JPH0695215B2 - Electrophotographic photoconductor - Google Patents

Electrophotographic photoconductor

Info

Publication number
JPH0695215B2
JPH0695215B2 JP60118235A JP11823585A JPH0695215B2 JP H0695215 B2 JPH0695215 B2 JP H0695215B2 JP 60118235 A JP60118235 A JP 60118235A JP 11823585 A JP11823585 A JP 11823585A JP H0695215 B2 JPH0695215 B2 JP H0695215B2
Authority
JP
Japan
Prior art keywords
layer
gas
germanium
amorphous
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60118235A
Other languages
Japanese (ja)
Other versions
JPS61275853A (en
Inventor
讓 福田
徳好 高橋
正仁 徳弘
茂 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP60118235A priority Critical patent/JPH0695215B2/en
Publication of JPS61275853A publication Critical patent/JPS61275853A/en
Priority to US07/215,151 priority patent/US4932859A/en
Priority to US07/767,751 priority patent/US5262262A/en
Publication of JPH0695215B2 publication Critical patent/JPH0695215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真用感光体、特にケイ素及びゲルマニ
ウムを主体とし、これにフッ素を含有する非晶質材料を
感光層に用いた電子写真用感光体に関する。
Description: FIELD OF THE INVENTION The present invention relates to an electrophotographic photosensitive member, particularly an electrophotographic photosensitive member mainly composed of silicon and germanium, in which an amorphous material containing fluorine is used for a photosensitive layer. Regarding the body

従来の技術 電子写真法は、感光体を帯電し、像露光により感光体面
に静電潜像を形成し、現像剤で現像した後、転写紙にト
ナー像を転写し、定着して複写物を得る方法として知ら
れている。この電子写真法に用いられる感光体は、基本
構成として導電性基層上に感光層を積層してなるもので
あり、感光層を構成する材料としてはセレンあるいはセ
レン合金、硫化カドミウム、酸化亜鉛等の無機感光材料
あるいはポリビニルカルバゾール、トリニトロフルオレ
ノン、ビスアゾ顔料、フタロシアニン、ピラゾリン、ヒ
ドラゾンなどの有機感光材料が知られ、感光層を単層あ
るいは積層にして用いられている。
In the conventional electrophotographic method, a photoconductor is charged, an electrostatic latent image is formed on the photoconductor surface by imagewise exposure, the image is developed with a developer, and then a toner image is transferred onto a transfer paper and fixed to make a copy. Known as a way to get. The photoconductor used in this electrophotographic method has a basic structure in which a photosensitive layer is laminated on a conductive base layer, and the material forming the photosensitive layer is selenium or a selenium alloy, cadmium sulfide, zinc oxide, or the like. Inorganic photosensitive materials or organic photosensitive materials such as polyvinylcarbazole, trinitrofluorenone, bisazo pigments, phthalocyanine, pyrazoline, and hydrazone are known, and the photosensitive layers are used as a single layer or a laminated layer.

近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ、種々その改善が試み
られている。この非晶質ケイ素を用いた感光体は導電性
基板上にシラン(SiH4)ガスをグロー放電分解法等によ
りケイ素の非晶質膜を形成したものであって、非晶質ケ
イ素膜中に水素原子が取り込まれ光導電性を呈するもの
である。非晶質ケイ素感光体は、感光層の表面硬度が高
く傷つきにくく摩耗にも強く、耐熱性も高く、機械的強
度にすぐれ又高い光感度を有する如く感光特性もすぐれ
たものである。
In recent years, a photoreceptor using amorphous silicon as the photosensitive layer has been known, and various attempts have been made to improve it. The photoconductor using this amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate by glow discharge decomposition method of silane (SiH 4 ) gas. Hydrogen atoms are incorporated and exhibit photoconductivity. Amorphous silicon photoconductors have excellent photosensitivity such that the photosensitive layer has a high surface hardness, is not easily scratched, is resistant to abrasion, has high heat resistance, has excellent mechanical strength, and has high photosensitivity.

発明が解決しようとする問題点 しかしながら非晶質ケイ素感光体は、波長約400nm〜700
nmの光に対して高い光感度を有しているものの、波長70
0nm以上のより長波長光に対して、その光感度が急激に
低下する。
Problems to be Solved by the Invention However, the amorphous silicon photoreceptor has a wavelength of about 400 nm to 700 nm.
Although it has a high photosensitivity to nm wavelength light, it has a wavelength of 70
The photosensitivity of the light having a longer wavelength of 0 nm or more sharply decreases.

最近、半導体レーザを光源としたレーザビームプリンタ
用の感光体として800nm付近までの長波長に良好な光感
度を有する電子写真感光体が要求されているが上記の欠
陥を有したままでは非晶質ケイ素感光体は半導体レーザ
プリンタ用としては実用に供することができない。非晶
質ケイ素中にゲルマニウムを適量加えて非晶質ケイ素−
ゲルマニウムとすることにより、光学的バンドギャップ
の減少化を図ることができることが知られている。ゲル
マニウム量の増加と共に光学的バンドギャップは、非晶
質ケイ素の1.7eVからゲルマニウムの1.1eV程度まで連続
的に減少させることができる。
Recently, an electrophotographic photoconductor having good photosensitivity to a long wavelength up to around 800 nm is required as a photoconductor for a laser beam printer using a semiconductor laser as a light source. Silicon photoconductors cannot be put to practical use for semiconductor laser printers. An appropriate amount of germanium is added to amorphous silicon to obtain amorphous silicon.
It is known that germanium can reduce the optical band gap. The optical bandgap can be continuously reduced from 1.7 eV of amorphous silicon to about 1.1 eV of germanium as the amount of germanium increases.

