JPH0711713B2 - Electrophotographic photoconductor - Google Patents

Electrophotographic photoconductor

Info

Publication number
JPH0711713B2
JPH0711713B2 JP60285997A JP28599785A JPH0711713B2 JP H0711713 B2 JPH0711713 B2 JP H0711713B2 JP 60285997 A JP60285997 A JP 60285997A JP 28599785 A JP28599785 A JP 28599785A JP H0711713 B2 JPH0711713 B2 JP H0711713B2
Authority
JP
Japan
Prior art keywords
amorphous silicon
photoconductor
gas
photoconductive layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60285997A
Other languages
Japanese (ja)
Other versions
JPS62145251A (en
Inventor
譲 福田
茂 八木
健一 唐木田
康令 奥川
泰男 盧
徳好 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP60285997A priority Critical patent/JPH0711713B2/en
Publication of JPS62145251A publication Critical patent/JPS62145251A/en
Publication of JPH0711713B2 publication Critical patent/JPH0711713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
TECHNICAL FIELD The present invention relates to an electrophotographic photoconductor, and more particularly to an electrophotographic photoconductor using amorphous silicon in a photosensitive layer.

従来の技術 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像をトナーと称される現像剤で現像後、
転写紙にトナー像を転写し定着して複写物を得る方法で
ある。この電子写真法に用いられる感光体は、基本構成
として導電性基板上に感光層を積層して成る。しかし
て、従来より、感光層を構成する材料としてはセレンあ
るいはセレン合金、硫化カドミウム、酸化亜鉛等の無機
感光材料、あるいは、ポリビニルカルバゾール、トリニ
トロフルオレノン、ビスアゾ顔料、フタロシアニン、ピ
ラゾリン、ヒドラゾン等の有機感光材料が知られてお
り、感光層を単層あるいは積層にして用いられている。
しかしながら、従来より用いられているこれらの感光層
は、耐久性、耐熱性、光感度などにおいて未だ解決すべ
き問題点を有している。
2. Description of the Related Art The electrophotographic method forms an electrostatic latent image on a photoconductor by charging it and exposing it to light, and after developing this latent image with a developer called toner,
In this method, a toner image is transferred onto a transfer paper and fixed to obtain a copy. The photoconductor used in this electrophotographic method has a basic structure in which a photosensitive layer is laminated on a conductive substrate. However, conventionally, as a material for forming the photosensitive layer, an inorganic photosensitive material such as selenium or selenium alloy, cadmium sulfide, or zinc oxide, or an organic material such as polyvinylcarbazole, trinitrofluorenone, bisazo pigment, phthalocyanine, pyrazoline, or hydrazone. Photosensitive materials are known and are used as a single layer or a laminated photosensitive layer.
However, these conventionally used photosensitive layers still have problems to be solved in terms of durability, heat resistance and photosensitivity.

