore, by subjecting the surface of general rubber, which is cheaper than conventional natural rubber, to fluorination, it has the excellent physical properties of fluororubber. Various proposals have been made to manufacture rubber.

【0004】[0004]

【発明が解決しようとする課題】たとえば、特公昭58
−38315号においては、成形ゴム材料を−20°C
〜45°Cの温度において、フッ素ガス、フッ化水素ガ
ス、フッ化アンチモンなどのフッ素ガス雰囲気中に保持
する表面処理方法が提案されている。この方法では、処
理後ゴムシートを洗浄したり乾燥したりする後処理が必
要であるし、処理に用いられるフッ素ガスや溶液の活性
が高いために危険防止のための管理や設備が必要であ
り、また処理時間が長いという点で問題がある。
SUMMARY OF THE INVENTION For example, Japanese Patent Publication Sho 58
-38315, the molded rubber material is -20 ° C.
A surface treatment method has been proposed in which the temperature is maintained at 45 ° C in a fluorine gas atmosphere such as fluorine gas, hydrogen fluoride gas or antimony fluoride. This method requires post-treatment such as washing or drying the rubber sheet after treatment, and requires management or equipment for hazard prevention because the activity of fluorine gas or solution used for treatment is high. Also, there is a problem in that the processing time is long.

【0005】また、特公昭57−6107号には高周波
プラズマCVD法を用いたフッ素化処理法が提案されて
いるが、処理前にエッチング防止剤を塗布するという前
処理が必要であり、エッチング速度が大きくてエッチン
グが激しいためにゴム繊維の破壊が起こり、表面のフッ
素化はできても熱、水、蒸気あるいは有機溶媒等に対し
て不安定になるという問題がある。
Further, Japanese Patent Publication No. 57-6107 proposes a fluorination treatment method using a high-frequency plasma CVD method, but a pretreatment of coating an etching inhibitor before the treatment is required, and the etching rate is However, there is a problem in that the rubber fibers are destroyed due to the large size and the etching is violent, and the surface is fluorinated but becomes unstable to heat, water, steam or an organic solvent.

【0006】本発明は上記の点にかんがみてなされたも
ので、前処理も後処理も不要で安全且つ簡易に高分子材
料の表面をフッ素化することを目的とする。
The present invention has been made in view of the above points, and an object thereof is to safely and easily fluorinate the surface of a polymer material without requiring pretreatment and posttreatment.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、真空雰囲気において0.1〜
1.0Torrの含フッ素ガスの存在下で0.5〜2.5K
Vの直流電圧を印加することにより生成されるプラズマ
を高分子材料の表面に照射することにより高分子材料の
表面をフッ素化するようにした。
In order to achieve the above object, in the present invention, in a vacuum atmosphere,
0.5 to 2.5K in the presence of 1.0 Torr fluorine-containing gas
The surface of the polymer material was fluorinated by irradiating the surface of the polymer material with plasma generated by applying a DC voltage of V.

【0008】[0008]

【作用】陰極と陽極との間に生ずる比較的弱いエネルギ
ーの直流電界により含フッ素ガスがプラズマ化され、こ
れが陰極上に置かれた高分子材料の表面に化学的に吸着
して表面がフッ素化される。
[Function] Fluorine-containing gas is turned into plasma by a DC electric field of relatively weak energy generated between the cathode and the anode, and this is chemically adsorbed on the surface of the polymer material placed on the cathode to fluorinate the surface. To be done.

【0009】[0009]

【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0010】図1は本発明によるフッ素化処理を行うた
めの表面処理装置の概略線図である。
FIG. 1 is a schematic diagram of a surface treatment apparatus for performing a fluorination treatment according to the present invention.

【0011】表面処理装置は、支持台1上に配置したベ
ルジャー2内に基板3を設け、この基板上に配置した陰
極4と陽極5とを対向させ、陰極4と陽極5との間には
直流高電圧源6から0.5〜2.5KVの直流高電圧が
印加されるようになっている。
In the surface treatment apparatus, a substrate 3 is provided in a bell jar 2 placed on a support 1, a cathode 4 and an anode 5 placed on the substrate are opposed to each other, and a cathode 4 and an anode 5 are placed between them. A high DC voltage of 0.5 to 2.5 KV is applied from the high DC voltage source 6.