従ってa(アモルファス)−Si1-xGexを光導電層とする
ことにより光感度特性を長波側に延ばすことが可能とな
り、800nm付近までの長波長光にまで良好な光感度を有
する電子写真用感光体を得ることができる。
Therefore, by using a (amorphous) -Si 1-x Ge x as the photoconductive layer, the photosensitivity characteristics can be extended to the long-wave side, and electrophotography having good photosensitivity to long-wavelength light up to around 800 nm. Can be obtained.

しかし反面、この感光層は暗減衰が大きく、感光体を帯
電しても充分な帯電電位が得られないという欠点を有す
る。即ちケイ素、ゲルマニウムを主体とする非晶質材料
からなる感光体を電帯し、像露光して静電潜像を形成
し、次いで現像する際、感光体上の表面電荷が像露光ま
であるいは現像工程までの間に光照射を受けなかった部
分の電荷までも減衰してしまい、現像に必要な帯電電位
が得られにくいものである。
On the other hand, however, this photosensitive layer has a large dark decay and has a drawback that a sufficient charging potential cannot be obtained even if the photosensitive member is charged. That is, when a photoreceptor made of an amorphous material mainly composed of silicon and germanium is charged with electricity, imagewise exposed to form an electrostatic latent image, and then developed, the surface charge on the photoreceptor remains until the imagewise exposure or development. Even the electric charge of the portion which was not irradiated with light during the process is attenuated, and it is difficult to obtain the charging potential required for development.

この帯電電位の減衰は、環境条件の影響によっても変化
しやすく、特に高温高湿の環境では帯電電位が大幅に低
下してしまい、更に感光体を繰返し使用すると徐々に帯
電電位が低下してしまう。この様な帯電電位の暗減衰の
大きな感光体を用いて複写物を作製すると画像濃度が低
く又中間調の再現性に乏しい複写物となってしまう。
This attenuation of the charging potential is apt to change due to the influence of environmental conditions, and particularly in a high temperature and high humidity environment, the charging potential is significantly lowered, and further, when the photoreceptor is repeatedly used, the charging potential is gradually lowered. . When a copy is produced using such a photoreceptor having a large dark decay of the charging potential, the copy has a low image density and poor halftone reproducibility.

本発明はこの様なケイ素、ゲルマニウムを主体とする非
晶質材料からなる感光体における欠点を解消することを
目的としてなされたものであり、帯電電位の暗減衰の少
ない非晶質ケイ素感光体を提供するものである。
The present invention has been made for the purpose of eliminating the drawbacks in the photoconductor made of an amorphous material mainly composed of silicon and germanium, and provides an amorphous silicon photoconductor having a small dark decay of the charging potential. It is provided.

問題点を解決するための手段 上記目的を達成するため、ケイ素及びゲルマニウムを主
体とする非晶質材料から成る感光体の特性について研究
を行った。その結果、光導電層を、シランまたはシラン
誘導体と四フッ化ゲルマニウム(GeF4)ガスの放電分解
生成物から構成した。そして、表面層を50原子%以下の
水素を含む非晶質炭素で形成し、また該表面層に、約10
-4ないし0.1原子%のホウ素(B)を含有させ、これに
より上記欠点を解消した。
Means for Solving the Problems In order to achieve the above-mentioned object, the characteristics of a photoconductor made of an amorphous material mainly containing silicon and germanium were studied. As a result, the photoconductive layer was composed of a discharge decomposition product of silane or a silane derivative and germanium tetrafluoride (GeF 4 ) gas. Then, the surface layer is formed of amorphous carbon containing 50 atomic% or less of hydrogen, and the surface layer contains about 10
-4 to 0.1 atom% of boron (B) was contained, which eliminated the above-mentioned drawbacks.

更に、本発明による感光体の具体的構成について説明す
る。
Further, a specific structure of the photoconductor according to the present invention will be described.

本発明の電子写真用感光体の構造は第1図に示す通りで
あり、図中、1は50原子%以下の水素を含み約10-4ない
し0.1原子%のホウ素(B)を含有する非晶質炭素から
成る表面層、2は非晶質ケイ素とゲルマニウムを主体と
しこれにフッ素を含有する光導電層、3は導電性基層ま
たは基板である。
The structure of the electrophotographic photosensitive member of the present invention is as shown in FIG. 1, in which 1 is a non-containing material containing 50 atomic% or less of hydrogen and about 10 −4 to 0.1 atomic% of boron (B). A surface layer made of crystalline carbon, 2 is a photoconductive layer containing amorphous silicon and germanium as main components, and fluorine is contained therein, and 3 is a conductive base layer or substrate.