近年、この感光層として非晶質ケイ素(アモルフアスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、シラン
(SiH4)ガスをグロー放電分解法等によりケイ素の非晶
質膜を導電性基板上に形成したものであって、非晶質ケ
イ素膜中に水素原子が組み込まれて光導電性を呈するも
のである。この非晶質ケイ素感光体は、感光層の表面硬
度が高く傷つきにくく、摩耗にも強く、耐熱性も高く、
機械的強度においてもすぐれている。更に、非晶質ケイ
素は、分光感度域が広く、高い光感度を有する如く感光
特性もすぐれている。しかし反面、非晶質ケイ素を用い
た感光体は、暗減衰が大きく、帯電しても十分な帯電電
位が得られないという欠点を有する。即ち、非晶質ケイ
素感光体を帯電し、像露光して静電潜像を形成し、次い
で現像する際、感光体上の表面電荷が像露光工程まで、
あるいは現像工程までの間に光照射を受けなかった部分
の電荷までも減衰してしまい、現像に必要な帯電電位が
得られない。この帯電電位の減衰は、環境条件の影響に
よっても変化しやすく、特に高温高湿環境では帯電電位
が大巾に低下する。更に、非晶質ケイ素の感光体は、繰
返し使用すると徐々に帯電電位が低下してしまう。この
様な帯電電位の暗減衰の大きな感光体を用いて複写物を
作成すると、画像濃度が低くまた、中間調の再現性に乏
しい複写物となる。
In recent years, photoreceptors using amorphous silicon (amorphous silicon) as the photosensitive layer have been known and various improvements have been attempted. A photoreceptor using this amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate by glow discharge decomposition method of silane (SiH 4 ) gas. It has photoconductivity due to the incorporation of hydrogen atoms into it. This amorphous silicon photoreceptor has a high surface hardness of the photosensitive layer, is hard to be scratched, is resistant to abrasion, and has high heat resistance.
It also has excellent mechanical strength. Further, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity so as to have high photosensitivity. On the other hand, however, the photoconductor using amorphous silicon has a drawback that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, when the amorphous silicon photoconductor is charged, imagewise exposed to form an electrostatic latent image, and then developed, the surface charge on the photoconductor remains until the image exposure step.
Alternatively, even the electric charge of the portion which was not irradiated with light during the developing step is attenuated, and the charging potential required for the developing cannot be obtained. The decay of the charging potential is likely to change due to the influence of environmental conditions, and particularly in a high temperature and high humidity environment, the charging potential is drastically reduced. Furthermore, the charge potential of an amorphous silicon photoreceptor gradually decreases when it is repeatedly used. When a copy is made using such a photoreceptor having a large dark decay of the charging potential, the copy has low image density and poor halftone reproducibility.

発明の目的 本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにあ
る。
OBJECT OF THE INVENTION It is an object of the present invention to provide an electrophotographic photosensitive member which solves the above-mentioned drawbacks of the photosensitive member using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, an object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoconductor in which the dark decay of the charging potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雰囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photosensitive member whose charging characteristics are not affected by changes in the atmosphere of the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor having excellent image quality even if it is repeatedly used.

更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Still another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic characteristics such as mechanical strength, durability, heat resistance and photosensitivity.

発明の構成 本発明者は、鋭意研究を行なった結果、導電性基板と、
非晶質ケイ素から成る光導電層との間に中間層を設ける
とともに、該中間層として、有機アルミニウム化合物を
少なくとも1種類含有する溶液の乾燥硬化物を用いるこ
とによって上記目的が達成されることを見出した。光導
電層としては、非晶質ケイ素を主体とするi型半導体で
あって、更に、炭素原子、窒素原子または酸素原子のう
ちの少なくとも1種類を含有したものを用いる。
As a result of earnest research, the inventor of the present invention has a conductive substrate,
The above object can be achieved by providing an intermediate layer between the photoconductive layer made of amorphous silicon and using a dry cured product of a solution containing at least one organoaluminum compound as the intermediate layer. I found it. As the photoconductive layer, an i-type semiconductor mainly containing amorphous silicon and further containing at least one kind of carbon atom, nitrogen atom or oxygen atom is used.

かくして、本発明に従えば、導電性基板上に中間層及び
光導電層を順次積層して成る電子写真用感光体におい
て、前記光導電層が、水素原子を含有する非晶質ケイ素
を主体とするi型半導体から成り、さらに炭素原子、窒
素原子または酸素原子のうちの少なくとも1種類を含有
しており、前記中間層が、有機アルミニウム化合物を少
なくとも1種類含む溶液の乾燥硬化物から成ることを特
徴とする電子写真用感光体が提供される。
Thus, according to the present invention, in the electrophotographic photosensitive member formed by sequentially stacking the intermediate layer and the photoconductive layer on the conductive substrate, the photoconductive layer is mainly composed of amorphous silicon containing a hydrogen atom. Which comprises an i-type semiconductor and further contains at least one kind of carbon atom, nitrogen atom or oxygen atom, and the intermediate layer is composed of a dried and cured product of a solution containing at least one kind of organoaluminum compound. A characteristic electrophotographic photoreceptor is provided.