【0012】一方ベルジャー2内は真空ポンプ7により
減圧され、ベルジャー2内にガスボンベ8から0.1〜
1.0TorrのCF4 、NF3 、SF6 、C24 、C2
6などの含フッ素ガスが供給されるようになってい
る。
On the other hand, the inside of the bell jar 2 is decompressed by a vacuum pump 7, and the bell jar 2 is filled with 0.1 to 0.1 gas from a gas cylinder 8.
1.0 Torr of CF 4 , NF 3 , SF 6 , C 2 F 4 , C 2
Fluorine-containing gas such as F 6 is supplied.

【0013】この表面処理装置を用いてフッ素化処理を
行うには、真空にしたベルジャー2内の陰極4の面上に
5mm程度の位置に表面処理しようとする高分子材料
(例えばゴム材料)を置き、ガスボンベ8からベルジャ
ー2内に含フッ素ガスを所定分圧で導入し、陰極4と陽
極5との間に直流高電圧源6から直流電圧を印加すると
両電極4.5間に電流が流れて含フッ素ガスが活性化さ
れ分解されてプラズマが生成する。このプラズマにより
フッ素がゴム表面に付着して高分子材料の表面がフッ素
化される。
In order to perform the fluorination treatment using this surface treatment apparatus, a polymer material (for example, a rubber material) to be surface-treated is placed at a position of about 5 mm on the surface of the cathode 4 in the bell jar 2 which is evacuated. Then, a fluorine-containing gas is introduced from the gas cylinder 8 into the bell jar 2 at a predetermined partial pressure, and a DC voltage is applied between the cathode 4 and the anode 5 from the DC high voltage source 6, a current flows between both electrodes 4.5. As a result, the fluorine-containing gas is activated and decomposed to generate plasma. This plasma causes fluorine to adhere to the rubber surface and fluorinate the surface of the polymer material.

【0014】本発明者らは後述する実験から、実用的な
フッ素化が行われるためには次の条件が望ましいことを
見出した。なお、以下に示す実験では、含フッ素ガスと
してSF6 を用い、ゴム材料としてA:イソプレンゴム
と、B:エチレンプロピレンゴムを用いた。
From the experiments described below, the present inventors have found that the following conditions are desirable for practical fluorination. In the experiments described below, SF 6 was used as the fluorine-containing gas, and A: isoprene rubber and B: ethylene propylene rubber were used as the rubber materials.