表面層1は帯電処理の際、光導電層2の表面部から内部
への電荷の注入を阻止する電荷ブロッキング層としての
役割の他に、酸素、水蒸気、空気中の水分、オゾン
(O3)といった環境雰囲気中に一般的に存在する分子種
が光導電層表面に直接接触あるいは吸着するのを防止す
る表面保護層としての役割を持たせることができる。同
時に、上記の表面層は、応力の付加、あるいは反応性化
学物質の付着などの外部要因の作用によって、光導電層
自体の特性が破壊されるのを防止する表面保護層として
の役割をも持たせることができる。
The surface layer 1 not only functions as a charge blocking layer that blocks injection of charges from the surface of the photoconductive layer 2 into the interior of the photoconductive layer 2 during charging, but also oxygen, water vapor, moisture in the air, ozone (O 3 ). It is possible to provide a role as a surface protective layer for preventing the molecular species generally present in the environmental atmosphere from directly contacting or adsorbing to the surface of the photoconductive layer. At the same time, the above-mentioned surface layer also has a role as a surface protective layer that prevents the characteristics of the photoconductive layer itself from being destroyed by the action of external factors such as the addition of stress or the adhesion of reactive chemical substances. Can be made.

さらには、上記の表面層は、ケイ素、ゲルマニウムを主
体とし、これにフッ素を含有する非晶質材料を主体とす
る光導電層中に一般的に含まれている水素などの膜構成
原子が光導電層中から離脱していくのを防止する膜構成
原子の離脱防止層としての役割も持たせることができ
る。
Further, the above surface layer is mainly composed of silicon and germanium, and the film-forming atoms such as hydrogen generally contained in the photoconductive layer mainly composed of an amorphous material containing fluorine are contained in the surface layer. It can also have a role as a layer for preventing the film constituent atoms from being separated from the conductive layer.

表面層1は、グロー放電法、スパッタリング法、イオン
プレーティング法、真空蒸着法、CVD(Chemical Vapor
Deposition:化学蒸着)などの方法によって形成するこ
とが出来る。中でも、グロー放電法により、炭化水素化
合物を分解して形成した50原子%以下の水素を含む非晶
質炭素膜は、電子写真感光体として要求される高暗抵抗
を得ることができ、また、ケイ素、ゲルマニウムを主体
とし、これにフッ素を含有する非晶質材料からなる感光
体の特徴を損なうことがなく、透明でかつ高硬度等の優
れた特性を有する。
The surface layer 1 is a glow discharge method, a sputtering method, an ion plating method, a vacuum deposition method, a CVD (Chemical Vapor) method.
Deposition: chemical vapor deposition) and the like. Among them, by the glow discharge method, an amorphous carbon film containing 50 atomic% or less of hydrogen formed by decomposing a hydrocarbon compound can obtain high dark resistance required as an electrophotographic photoreceptor, and It has excellent characteristics such as transparency and high hardness without deteriorating the characteristics of the photoconductor which is mainly composed of silicon and germanium and is made of an amorphous material containing fluorine.

本発明の表面層を形成するのに使用される原料は次のも
のが使用される。主体となる炭素の原料としては、メタ
ン、エタン、プロパン、ペンタン等のCnH2n+2の一般式
で示されるパラフィン系炭化水素;エチレン、プロピレ
ン、ブチレン、ペンテン等のCnH2nの一般式で示される
オレフィン系炭化水素;アセチレン、アリレン、ブチン
等のCnH2n-2の一般式で示されるアセチレン系炭化水素
等の脂肪族炭化水素;シクロプロパン、シクロブタン、
シクロペンタン、シクロヘキサン、シクロヘプタン、シ
クロブテン、シクロペンテン、シクロヘキセン等の脂環
式炭化水素;ベンゼン、トルエン、キシレン、ナフタリ
ン、アントラセン等の芳香族化合物が挙げられる。
The following materials are used as the raw materials used for forming the surface layer of the present invention. Main raw materials of carbon include paraffin hydrocarbons represented by the general formula of C n H 2n + 2 such as methane, ethane, propane and pentane; general C n H 2n such as ethylene, propylene, butylene and pentene. Olefinic hydrocarbons represented by the formula; acetylene, arylene, butyne and other aliphatic hydrocarbons such as acetylene hydrocarbons represented by the general formula of C n H 2n-2 ; cyclopropane, cyclobutane,
Alicyclic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane, cyclobutene, cyclopentene and cyclohexene; aromatic compounds such as benzene, toluene, xylene, naphthalene and anthracene.

非晶質炭素膜中の水素の含有は、通常、原料炭化水素に
含まれる水素によってなされるが、必要に応じて、原料
炭化水素と同時に水素ガスを装置に導入しても良い。
Hydrogen is usually contained in the amorphous carbon film by hydrogen contained in the raw material hydrocarbon, but if necessary, hydrogen gas may be introduced into the apparatus simultaneously with the raw material hydrocarbon.

また、非晶質炭素表面層の暗抵抗の制御あるいはケイ
素、ゲルマニウムを主体とし、これにフッ素を含有する
非晶質材料からなる光導電層との接合特性の制御を目的
として、上記のガス中にジボラン(B2H6)ガスを上記炭
化水素化合物に対し、10-4乃至0.1原子%混入させて非
晶質炭素中にホウ素(B)を添加することができる。
In addition, in order to control the dark resistance of the amorphous carbon surface layer or to control the bonding characteristics with a photoconductive layer made of an amorphous material mainly containing silicon or germanium and containing fluorine, the above-mentioned gas It is possible to add boron (B) to the amorphous carbon by mixing diborane (B 2 H 6 ) gas with respect to the above hydrocarbon compound in an amount of 10 −4 to 0.1 atom%.