本発明の電子写真用感光体の中間層を形成するのに用い
られる有機アルミニウム化合物としては、アルミニウム
トリスアセチルアセトネート、アルミニウムメトキサイ
ド、アルミニウムエトキサイド、アルミニウムイソプロ
ポキサイド、アルミニウム−n−プロポキサイド、アル
ミニウム−Sec−ブトキサイド、アルミニウム−n−ブ
トキサイド等が挙げられる。
Examples of the organoaluminum compound used to form the intermediate layer of the electrophotographic photoreceptor of the present invention include aluminum trisacetylacetonate, aluminum methoxide, aluminum ethoxide, aluminum isopropoxide, aluminum-n-propoxide, and aluminum. -Sec-butoxide, aluminum-n-butoxide and the like can be mentioned.

本発明の電子写真用感光体を得るに当っては、上記のご
とき有機アルミニウム化合物の1種または2種以上を適
当な溶媒に溶解した溶液を塗布する。また、この際、こ
れらの有機アルミニウム化合物に有機ケイ素化合物を混
合した溶液を用いてもよい。この有機ケイ素化合物とし
ては一般にシランカップリング剤と呼ばれている化合物
が好適であり、例えば、ビニルトリクロルシラン、ビニ
ルトリエトキシシラン、ビニルトリス(β−メトキシエ
トキシ)シラン、γ−グリシドキシプロピルトリメトキ
シシラン、γ−メタアクリロキシプロピルトリメトキシ
シラン、N−β(アミノエチル)γ−アミノプロピルト
リメトキシシラン、N−β(アミノエチル)γ−アミノ
プロピルメチルジメトキシシラン、γ−クロロプロピル
トリメトキシシラン、γ−メルカプトプロピルトリメト
キシシラン、γ−アミノプロピルトリエトキシシラン、
メチルトリメトキシシラン、ジメチルジメトキシラン、
トリメチルモノメトキシシラン、ジフェニルジメトキシ
シラン、ジフェニルジエトキシシラン、モノフェニルト
リメトキシシラン等が挙げられる。このようなシランカ
ップリング剤を混合して用いる場合には、該シランカッ
プリング剤が全固形物重量に対して5〜50%となるよう
にするのがよい。
In obtaining the electrophotographic photoreceptor of the present invention, a solution prepared by dissolving one or more of the above organoaluminum compounds in a suitable solvent is applied. At this time, a solution obtained by mixing these organoaluminum compounds with an organosilicon compound may be used. A compound generally called a silane coupling agent is suitable as the organosilicon compound, and examples thereof include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, and γ-glycidoxypropyltrimethoxy. Silane, γ-methacryloxypropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane,
Methyltrimethoxysilane, dimethyldimethoxysilane,
Examples include trimethylmonomethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, and monophenyltrimethoxysilane. When such a silane coupling agent is mixed and used, it is preferable that the silane coupling agent accounts for 5 to 50% of the total solid weight.

かくして、有機アルミニウム化合物、場合によっては更
に有機ケイ素化合物を含有する溶液を、導電性基板上
に、スプレー塗布、浸漬塗布、ナイフ塗布またはロール
塗布などの方法で塗布した後、乾燥硬化させることによ
って本発明の電子写真用感光体が得られる。乾燥硬化温
度は100〜400℃の間の任意の温度に設定することができ
る。最終的に得られる中間層の膜厚も任意に設定され得
るが、0.1〜10μm、特に1μm以下が好適である。
Thus, a solution containing an organoaluminum compound, and optionally an organosilicon compound, is applied onto a conductive substrate by a method such as spray coating, dip coating, knife coating or roll coating, and then dried and cured to form a solution. The electrophotographic photoreceptor of the invention can be obtained. The dry curing temperature can be set to any temperature between 100 and 400 ° C. The thickness of the finally obtained intermediate layer may be set arbitrarily, but is preferably 0.1 to 10 μm, particularly preferably 1 μm or less.