【0015】 直流印加電圧 : 0.5〜2.5KV 電極間電流 : 0.1〜20mA 含フッ素ガス分圧 : 0.1〜1.0Torr 基板温度 : 常温 処理時間 : 30分以下 (1)直流印加電圧および電極間電流 図2はプラズマが安定して存在することが確認された直
流印加電圧と電極間電流との関係と高分子材料表面の実
用的なフッ素化が認められた領域を示す。図中実線が前
者の関係を示し、破線内部(斜線で示す)が後者の領域
を示す。 (2)含フッ素ガスのガス分圧 含フッ素ガスSF6 の分圧に対する表面はっ水角の変化
を図3(a)、(b)に示す。図3(a)はイソプレン
ゴム、図3(b)はエチレンプロビレンゴムに対するも
のである。図中、矢印は未処理のゴム材料のはっ水角を
示す。この結果から、SF6 ガス分圧が高いほどフッ素
化は進行するが、ガス分圧は0.2Torr以上であればフ
ッ素化処理の効果が充分認められる。 (3)処理時間 プラズマ照射時間に対するはっ水角の変化を図4
(a)、(b)に示す。これらの図から、イソプレンゴ
ムでは約10分、エチレンプロピレンゴムでは約20分
ではっ水角は最大になり、それ以上ではあまり変化しな
い。従って、プラズマ照射時間すなわちフッ素化処理時
間は30分以下で充分である。
DC applied voltage: 0.5 to 2.5 KV Current between electrodes: 0.1 to 20 mA Fluorine-containing gas partial pressure: 0.1 to 1.0 Torr Substrate temperature: Normal temperature Treatment time: 30 minutes or less (1) DC Applied voltage and inter-electrode current FIG. 2 shows the relationship between the direct-current applied voltage and the inter-electrode current, in which plasma was confirmed to exist stably, and the region where practical fluorination of the polymer material surface was observed. In the figure, the solid line shows the former relationship, and the inside of the broken line (shown with diagonal lines) shows the latter region. (2) Gas Partial Pressure of Fluorine-Containing Gas Changes in surface water repellency with respect to the partial pressure of the fluorine-containing gas SF 6 are shown in FIGS. 3 (a) and 3 (b). FIG. 3 (a) is for isoprene rubber and FIG. 3 (b) is for ethylene propylene rubber. In the figure, the arrow indicates the water repellency angle of the untreated rubber material. From this result, the higher the SF 6 gas partial pressure is, the more the fluorination proceeds, but if the gas partial pressure is 0.2 Torr or more, the effect of the fluorination treatment is sufficiently observed. (3) Treatment time Figure 4 shows the change in water repellency with respect to plasma irradiation time.
Shown in (a) and (b). From these figures, the water repellency becomes maximum at about 10 minutes for isoprene rubber and at about 20 minutes for ethylene propylene rubber, and does not change much beyond that. Therefore, 30 minutes or less is sufficient for the plasma irradiation time, that is, the fluorination treatment time.

【0016】次に、本発明によりフッ素化されたゴム材
料のフッ素化の進行を確認するために、本発明者らは赤
外分光分析による表面分析を行った。図5(a)、
(b)はイソプレンゴムから成るゴム材料を対象とした
もので、図5(a)はフッ素化処理をしない場合、図5
(b)はフッ素化処理をした場合を示す。同様に図6
(a)、(b)はエチレンプロピレンゴムから成るゴム
材料を対象としたもので、図6(a)はフッ素化処理を
しない場合、図6(b)はフッ素化処理をした場合を示
す。横軸は波数(波長の逆数に比例する)、縦軸は反射
率を示す。
Next, in order to confirm the progress of fluorination of the rubber material fluorinated by the present invention, the present inventors conducted surface analysis by infrared spectroscopy. FIG. 5 (a),
5B is for a rubber material made of isoprene rubber, and FIG. 5A shows the case where the fluorination treatment is not performed.
(B) shows the case where fluorination treatment was performed. Similarly, FIG.
(A) and (b) are intended for a rubber material made of ethylene propylene rubber. FIG. 6 (a) shows the case without fluorination treatment, and FIG. 6 (b) shows the case with fluorination treatment. The horizontal axis represents the wave number (proportional to the reciprocal of the wavelength), and the vertical axis represents the reflectance.

【0017】いずれもフッ素化処理後の方がフッ素化の
進行につれて生ずるC−F結合(図中に「C−F結合」
として示す)のピークが増加しており、フッ素化の表面
反応が確実に進行していることが認められる。
In both cases, after the fluorination treatment, the C—F bond produced as the fluorination progresses (“C—F bond” in the figure).
The peak of () is increasing, and it is confirmed that the surface reaction of fluorination is definitely progressing.

【0018】最後に、本発明によりフッ素化処理された
ゴム材料を空気中に放置したときのはっ水性の変化の様
子を図7に示す。図中の黒丸はクロロプレンゴム材料、
白三角はイソプレンゴム材料である。この図から空気
中、室温環境下でのはっ水性の安定度が高いことが認め
られる。
Finally, FIG. 7 shows how the water repellency changes when the rubber material fluorinated by the present invention is left in the air. The black circles in the figure are chloroprene rubber materials,
White triangles are isoprene rubber material. From this figure, it can be seen that the stability of water repellency in air at room temperature is high.