原料気体のグロー放電分解は、直流あるいは交流放電の
いずれの場合でも可能であり、周波数は0〜30MHz、好
適には5〜20MHzである。放電時の真空度は0.1〜5Tor
r、基板加熱温度は100〜400℃で行なわれる。
The glow discharge decomposition of the raw material gas is possible in either direct current or alternating current discharge, and the frequency is 0 to 30 MHz, preferably 5 to 20 MHz. Vacuum degree during discharge is 0.1 to 5 Tor
r, substrate heating temperature is 100-400 ℃.

表面層の膜厚は任意に設定されるが、10μm以下特に1
μm以下が好適である。
The thickness of the surface layer is set arbitrarily, but 10 μm or less, especially 1
μm or less is preferable.

非晶質ケイ素−ゲルマニウム光導電層2の中に含まれる
フッ素は光導電層の熱的安定性、酸素、水蒸気、オゾン
に対する化学的安定性を増し、同時に電子写真感光体と
しての使用に適する高い暗抵抗と光感度を実現する。
Fluorine contained in the amorphous silicon-germanium photoconductive layer 2 enhances the thermal stability of the photoconductive layer and the chemical stability to oxygen, water vapor, and ozone, and at the same time, is highly suitable for use as an electrophotographic photoreceptor. Realizes dark resistance and light sensitivity.

本発明においてケイ素、ゲルマニウムを主体としてこれ
にフッ素を含有する非晶質材料から成る光導電層はプラ
ズマCVD装置の反応室内にシラン(SiH4)またはシラン
誘導体と四フッ化ゲルマニウムガス(GeF4)を導入し、
これらの混合ガスをグロー放電分解することによって反
応室内所定の位置に設定された導電性基板上に形成され
る。
In the present invention, the photoconductive layer made of an amorphous material containing silicon and germanium as a main component and containing fluorine is used as silane (SiH 4 ) or a silane derivative and germanium tetrafluoride gas (GeF 4 ) in the reaction chamber of the plasma CVD apparatus. Introduced
These mixed gases are decomposed by glow discharge and formed on a conductive substrate set at a predetermined position in the reaction chamber.

本発明の特徴の1つはゲルマニウム及びフッ素の原料ガ
スとして四フッ化ゲルマニウム(GeF4)を使用すること
であり、非晶質ケイ素中にゲルマニウム及びフッ素を同
時にかつ効果的に含有させることができる。本発明の光
導電層形成に用いるシランまたはシラン誘導体として
は、SiH4、Si2H6、Si3H8、Si4H10、SiCl4、SiHCl3、SiH
2Cl2、Si(CH3)4等のガスを用いることができる。
One of the features of the present invention is that germanium tetrafluoride (GeF 4 ) is used as a source gas of germanium and fluorine, and germanium and fluorine can be contained in amorphous silicon simultaneously and effectively. . Examples of the silane or silane derivative used for forming the photoconductive layer of the present invention include SiH 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H 10 , SiCl 4 , SiHCl 3 , and SiH.
A gas such as 2 Cl 2 or Si (CH 3 ) 4 can be used.

また非晶質ケイ素−ゲルマニウム光導電層膜の暗抵抗の
制御あるいは帯電極性の制御を目的として、さらに上記
のガス中にジボラン(B2H6)ガス、ホスフィン(PH3
ガスなどのドーバント・ガスを混入させ、光導電層膜中
へのホウ素(B)あるいはリン(P)などの不純物元素
の添加(ドーピング)を行なうこともできる。またさら
には、膜の暗抵抗の増加、光感度の増加あるいは帯電能
(単位膜厚あたりの帯電能力あるいは帯電電位)の増加
を目的として、非晶質ケイ素−ゲルマニウム膜中に炭素
原子、酸素原子、窒素原子などを含有させてもよい。
Further, for the purpose of controlling the dark resistance or the charging polarity of the amorphous silicon-germanium photoconductive layer film, diborane (B 2 H 6 ) gas and phosphine (PH 3 ) are added to the above gases.
It is also possible to add a dopant gas such as a gas and add (doping) an impurity element such as boron (B) or phosphorus (P) into the photoconductive layer film. Furthermore, in order to increase the dark resistance of the film, increase the photosensitivity, or increase the charging ability (charging ability or charging potential per unit film thickness), carbon atoms or oxygen atoms are contained in the amorphous silicon-germanium film. , Nitrogen atom, etc. may be contained.

以上のプラズマCVD法によりシランまたはシラン誘導体
と四フッ化ゲルマニウム(GeF4)ガスをグロー放電分解
する非晶質ケイ素光導電層膜形成法において有効な放電
条件すなわちケイ素、ゲルマニウムを主体としこれにフ
ッ素を含有する非晶質膜の生成条件は、例えば交流放電
の場合を例とすると、次の通りである。周波数は通常0.
1〜30MHz、好適には5〜20MHz、放電時の真空度は0.1〜
5Torr、基板加熱温度は100〜400℃である。非晶質ケイ
素とゲルマニウムを主体とする光導電層の膜厚は任意に
設定されるが、1μm〜200μm、特に10μm〜100μm
が好適である。
Discharge conditions effective in the amorphous silicon photoconductive layer film forming method in which silane or a silane derivative and germanium tetrafluoride (GeF 4 ) gas are decomposed by glow discharge by the plasma CVD method described above, that is, silicon and germanium are the main constituents The conditions for forming the amorphous film containing P are as follows, for example, in the case of AC discharge. Frequency is usually 0.
1 ~ 30MHz, preferably 5 ~ 20MHz, vacuum degree during discharge is 0.1 ~
The substrate heating temperature is 5 torr and 100 to 400 ° C. The film thickness of the photoconductive layer mainly composed of amorphous silicon and germanium is arbitrarily set, but 1 μm to 200 μm, particularly 10 μm to 100 μm
Is preferred.