非晶質ケイ素を主体とする光導電層は、SiH4、Si2H6、S
i3H8、Si4H10、等の水素ケイ素ガスの1種またはそれら
の混合物を原料として、グロー放電法、スパッタリング
法、イオンプレーテイング法、真空蒸着法などの方法に
よって基板上に形成する。中でも、プラズマCVD(Chemi
cal Vapor Deposition)法によってシラン(SiH4)ガス
等をグロー放電分解する方法(グロー放電法)が、膜中
への水素の含有量の制御の点から好ましい。また、この
場合水素の含有を一層効率良く行なうために、プラズマ
CVD装置内にシランガス等と同時に、別途に水素(H2
ガスを導入してもよい。
The photoconductive layer mainly composed of amorphous silicon is composed of SiH 4 , Si 2 H 6 , and S.
It is formed on a substrate by a glow discharge method, a sputtering method, an ion plating method, a vacuum deposition method or the like using one kind of hydrogen silicon gas such as i 3 H 8 or Si 4 H 10 or a mixture thereof as a raw material. . Among them, plasma CVD (Chemi
A method of decomposing a silane (SiH 4 ) gas or the like by glow discharge by a cal vapor deposition method (glow discharge method) is preferable from the viewpoint of controlling the hydrogen content in the film. Further, in this case, in order to more efficiently contain hydrogen, plasma
Separately hydrogen (H 2 ) in the CVD device at the same time as silane gas, etc.
Gas may be introduced.

なお、この非晶質ケイ素を主体とする光導電層中には、
該層をよりi型半導体にするように、微量のホウ素
(B)を添加することができる。このホウ素原子の添加
には通常ボロン(B2H6)ガスが原料として用いられる。
この場合、ホウ素原子の添加量は10〜100ppmの程度であ
る。
In the photoconductive layer mainly composed of amorphous silicon,
A trace amount of boron (B) can be added so that the layer becomes a more i-type semiconductor. Boron (B 2 H 6 ) gas is usually used as a raw material for the addition of the boron atom.
In this case, the amount of boron atoms added is about 10 to 100 ppm.

また、本発明に従う電子写真用感光体においては、光導
電層が、水素原子を含有する非晶質ケイ素を主体とする
i型半導体から成り、更に、炭素原子、窒素原子または
酸素原子のうち少なくとも1種類を含有している。この
ような原子の含有は、特に感光層膜の暗抵抗の増加、光
感度の増加、更には、帯電能(単位膜厚あたりの帯電電
位)の増加の点から好ましい。
Further, in the electrophotographic photoreceptor according to the present invention, the photoconductive layer is composed of an i-type semiconductor mainly containing amorphous silicon containing a hydrogen atom, and further, at least a carbon atom, a nitrogen atom or an oxygen atom. Contains one type. The inclusion of such atoms is particularly preferable from the viewpoint of increasing the dark resistance of the photosensitive layer film, increasing the photosensitivity, and further increasing the charging ability (charging potential per unit film thickness).

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層膜にゲルマニウム(Ge)などの元素を
添加することも可能である。またハロゲン原子を添加す
ることによって、暗抵抗の増加等を図ることもできる。
Further, an element such as germanium (Ge) can be added to the photoconductive layer film for the purpose of increasing the sensitivity of the photoconductor in the long wavelength region. In addition, dark resistance can be increased by adding a halogen atom.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素化
ケイ素ガス、更に所望に応じて水素ガスを用い、それら
のガスと共に、必要な元素を含むガス状化合物を導入し
てグロー放電分解を行なえばよい。以上のようにプラズ
マCVD法による非晶質ケイ素から成る光導電層を形成す
るのに有効な放電条件は、例えば、交流放電の場合、周
波数は通常0.1〜30MHz、放電時の真空度は0.1〜5Torr、
基板加熱温度は100〜400℃である。しかして、非晶質ケ
イ素を主体とする光導電層の膜厚は、1〜100μm、特
に10〜50μmとするのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photosensitive member of the present invention, in the plasma CVD apparatus, a silicon hydride gas as the main raw material, further using hydrogen gas as desired, together with those gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing a necessary element. The discharge conditions effective for forming the photoconductive layer made of amorphous silicon by the plasma CVD method as described above are, for example, in the case of AC discharge, the frequency is usually 0.1 to 30 MHz, and the vacuum degree at the time of discharge is 0.1 to 30 MHz. 5Torr,
The substrate heating temperature is 100 to 400 ° C. Therefore, the film thickness of the photoconductive layer mainly composed of amorphous silicon is preferably 1 to 100 μm, particularly 10 to 50 μm.