【0019】本発明で用いられる含フッ素ガスは、CF
4 、NF3 、SF6 、C24 、C26 などのフッ素
原子を含む常温または加温下でガス体の化合物のいずれ
か一種類または任意の複数種類の組合せである。
The fluorine-containing gas used in the present invention is CF
It is any one kind or a combination of arbitrary plural kinds of compounds of a gas body containing a fluorine atom such as 4 , NF 3 , SF 6 , C 2 F 4 , C 2 F 6 at room temperature or under heating.

【0020】上記実施例では高分子材料としてイソプレ
ンゴムとエチレンプロピレンゴムを例示したが、本発明
はニトリルゴム(NBR)、スチレンブタジエンゴム
(SBR)などブタジエンゴム(BR)、ブチルゴム
(IIR)、ニトリルイソプレンゴム(NIR)、アク
リルゴム(ACM)、ウレタンゴム(U)その他のゴム
にも適用することができる。
In the above examples, isoprene rubber and ethylene propylene rubber were exemplified as the polymer material, but the present invention is nitrile rubber (NBR), styrene butadiene rubber (SBR), etc. butadiene rubber (BR), butyl rubber (IIR), nitrile rubber. It can also be applied to isoprene rubber (NIR), acrylic rubber (ACM), urethane rubber (U) and other rubbers.

【0021】[0021]

【発明の効果】以上説明したように、本発明において
は、真空雰囲気において0.1〜1.0Torrの含フッ素
ガスの存在下で0.5〜2.5KVの直流電圧を印加す
ることにより生成される直流プラズマを高分子材料の表
面に照射することにより高分子材料の表面をフッ素化す
るようにしたので、従来のフッ素化法に比べてフッ素化
処理前にエッチング防止のためのフッ化ナトリウムを塗
布したりまた処理後にそれを洗浄したり、あるいは加
熱、加圧という工程や、材料の表面に付着するフッ素ガ
スを炭酸アルカリ含塩水溶液に浸漬して除去するという
煩わしい前後処理が不要となる。
As described above, in the present invention, it is generated by applying a DC voltage of 0.5 to 2.5 KV in the presence of a fluorine-containing gas of 0.1 to 1.0 Torr in a vacuum atmosphere. Since the surface of the polymer material is fluorinated by irradiating the surface of the polymer material with the generated direct current plasma, compared to the conventional fluorination method, sodium fluoride is used to prevent etching before the fluorination treatment. There is no need for a process such as coating with or cleaning it after treatment, or a step of heating and pressurizing, and a complicated pre- and post-treatment of dipping fluorine gas adhering to the surface of the material in an aqueous solution containing alkali carbonate. .

【0022】さらに本発明においては、従来の処理で用
いたフッ素や五フッ化アンチモンなどの毒性の強いガス
は使用せず、不活性なガスを用いるので、安全性が高い
ばかりでなく、管理上、設備上の問題もない。また表面
処理に要する時間も20〜30分と大幅に短縮される。
本発明で用いる直流プラズマCVDは従来広く用いられ
ているRF(高周波)プラズマCVDに比べてエネルギ
ーが小さいのでフッ素化処理時の表面エッチングの進行
が激しくないためはっ水性の劣化が抑えられる。
Further, in the present invention, since a highly toxic gas such as fluorine or antimony pentafluoride used in the conventional treatment is not used but an inert gas is used, not only is the safety high, but the management is also difficult. , There is no problem in equipment. Moreover, the time required for the surface treatment is significantly reduced to 20 to 30 minutes.
Since the direct current plasma CVD used in the present invention has smaller energy than RF (high frequency) plasma CVD which has been widely used in the past, the progress of the surface etching during the fluorination treatment is not so great that deterioration of water repellency can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による表面処理に用いる表面処理装置の
一実施例の概略線図である。
FIG. 1 is a schematic diagram of an embodiment of a surface treatment apparatus used for surface treatment according to the present invention.

【図2】本発明によるプラズマ生成が安定に起る直流印
加電圧と電極間電流の領域と、表面フッ素化が可能な直
流印加電圧と電極間電流の領域とを示す。
FIG. 2 shows a region of a DC applied voltage and an interelectrode current in which plasma is stably generated according to the present invention, and a DC applied voltage and an interelectrode current of which surface fluorination is possible.