添付図面中3の導電性基板としてはAl、Ni、Cr、Fe、ス
テンレス鋼、黄銅などの金属からなる基板、あるいはIn
2O3、SnO2、CuI、CrO2などの金属間化合物からなる基板
などを用いることができる。また基板の形状は円筒状、
平板状、エンドレスベルト状等任意の形状として得るこ
とが可能である。
The conductive substrate 3 in the attached drawings is a substrate made of a metal such as Al, Ni, Cr, Fe, stainless steel, brass, or In.
A substrate made of an intermetallic compound such as 2 O 3 , SnO 2 , CuI, or CrO 2 can be used. Also, the substrate shape is cylindrical,
It can be obtained in any shape such as a flat plate shape and an endless belt shape.

また、第2図に示すように、必要により、光導電層2と
導電性基板3との間に電荷注入阻止層4を設けることが
できる。この層を構成する材料としては、感光体の使用
される帯電符号に応じ、例えば微量のホウ素を添加した
水素化非晶質ケイ素あるいは微量のリンを添加した水素
化非晶質ケイ素等が用いられる。
Further, as shown in FIG. 2, a charge injection blocking layer 4 can be provided between the photoconductive layer 2 and the conductive substrate 3 if necessary. As a material for forming this layer, for example, hydrogenated amorphous silicon added with a trace amount of boron or hydrogenated amorphous silicon added with a trace amount of phosphorus is used depending on the charge code used for the photoreceptor. .

以下、具体的な実施例により本発明を具体的に説明す
る。
Hereinafter, the present invention will be specifically described with reference to specific examples.

比較例1 円筒状基板上への非晶質ケイ素膜の生成が可能な容量結
合型プラズマCVD装置を用いて、シラン(SiH4)ガスと1
0%の四フッ化ゲルマニウム(GeF4)ガスの混合ガスを
グロー放電分解することにより、円筒型Al基層上に水素
と極微量のホウ素を含む高暗抵抗でいわゆるi型(真
性)のケイ素とゲルマニウムを主体とし、フッ素を含有
する非晶質光導電膜を生成した。この時の非晶質光導電
膜の生成条件は次のようであった。
Comparative Example 1 Silane (SiH 4 ) gas and 1 were used by using a capacitively coupled plasma CVD apparatus capable of forming an amorphous silicon film on a cylindrical substrate.
By glow discharge decomposition of a mixed gas of 0% germanium tetrafluoride (GeF 4 ) gas, a so-called i-type (intrinsic) silicon with high dark resistance containing hydrogen and a trace amount of boron is formed on the cylindrical Al base layer. An amorphous photoconductive film containing germanium as a main component and containing fluorine was produced. The conditions for forming the amorphous photoconductive film at this time were as follows.

プラズマCVD装置の反応室内の所定の位置に円筒状Al基
板を設置し、基板温度を所定の温度である250℃に維持
し、反応室内にシラン(SiH4)ガスと10%の四フッ化ゲ
ルマニウム(GeF4)ガスの混合ガスを毎分120cc、水素
希釈の100ppmジボラン(B2H6)ガスを毎分20cc、さらに
100%水素(H2)ガスを毎分90ccで流入させ、反応槽内
を0.5Torrの内圧に維持した後、13.56MHzの高周波電力
を供給して、グロー放電を生じせしめ、高周波電源の出
力を85Wに維持した。このようにして円筒状のAl基板上
に厚さ25μmの水素と極微量のホウ素を含む高暗抵抗で
いわゆるi型(真性)のケイ素とゲルマニウムを主体と
し、フッ素を含有する非晶質光導電体からなる感光体を
得た。
A cylindrical Al substrate was installed at a predetermined position in the reaction chamber of the plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250 ° C, and silane (SiH 4 ) gas and 10% germanium tetrafluoride were placed in the reaction chamber. (GeF 4 ) gas mixed gas at 120cc / min, hydrogen diluted 100ppm diborane (B 2 H 6 ) gas at 20cc / min, and
After flowing 100% hydrogen (H 2 ) gas at 90 cc / min and maintaining the internal pressure of the reactor at 0.5 Torr, high frequency power of 13.56 MHz was supplied to cause glow discharge and output of the high frequency power supply. Maintained at 85W. In this way, amorphous photoconductive material containing mainly fluorine and so-called i-type (intrinsic) silicon and germanium with high dark resistance containing 25 μm thick hydrogen and a very small amount of boron on a cylindrical Al substrate. A photoreceptor consisting of a body was obtained.

このようにして得られた感光体は、表面硬度が高く、耐
摩耗性、耐熱性に優れ、高暗抵抗かつ高光感度を有し、
電子写真用感光体特性の優れたものであった。また正帯
電、負帯電いずれの帯電も可能であり両極性帯電性を有
していた。
The photoreceptor thus obtained has high surface hardness, excellent wear resistance and heat resistance, and has high dark resistance and high photosensitivity.
The electrophotographic photoconductor had excellent characteristics. Further, both positive charging and negative charging were possible, and it had a bipolar charging property.