導電性基板としては、アルミニウム、ニッケル、クロ
ム、ステンレス鋼、もしくは黄銅などの金属、導電膜を
有するプラスチックシートもしくはガラス、または、導
電化処理をした紙などを用いることができる。また、導
電性基板の形状は、円筒状、平板状、エンドレスベルト
状等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or a paper which has been made conductive can be used. In addition, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, and an endless belt shape.

実施例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
Examples Next, the electrophotographic photoreceptor of the present invention will be further described with reference to Comparative Examples and Examples of the present invention.

比較例1: 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の100ppmジボラン(B2H6)ガスを毎
分20cc、100%エチレン(C2H4)ガスを毎分12cc、さら
に100%水素(H2)ガスを毎分88ccの範囲で流入させ、
反応槽内を0.5Torrの内圧に維持した後、13.56MHzの高
周波電力を投入して、グロー放電を生じせしめ、高周波
電源の出力を85Wに維持した。このようにして、円筒状
のAl基板上に厚さ25μmで非晶質ケイ素を主体とし不純
物として炭素原子を含有するi型半導体から成る光導電
層を有する感光体を得た。このようにして得られた感光
体を複写機に入れ、正のコロナ帯電方式で画質を評価し
たところ、初期時では実用上問題のない画像濃度が得ら
れたが、複写操作を繰り返すうちに徐々に画像濃度は低
下した。
Comparative Example 1: A cylindrical Al substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintaining at 0 ℃, 100cc silane (SiH 4 ) gas 120cc / min, 100ppm diborane (B 2 H 6 ) gas diluted with hydrogen 20cc / min, 100% ethylene (C 2 H 4 ) gas in the reaction chamber. Inject 12 cc / min and 100% hydrogen (H 2 ) gas in the range of 88 cc / min,
After maintaining the internal pressure of the reactor at 0.5 Torr, high frequency power of 13.56 MHz was applied to cause glow discharge, and the output of the high frequency power source was maintained at 85 W. Thus, a photoconductor having a thickness of 25 μm and having a photoconductive layer made of an i-type semiconductor mainly containing amorphous silicon and containing carbon atoms as impurities was obtained on a cylindrical Al substrate. The photoconductor thus obtained was placed in a copying machine, and the image quality was evaluated by a positive corona charging method. As a result, an image density of practically no problem was obtained in the initial stage, but the image density was gradually increased as the copying operation was repeated. The image density decreased.

実施例1: 比較例1と同一の円筒状Al基板に、アルミニウムトリス
アセチルアセトネート1重量部、イソプロピルアルコー
ル30重量部から成る溶液を浸漬塗布し、250℃の炉中で
2時間乾燥硬化し、0.1μm厚の中間層を設けた。次
に、この中間層上に、比較例1と同じ方法により、比較
例1と同じ内容の非晶質ケイ素を主体とする光導電層を
比較例1とほぼ同じ膜厚で設けた。このようにして得ら
れた感光体を複写機に入れ、正のコロナ帯電方式で画質
評価したところ、初期時では実用上問題のない画像濃度
が得られた。また、複写操作を5万回繰り返したが画像
濃度の低下はみられなかった。同時に負のコロナ帯電方
式で実施した複写試験も、正帯電方式の場合と同様、良
好な結果を与えた。
Example 1: A solution of 1 part by weight of aluminum trisacetylacetonate and 30 parts by weight of isopropyl alcohol was dip-coated on the same cylindrical Al substrate as in Comparative Example 1, and dried and hardened in an oven at 250 ° C. for 2 hours, An intermediate layer having a thickness of 0.1 μm was provided. Then, on this intermediate layer, by the same method as in Comparative Example 1, a photoconductive layer containing amorphous silicon as a main component and having the same content as in Comparative Example 1 was provided to have a film thickness substantially the same as in Comparative Example 1. The photoconductor thus obtained was placed in a copying machine, and image quality was evaluated by a positive corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed. At the same time, the copy test conducted with the negative corona charging method gave good results as in the case of the positive charging method.