【図3】含フッ素ガスの分圧に対するはっ水角の変化を
示すグラフで、(a)はイソプレンゴム材料、(b)は
エチレンプロピレンゴム材料についてのものである。
FIG. 3 is a graph showing a change in water repellency angle with respect to a partial pressure of a fluorine-containing gas, in which (a) is an isoprene rubber material and (b) is an ethylene propylene rubber material.

【図4】直流プラズマの照射時間に対するはっ水角の変
化を示すグラフで、(a)はイソプレンゴム材料、
(b)はエチレンプロピレンゴム材料についてのもので
ある。
FIG. 4 is a graph showing changes in water repellency with respect to irradiation time of DC plasma, (a) isoprene rubber material,
(B) is for ethylene propylene rubber material.

【図5】本発明により表面処理したイソプレンゴム材料
のフッ素化の進行状態を波数に対する反射率で示すもの
で、(a)は未処理の場合、(b)は処理後の場合であ
る。
FIG. 5 shows the progress of fluorination of the isoprene rubber material surface-treated according to the present invention in terms of reflectance with respect to wave number, where (a) is untreated and (b) is after treated.

【図6】本発明により表面処理したエチレンプロピレン
ゴム材料のフッ素化の進行状態を波数に対する反射率で
示すもので、(a)は未処理の場合(b)は処理後の場
合である。
FIG. 6 shows the progress of fluorination of an ethylene propylene rubber material surface-treated according to the present invention by reflectance with respect to wave number, where (a) is untreated and (b) is after treated.

【図7】本発明により表面処理したクロロプレンゴム材
料およびイソプレンゴム材料を空気中に放置したときの
はっ水性の変化を示すグラフである。
FIG. 7 is a graph showing changes in water repellency when the surface-treated chloroprene rubber material and isoprene rubber material according to the present invention are left to stand in the air.

【符号の説明】[Explanation of symbols]

1 支持台 2 ベルジャー 3 基板 4 陰極 5 陽極 6 直流高電圧源 7 真空ポンプ 8 ガスボンベ 9 試料 1 Support base 2 Bell jar 3 Substrate 4 Cathode 5 Anode 6 DC high voltage source 7 Vacuum pump 8 Gas cylinder 9 Sample

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井手上 英斗 東京都世田谷区新町2−4−20 (72)発明者 遠藤 隆一 千葉県松戸市小山778−3 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideto Ideue 2-4-20 Shinmachi, Setagaya-ku, Tokyo (72) Inventor Ryuichi Endo 778-3 Koyama, Matsudo City, Chiba Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 真空雰囲気において0.1〜1.0Torr
の含フッ素ガスの存在下で0.5〜2.5KVの直流電
圧を印加して生成される直流プラズマを高分子材料の表
面に照射することにより高分子材料の表面をフッ素化す
ることを特徴とする高分子材料の表面処理方法。
1. In a vacuum atmosphere, 0.1 to 1.0 Torr
The surface of the polymer material is fluorinated by irradiating the surface of the polymer material with a DC plasma generated by applying a DC voltage of 0.5 to 2.5 KV in the presence of the fluorine-containing gas. Surface treatment method for polymer materials.
【請求項2】 前記含フッ素ガスが、フッ素原子を含む
常温または加温下でガス体の化合物のいずれか一種類ま
たは任意の複数種類の組合わせである請求項1に記載の
高分子材料の表面処理方法。
2. The polymer material according to claim 1, wherein the fluorine-containing gas is any one kind or a combination of any plural kinds of compounds of a gas body containing a fluorine atom at room temperature or under heating. Surface treatment method.
【請求項3】 前記含フッ素ガスがCF4 、NF3 、S
6 、C24 、C26 である請求項2に記載の高分
子材料の表面処理方法。
3. The fluorine-containing gas is CF 4 , NF 3 , S
The surface treatment method for a polymer material according to claim 2, wherein the surface treatment is F 6 , C 2 F 4 , or C 2 F 6 .
【請求項4】 前記高分子材料がゴムである請求項1に
記載の高分子材料の表面処理方法。
4. The surface treatment method for a polymer material according to claim 1, wherein the polymer material is rubber.
【請求項5】 前記高分子材料がイソプレンゴムである
請求項4に記載の高分子材料の表面処理方法。
5. The surface treatment method for a polymer material according to claim 4, wherein the polymer material is isoprene rubber.
【請求項6】 高分子材料がエチレンプロピレンゴムで
ある請求項4に記載の高分子材料の表面処理方法。
6. The method for surface treatment of a polymer material according to claim 4, wherein the polymer material is ethylene propylene rubber.
【請求項7】 高分子材料がクロロプレンゴムである請
求項4に記載の高分子材料の表面処理方法。
7. The surface treatment method for a polymer material according to claim 4, wherein the polymer material is chloroprene rubber.
JP19293192A 1992-06-26 1992-06-26 Method for carrying out surface treatment of polymer material Withdrawn JPH069803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19293192A JPH069803A (en) 1992-06-26 1992-06-26 Method for carrying out surface treatment of polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19293192A JPH069803A (en) 1992-06-26 1992-06-26 Method for carrying out surface treatment of polymer material