この感光体を正帯電させ初期電位を550Vにした。これを
780nmの波長の光で露光する操作を毎分40回の速度で繰
返した。この時の残留電位は0Vで安定していたが、帯電
電位は繰返し数の増加とともに減少する傾向が見られ、
1000回の繰返し操作の後においてその帯電電位は初期帯
電電位の75%の値まで減少していた。
The photoconductor was positively charged to have an initial potential of 550V. this
The operation of exposing with light having a wavelength of 780 nm was repeated at a rate of 40 times per minute. The residual potential at this time was stable at 0 V, but the charging potential tended to decrease as the number of repetitions increased,
The charge potential decreased to 75% of the initial charge potential after 1000 repeated operations.

またこの感光体を負帯電させ、同様の操作を行なったと
ころ、正帯電の場合と同様の現象が見られた。更に、複
写操作を繰り返すうちに徐々に画像の解像度が低下し
た。
When this photoreceptor was negatively charged and the same operation was performed, the same phenomenon as in the case of positive charging was observed. Further, the resolution of the image gradually decreased as the copying operation was repeated.

実施例1 比較例1と同一方法、同一条件にてケイ素とゲルマニウ
ムを主体とし、フッ素を含有する非晶質光導電層を形成
した後、反応槽を真空にした。次に、メタン(CH4)ガ
スと10ppmのジボラン(B2H6)ガスを含んだ混合ガスを
毎分50cc流入し、反応槽内を0.2Torrにした後、グロー
放電分解することにより40%の水素を含む非晶質炭素か
らなる表面層を0.3μm設けた。該表面層のホウ素濃度
は1.5×10-3原子%であった。
Example 1 After forming an amorphous photoconductive layer mainly containing silicon and germanium and containing fluorine under the same method and the same conditions as in Comparative Example 1, the reaction tank was evacuated. Next, a mixed gas containing methane (CH 4 ) gas and 10 ppm diborane (B 2 H 6 ) gas was flowed in at 50 cc / min, and the inside of the reaction tank was adjusted to 0.2 Torr. The surface layer of amorphous carbon containing hydrogen of 0.3 μm was provided. The boron concentration of the surface layer was 1.5 × 10 −3 atom%.

この表面層は表面硬度が高く耐摩耗性に優れ、透明性に
優れまた耐熱性に優れた膜であった。
This surface layer was a film having high surface hardness, excellent wear resistance, excellent transparency, and excellent heat resistance.

この感光体を正帯電させ初期電位を550Vにした。これを
780nmの波長の光で露光する操作を毎分40回の速度で繰
り返した。この時の残留電位は10Vで安定しており、帯
電電位も1000回の繰り返し操作の後でも初期帯電電位の
98%を保持していた。
The photoconductor was positively charged to have an initial potential of 550V. this
The operation of exposing with light having a wavelength of 780 nm was repeated at a rate of 40 times per minute. The residual potential at this time is stable at 10 V, and the charging potential is also the initial charging potential even after 1000 times of repeated operations.
Held 98%.

また、1000回の複写操作後も画像の濃度、解像度に優れ
たコピーが得られた。
Further, even after 1,000 times of copying operation, a copy excellent in image density and resolution was obtained.

比較例2 比較例1と同様な装置を用いて、円筒型Al基板上に水素
と微量のホウ素を含む、いわゆるP型の非晶質ケイ素膜
と、ケイ素とゲルマニウムを主体とし、水素、フッ素及
び極微量のホウ素を含むいわゆるi型(真性)の非晶質
光導電膜を順次形成した。この時の生成条件は次のよう
であった。
Comparative Example 2 Using a device similar to that of Comparative Example 1, a so-called P-type amorphous silicon film containing hydrogen and a trace amount of boron on a cylindrical Al substrate, and mainly composed of silicon and germanium, containing hydrogen, fluorine and A so-called i-type (intrinsic) amorphous photoconductive film containing a trace amount of boron was sequentially formed. The generation conditions at this time were as follows.

プラズマCVD装置の反応室内の所定の位置に円筒状Al基
板を設置し、基板温度を所定の温度である250℃に維持
し、反応室内に100%シラン(SiH4)ガスを毎分120cc、
水素希釈の100ppmジボラン(B2H6)ガスを毎分100cc、
さらに100%水素(H2)ガスを毎分90ccで流入させ、反
応槽内を0.5Torrの内圧に維持した後、13.56MHzの高周
波電力を供給して、グロー放電を生じせしめ高周波電源
の出力を85Wに維持した。このようにして円筒状のAl基
板上に厚さ0.2μmの、水素と微量のホウ素を含む、い
わゆるP型の非晶質ケイ素膜を形成した。
A cylindrical Al substrate was installed at a predetermined position in the reaction chamber of the plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250 ° C., and 100% silane (SiH 4 ) gas was supplied in the reaction chamber at 120 cc / min.
100ppm / min of 100ppm diborane (B 2 H 6 ) gas diluted with hydrogen,
Furthermore, 100% hydrogen (H 2 ) gas was flowed in at 90 cc / min to maintain the internal pressure of the reaction chamber at 0.5 Torr, and then 13.56 MHz high frequency power was supplied to cause glow discharge and output of the high frequency power supply. Maintained at 85W. Thus, a so-called P-type amorphous silicon film containing hydrogen and a trace amount of boron having a thickness of 0.2 μm was formed on the cylindrical Al substrate.