比較例2: 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の100ppmジボラン(B2H6)ガスを毎
分20cc、100%窒素(N2)ガスを毎分85cc、さらに100%
水素(H2)ガスを毎分15ccの範囲で流入させ、反応槽内
を0.5Torrの内圧に維持した後、13.56MHzの高周波電力
を投入して、グロー放電を生じせしめ、高周波電源の出
力を85Wに維持した。このようにして、円筒状のAl基板
上に厚さ25μmで非晶質ケイ素を主体とし不純物として
窒素原子を含有するi型半導体から成る光導電層を有す
る感光体を得た。このようにして得られた感光体を複写
機に入れ、正のコロナ帯電方式で画質を評価したとこ
ろ、初期時では実用上問題のない画像濃度が得られた
が、複写操作を繰り返すうちに徐々に画像濃度は低下し
た。
Comparative Example 2: A cylindrical Al substrate was placed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintaining at 0 ℃, 100cc silane (SiH 4 ) gas 120 cc / min, hydrogen diluted 100ppm diborane (B 2 H 6 ) gas 20 cc / min, 100% nitrogen (N 2 ) gas / min in the reaction chamber. 85cc, 100%
Hydrogen (H 2 ) gas was flown in at a rate of 15 cc / min, and after maintaining the internal pressure of the reaction tank at 0.5 Torr, high frequency power of 13.56 MHz was applied to cause glow discharge and output of the high frequency power supply. Maintained at 85W. In this way, a photoconductor having a photoconductive layer made of an i-type semiconductor having a thickness of 25 μm as a main component, amorphous silicon as a main component, and nitrogen atoms as impurities was obtained on a cylindrical Al substrate. The photoconductor thus obtained was placed in a copying machine, and the image quality was evaluated by a positive corona charging method. As a result, an image density of practically no problem was obtained in the initial stage, but the image density was gradually increased as the copying operation was repeated. The image density decreased.

実施例2: 比較例2と同一の円筒状Al基板に、アルミニウム−sec
−ブトキサイド1重量部、エチルアルコール40重量部か
ら成る溶液を浸漬塗布し、250℃の炉中で2時間乾燥硬
化し、0.2μm厚の中間層を設けた。次に、この中間層
上に、比較例2と同じ方法により、比較例2と同じ内容
の非晶質ケイ素を主体とする光導電層を比較例2とほぼ
同じ膜厚で設けた。このようにして得られた感光体を複
写機に入れ、正のコロナ帯電方式で画質評価したとこ
ろ、初期時では実用上問題のない画像濃度が得られた。
また、複写操作を5万回繰り返したが画像濃度の低下は
みられなかった。同時に負のコロナ帯電方式で実施した
複写試験も、正帯電方式の場合と同様、良好な結果を与
えた。
Example 2: The same cylindrical Al substrate as in Comparative Example 2 was coated with aluminum-sec.
A solution consisting of 1 part by weight of butoxide and 40 parts by weight of ethyl alcohol was applied by dip coating and dried and hardened in an oven at 250 ° C. for 2 hours to provide an intermediate layer having a thickness of 0.2 μm. Then, on this intermediate layer, by the same method as in Comparative Example 2, a photoconductive layer containing amorphous silicon as a main component and having the same content as in Comparative Example 2 was provided to have a film thickness almost the same as in Comparative Example 2. The photoconductor thus obtained was placed in a copying machine, and image quality was evaluated by a positive corona charging method. As a result, an image density practically no problem was obtained in the initial stage.
The copying operation was repeated 50,000 times, but no decrease in image density was observed. At the same time, the copy test conducted with the negative corona charging method gave good results as in the case of the positive charging method.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の100ppmジボラン(B2H6)ガスを毎
分20cc、100%酸素(O2)ガスを毎分1.0cc、さらに100
%水素(H2)ガスを毎分99ccの範囲で流入させ、反応槽
内を0.5Torrの内圧に維持した後、13.56MHzの高周波電
力を投入して、グロー放電を生じせしめ、高周波電源の
出力を85Wに維持した。このようにして、円筒状のAl基
板上に厚さ25μmで非晶質ケイ素を主体とし不純物とし
て酸素原子を含有するi型半導体から成る光導電層を有
する感光体を得た。このようにして得られた感光体を複
写機に入れ、正のコロナ帯電方式で画質を評価したとこ
ろ、初期時では実用上問題のない画像濃度が得られた
が、複写操作を繰り返すうちに徐々に画像濃度は低下し
た。
Comparative Example 3: A cylindrical Al substrate was placed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintain at 0 ℃, 100cc silane (SiH 4 ) gas 120 cc / min, 100ppm diborane (B 2 H 6 ) gas diluted with hydrogen 20 cc / min, 100% oxygen (O 2 ) gas / min in reaction chamber. 1.0cc, 100 more
% Hydrogen (H 2 ) gas is flown in at a rate of 99 cc / min, the reaction tank is maintained at an internal pressure of 0.5 Torr, and 13.56 MHz high-frequency power is input to cause glow discharge and output from the high-frequency power supply. Was maintained at 85W. Thus, a photoconductor having a thickness of 25 μm and having a photoconductive layer made of an i-type semiconductor mainly containing amorphous silicon and containing oxygen atoms as impurities was obtained on a cylindrical Al substrate. The photoconductor thus obtained was placed in a copying machine, and the image quality was evaluated by a positive corona charging method. As a result, an image density of practically no problem was obtained in the initial stage, but the image density was gradually increased as the copying operation was repeated. The image density decreased.