Publications (1)

Publication Number Publication Date
JPH069803A true JPH069803A (en) 1994-01-18

Family

ID=16299381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19293192A Withdrawn JPH069803A (en) 1992-06-26 1992-06-26 Method for carrying out surface treatment of polymer material

Country Status (1)

Country Link
JP (1) JPH069803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702773A (en) * 1994-06-13 1997-12-30 Nec Corporation Method for preparing a fluoro-containing polyimide film
JP2008138107A (en) * 2006-12-04 2008-06-19 Nichias Corp Fluororubber molded article, and rubber material and o-ring using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702773A (en) * 1994-06-13 1997-12-30 Nec Corporation Method for preparing a fluoro-containing polyimide film
US5780121A (en) * 1994-06-13 1998-07-14 Nec Corporation Method for preparing a fluoro-containing polyimide film
US5795655A (en) * 1994-06-13 1998-08-18 Nec Corporation Method for preparing a fluoro-containing polyimide film
JP2008138107A (en) * 2006-12-04 2008-06-19 Nichias Corp Fluororubber molded article, and rubber material and o-ring using the same

Similar Documents

Publication Publication Date Title
JP2990608B2 (en) Surface treatment method
US5417826A (en) Removal of carbon-based polymer residues with ozone, useful in the cleaning of plasma reactors
JP3206095B2 (en) Surface treatment method and apparatus
US3923568A (en) Dry plasma process for etching noble metal
US6635185B2 (en) Method of etching and cleaning using fluorinated carbonyl compounds
US5439568A (en) Method for treating ozone layer depleting substances
US20060016783A1 (en) Process for titanium nitride removal
CA2222620A1 (en) Method and apparatus for cleaning surfaces with a glow discharge plasma at one atmosphere of pressure
US20100139691A1 (en) Method for the plasma cleaning of the surface of a material coated with an organic substance and the installation for carrying out said method
JPH07508313A (en) Plasma cleaning method for removing residue in plasma processing equipment
US7485580B2 (en) Method for removing organic electroluminescent residues from a substrate
Belkind et al. Plasma cleaning of surfaces
JPH07207494A (en) Improved alumina coating
JPH069803A (en) Method for carrying out surface treatment of polymer material
CN1127425A (en) Method for cleaning vacuum processing chamber which process by bromide gas
Khairallah et al. Surface fluorination of polyethylene films by different glow discharges. Effects of frequency and electrode configuration
JP3772936B2 (en) Surface treatment method
JP3796857B2 (en) Surface treatment method and apparatus
JPH06192453A (en) Surface treatment of polymeric material
Bedge et al. Kinetics of UV/O2 cleaning and surface passivation: Experiments and modeling
JPH02308829A (en) Method for treating surface of rubber material and apparatus therefor
JPS6344965A (en) Formation of multilayer film
Liston Plasmas and surfaces—a practical approach to good composites
RU2132582C1 (en) Method for manufacturing of gas-discharge alternating current indication board
JPS59190576A (en) Low torque seal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831