次に、反応室内にシラン(SiH4)ガスと10%四フッ化ゲ
ルマニウム(GeF4)ガスの混合ガスを毎分120cc、水素
希釈の100ppmジボラン(B2H6)ガスを毎分20cc、さらに
100%水素(H2)ガスを毎分90ccで流入させ、反応槽内
を0.5Torrの内圧に維持した後、P層と同様に放電を行
ない厚さ25μmのケイ素とゲルマニウムを主体としフッ
素と極微量のホウ素を含有するいわゆるi型層が積層さ
れた感光体を得た。
Next, in the reaction chamber, a mixed gas of silane (SiH 4 ) gas and 10% germanium tetrafluoride (GeF 4 ) gas is 120 cc / min, hydrogen-diluted 100 ppm diborane (B 2 H 6 ) gas is 20 cc / min, and
After flowing 100% hydrogen (H 2 ) gas at 90 cc / min and maintaining the internal pressure of the reaction tank at 0.5 Torr, discharge was carried out in the same manner as the P layer, and 25 μm thick silicon and germanium were the main constituents and fluorine and A photoconductor was obtained in which a so-called i-type layer containing a trace amount of boron was laminated.

このようにして得られた感光体は表面硬度が高く、耐摩
耗性、耐熱性に優れ高暗抵抗かつ高光感度を有し、電子
写真用感光体特性の優れたものであった。
The photoreceptor thus obtained had high surface hardness, excellent abrasion resistance and heat resistance, high dark resistance and high photosensitivity, and was excellent in electrophotographic photoreceptor characteristics.

この感光体を複写機に入れ、正のコロナ帯電方式で画質
を評価したところ、初期時では実用上問題のない画像濃
度が得られたが、複写操作を繰り返すうちに徐々に画像
濃度は低下した。
When this photoconductor was placed in a copying machine and the image quality was evaluated by a positive corona charging method, an image density that was practically no problem was obtained in the initial stage, but the image density gradually decreased as the copying operation was repeated. .

実施例2 比較例2と同一方法、同一条件、同一手続きに従ってケ
イ素とゲルマニウムを主体とする光導電層を形成した
後、反応槽を真空にした。次に、エタン(C2H6)ガスと
20ppmのジボラン(B2H6)ガスを含んだ混合ガスを毎分2
0cc流入して反応槽内を0.1Torrにした後、グロー放電分
解することにより30%の水素を含む非晶質炭素からなる
表面層を0.1μm設けた。該表面層のホウ素濃度は1.8×
10-3原子%であった。
Example 2 After forming a photoconductive layer mainly containing silicon and germanium according to the same method, the same conditions and the same procedure as in Comparative Example 2, the reaction tank was evacuated. Then, with ethane (C 2 H 6 ) gas
2 per minute of mixed gas containing 20 ppm diborane (B 2 H 6 ) gas
After flowing 0 cc to make the inside of the reaction chamber 0.1 Torr, glow discharge decomposition was performed to provide a surface layer of 0.1 μm made of amorphous carbon containing 30% of hydrogen. The boron concentration of the surface layer is 1.8 ×
It was 10 -3 atom%.

この表面層は表面硬度が高く耐摩耗性に優れ、透明性に
優れまた耐熱性に優れた膜であった。
This surface layer was a film having high surface hardness, excellent wear resistance, excellent transparency, and excellent heat resistance.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。
The photoconductor thus obtained was placed in a copying machine, and image quality was evaluated by a positive corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed.

実施例3 比較例2と同一方法、同一条件、同一手続きに従ってケ
イ素とゲルマニウムを主体とする光導電層を形成した
後、反応槽を真空にした。次に、エチレン(C2H4)ガス
と50ppmのジボラン(B2H6)ガスを含んだ混合ガスを毎
分30cc流入して反応槽内を0.1Torrにした後、グロー放
電分解することにより30%の水素を含む非晶質炭素から
なる表面層を0.2μm設けた。該表面層のホウ素濃度は
3.5×10-3原子%であった。
Example 3 After forming a photoconductive layer mainly containing silicon and germanium according to the same method, the same conditions and the same procedure as in Comparative Example 2, the reaction tank was evacuated. Next, a mixed gas containing ethylene (C 2 H 4 ) gas and 50 ppm diborane (B 2 H 6 ) gas was flowed in at 30 cc per minute to make the inside of the reaction chamber 0.1 Torr, and then by glow discharge decomposition. A surface layer made of amorphous carbon containing 30% hydrogen was provided at 0.2 μm. The boron concentration of the surface layer is
It was 3.5 × 10 -3 atom%.

この表面層は表面硬度が高く耐摩耗性に優れ、透明性に
優れまた耐熱性に優れた膜であった。
This surface layer was a film having high surface hardness, excellent wear resistance, excellent transparency, and excellent heat resistance.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では事実上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。
The photoconductor thus obtained was placed in a copying machine and image quality was evaluated by a positive corona charging method. As a result, an image density which was practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed.