実施例3: 比較例3と同一の円筒状Al基板に、アルミニウム−sec
−ブトキサイド1重量部、メチルトリメトキシシラン1
重量部、イソプロピルアルコール30重量部、エチルアル
コール30重量部から成る溶液を浸漬塗布し、250℃の炉
中で2時間乾燥硬化し、0.2μm厚の中間層を設けた。
次に、この中間層上に、比較例3と同じ方法により、比
較例3と同じ内容の非晶質ケイ素を主体とする光導電層
を比較例3とほぼ同じ膜厚で設けた。このようにして得
られた感光体を複写機に入れ、正のコロナ帯電方式で画
質評価したところ、初期時では実用上問題のない画像濃
度が得られた。また、複写操作を5万回繰り返したが画
像濃度の低下はみられなかった。同時に負のコロナ帯電
方式で実施した複写試験も、正帯電方式の場合と同様、
良好な結果を与えた。
Example 3: On the same cylindrical Al substrate as in Comparative Example 3, aluminum-sec was used.
-Butoxide 1 part by weight, methyltrimethoxysilane 1
A solution consisting of 30 parts by weight of isopropyl alcohol and 30 parts by weight of ethyl alcohol was applied by dip coating, and dried and cured in an oven at 250 ° C. for 2 hours to form an intermediate layer having a thickness of 0.2 μm.
Then, on this intermediate layer, by the same method as in Comparative Example 3, a photoconductive layer containing amorphous silicon as a main component and having the same content as in Comparative Example 3 was provided to have a film thickness almost the same as that of Comparative Example 3. The photoconductor thus obtained was placed in a copying machine, and image quality was evaluated by a positive corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed. At the same time, the copy test conducted with the negative corona charging method was the same as in the positive charging method.
Gave good results.