発明の効果 以上の通り、本発明によれば、非晶質ケイ素感光体の特
性をそのまま維持しながら、帯電電荷の暗減衰の少ない
感光体が提供され、また四フッ化ゲルマニウムガスを用
いて非晶質ケイ素中にゲルマニウム及びフッ素を効果的
に含有させることができ、これにより、感光体の受光波
長領域を拡げることができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to provide a photoconductor in which the dark decay of the charged electric charge is small while maintaining the characteristics of the amorphous silicon photoconductor as it is. Germanium and fluorine can be effectively contained in the crystalline silicon, whereby the light receiving wavelength region of the photoconductor can be expanded.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による感光体の1つの構成例を示す図、
第2図は他の構成例を示す図である。 1……表面層、2……光導電層、3……導電性基層
(板)、4……電荷注入阻止層。
FIG. 1 is a diagram showing one constitutional example of a photoconductor according to the present invention,
FIG. 2 is a diagram showing another configuration example. 1 ... Surface layer, 2 ... Photoconductive layer, 3 ... Conductive base layer (plate), 4 ... Charge injection blocking layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八木 茂 神奈川県南足柄市竹松1600番地 富士ゼロ ツクス株式会社竹松事業所内 (56)参考文献 特開 昭61−208056(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shigeru Yagi 1600 Takematsu, Minamiashigara City, Kanagawa Prefecture Fuji Zero Tsux Co., Ltd. Takematsu Plant (56) References JP-A-61-208056 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性基層上に光導電層及び表面層を順次
積層して成る電子写真用感光体において、前記光導電層
がシランまたはシラン誘導体と四フッ化ゲルマニウム
(GeF4)ガスの放電分解生成物から成り、前記表面層は
50原子%以下の水素を含む非晶質炭素から成り、更に、
該表面層が、10-4ないし0.1原子%のホウ素を含有する
ことを特徴とする電子写真用感光体。
1. An electrophotographic photoreceptor comprising a photoconductive layer and a surface layer sequentially laminated on a conductive base layer, wherein the photoconductive layer is a discharge of silane or a silane derivative and germanium tetrafluoride (GeF 4 ) gas. The surface layer is composed of decomposition products.
Consisting of amorphous carbon containing 50 atomic% or less of hydrogen,
An electrophotographic photoreceptor, wherein the surface layer contains 10 −4 to 0.1 atom% of boron.
JP60118235A 1985-05-31 1985-05-31 Electrophotographic photoconductor Expired - Lifetime JPH0695215B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60118235A JPH0695215B2 (en) 1985-05-31 1985-05-31 Electrophotographic photoconductor
US07/215,151 US4932859A (en) 1985-05-31 1988-07-05 Electrophotographic photoreceptor having doped and/or bilayer amorphous silicon photosensitive layer
US07/767,751 US5262262A (en) 1985-05-31 1991-09-30 Electrophotographic photoreceptor having conductive layer and amorphous carbon overlayer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60118235A JPH0695215B2 (en) 1985-05-31 1985-05-31 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS61275853A JPS61275853A (en) 1986-12-05
JPH0695215B2 true JPH0695215B2 (en) 1994-11-24

Family

ID=14731573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60118235A Expired - Lifetime JPH0695215B2 (en) 1985-05-31 1985-05-31 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0695215B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695216B2 (en) * 1985-05-31 1994-11-24 富士ゼロックス株式会社 Electrophotographic photoconductor
JPH0695214B2 (en) * 1985-05-31 1994-11-24 富士ゼロックス株式会社 Electrophotographic photoconductor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208056A (en) * 1985-03-13 1986-09-16 Toray Ind Inc Electrophotographic sensitive body
JPH0695216B2 (en) * 1985-05-31 1994-11-24 富士ゼロックス株式会社 Electrophotographic photoconductor
JPH0695214B2 (en) * 1985-05-31 1994-11-24 富士ゼロックス株式会社 Electrophotographic photoconductor

Also Published As

Publication number Publication date
JPS61275853A (en) 1986-12-05

Similar Documents

Publication Publication Date Title
US5262262A (en) Electrophotographic photoreceptor having conductive layer and amorphous carbon overlayer
US4932859A (en) Electrophotographic photoreceptor having doped and/or bilayer amorphous silicon photosensitive layer
JPH0572783A (en) Electrophotographic sensitive material
JPH0695214B2 (en) Electrophotographic photoconductor
US5514507A (en) Electrophotographic photoreceptor with amorphous Si-Ge layer
JPH0695215B2 (en) Electrophotographic photoconductor
JPH0695216B2 (en) Electrophotographic photoconductor
JPH0695218B2 (en) Electrophotographic photoconductor
JPH0695220B2 (en) Electrophotographic photoconductor
JPH0695219B2 (en) Electrophotographic photoconductor
JPH0695217B2 (en) Electrophotographic photoconductor
JPH06242623A (en) Electrophotographic sensitive body
JPS61275859A (en) Electrophotographic sensitive body
JP2887830B2 (en) Electrophotographic photoreceptor and electrophotographic method
JPH0683090A (en) Electrophotographic sensitive body and electrophotographic method
JPH0721647B2 (en) Electrophotographic photoconductor
JPS62182746A (en) Electrophotographic sensitive body and its preparation
JPH0727255B2 (en) Electrophotographic photoconductor
JPH0711713B2 (en) Electrophotographic photoconductor
JPH0711712B2 (en) Electrophotographic photoconductor
JPH0711707B2 (en) Electrophotographic photoconductor
JPH0727254B2 (en) Electrophotographic photoconductor
JPS62182747A (en) Electrophotographic sensitive body and its preparation
JPH0727252B2 (en) Electrophotographic photoconductor
JPH0727256B2 (en) Electrophotographic photoconductor