発明の効果 本発明の電子写真用感光体は、非晶質ケイ素からの成る
感光体の優れた特性である高機械的強度、高耐久性、高
耐熱、高光感度を保持し、しかも、外部環境や使用回数
の影響を受けずに高い電荷保持力を有して、優れた品質
の画像を供することができる。
The electrophotographic photoreceptor of the present invention retains the excellent characteristics of the photoreceptor made of amorphous silicon, that is, high mechanical strength, high durability, high heat resistance, and high photosensitivity, and further, the external environment. It is possible to provide an image of excellent quality with a high charge retention power without being affected by the number of times of use.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥川 康令 神奈川県南足柄市竹松1600番地 富士ゼロ ツクス株式会社竹松工場内 (72)発明者 盧 泰男 神奈川県南足柄市竹松1600番地 富士ゼロ ツクス株式会社竹松工場内 (72)発明者 高橋 徳好 神奈川県南足柄市竹松1600番地 富士ゼロ ツクス株式会社竹松工場内 (56)参考文献 特開 昭59−223439(JP,A) 特開 昭59−223441(JP,A) 特開 昭58−60748(JP,A) 特開 昭58−93062(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasunori Okugawa 1600 Takematsu, Minamiashigara-shi, Kanagawa Fuji Zero Tsux Co., Ltd. Takematsu Plant (72) Inventor Yasuo Ro, 1600 Takematsu, Minamiashigara-shi, Kanagawa Fuji Zero Tsukus Co., Ltd. Takematsu In the factory (72) Inventor Tokuyoshi Takahashi 1600 Takematsu, Minamiashigara City, Kanagawa Prefecture Fuji Zero Tsux Co., Ltd. Takematsu Factory (56) Reference JP 59-223439 (JP, A) JP 59-223441 (JP, A) JP-A-58-60748 (JP, A) JP-A-58-93062 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性基板上に中間層及び光導電層を順次
積層して成る電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とするi型半導体から成り、更に、炭素原子、窒素原
子または酸素原子のうち少なくとも1種類を含有してお
り、 前記中間層が、有機アルミニウム化合物を少なくとも1
種類含む溶液の乾燥硬化物から成ることを特徴とする電
子写真用感光体。
1. An electrophotographic photoreceptor comprising a conductive substrate and an intermediate layer and a photoconductive layer laminated in this order, wherein the photoconductive layer is mainly composed of amorphous silicon containing hydrogen atoms. It is made of a semiconductor and further contains at least one kind of carbon atom, nitrogen atom or oxygen atom, and the intermediate layer contains at least one organoaluminum compound.
An electrophotographic photoreceptor comprising a dry-cured product of a solution containing a kind.
JP60285997A 1985-12-19 1985-12-19 Electrophotographic photoconductor Expired - Lifetime JPH0711713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60285997A JPH0711713B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60285997A JPH0711713B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62145251A JPS62145251A (en) 1987-06-29
JPH0711713B2 true JPH0711713B2 (en) 1995-02-08

Family

ID=17698670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60285997A Expired - Lifetime JPH0711713B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0711713B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519516A (en) * 1991-07-10 1993-01-29 Fuji Xerox Co Ltd Electrophotographic sensitive body
EP0671663B1 (en) * 1994-03-02 1998-08-12 Konica Corporation Electrophotographic photoreceptor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860748A (en) * 1981-10-08 1983-04-11 Fuji Xerox Co Ltd Electrophotographic receptor
JPS5893062A (en) * 1981-11-28 1983-06-02 Canon Inc Electrophotogaphic photoreceptor
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPS62145251A (en) 1987-06-29

Similar Documents

Publication Publication Date Title
JPH0711713B2 (en) Electrophotographic photoconductor
JPH0721647B2 (en) Electrophotographic photoconductor
JPH0727253B2 (en) Electrophotographic photoconductor
JPH0711712B2 (en) Electrophotographic photoconductor
JPH0727255B2 (en) Electrophotographic photoconductor
JPH0711707B2 (en) Electrophotographic photoconductor
JPH0711714B2 (en) Electrophotographic photoconductor
JPH0727254B2 (en) Electrophotographic photoconductor
JPH0711709B2 (en) Electrophotographic photoconductor
JPH0727251B2 (en) Electrophotographic photoconductor
JPH0711708B2 (en) Electrophotographic photoconductor
JPH0727259B2 (en) Electrophotographic photoconductor
JPH0727252B2 (en) Electrophotographic photoconductor
JPH0711710B2 (en) Electrophotographic photoconductor
JPH0721650B2 (en) Electrophotographic photoconductor
JPH0727257B2 (en) Electrophotographic photoconductor
JPH0711711B2 (en) Electrophotographic photoconductor
JPH0727258B2 (en) Electrophotographic photoconductor
JPH0721648B2 (en) Electrophotographic photoconductor
JPS62273568A (en) Electrophotographic sensitive body
JPH0727249B2 (en) Electrophotographic photoconductor
JPH0721649B2 (en) Electrophotographic photoconductor
JPH0727256B2 (en) Electrophotographic photoconductor
JPH0723964B2 (en) Electrophotographic photoconductor
JPH0727250B2 (en) Electrophotographic photoconductor