JPH0695168A - Light control glass - Google Patents

Light control glass

Info

Publication number
JPH0695168A
JPH0695168A JP4247646A JP24764692A JPH0695168A JP H0695168 A JPH0695168 A JP H0695168A JP 4247646 A JP4247646 A JP 4247646A JP 24764692 A JP24764692 A JP 24764692A JP H0695168 A JPH0695168 A JP H0695168A
Authority
JP
Japan
Prior art keywords
electrode layer
light control
control glass
transparent electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4247646A
Other languages
Japanese (ja)
Inventor
Kajiro Ushio
嘉次郎 潮
Masayuki Yamada
昌幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4247646A priority Critical patent/JPH0695168A/en
Publication of JPH0695168A publication Critical patent/JPH0695168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To decrease the unequal colors of light control glass and to improve appearance and durability by equaling or nearly equaling the sheet resistances of a pair of upper and lower transparent conductive layers of the light control glass. CONSTITUTION:The unequal colors of the light control glass are decreased by equaling or approximating the sheet resistances of upper and lower electrode layers M1, M2 as far as possible. The electrical resistivities r1, r2 and/or film thicknesses d1, d2 may be merely necessitated to be controlled in order to equal the sheet resistances (r1/d1, r2/d2) of the upper and lower electrode layers M1, M2. The smaller absolute values of the sheet resistances of the upper and lower electrode layers M1, M2 are more preferable in terms of coloring density and in terms of the response speed of coloring and decoloring. The resistivity of the lower transparent electrode layer M2 is preferably increased to comply with the resistivity of the upper transparent electrode layer M1 or the film thickness of the upper transparent electrode layer M1 is increased or the film thickness of the lower transparent electrode layer M2 is decreased or the combinations thereof are executed in order to equal the sheet resistances of the upper and lower transparent electrode layers M1, M2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エレクトロクロミック
素子を表面に形成した調光ガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light control glass having an electrochromic device formed on its surface.

【0002】[0002]

【従来の技術】電気素子を用いる調光ガラスは、液晶や
エレクトロクロミック素子(以下、ECDと略称する)
を利用するものなど、種々提案されており、液晶では既
に実用化されている。ECDを用いる調光ガラスは、実
用化は遅れているが、透過光のエネルギーを連続的に制
御でき、しかも視角依存性がない等の液晶にはない優れ
た特性を有する。ECDには、材料(主に電解質)の形
態として溶液型、ゲル型、全固体型等の種類がある。
2. Description of the Related Art A light control glass using an electric element is a liquid crystal or an electrochromic element (hereinafter abbreviated as ECD).
There have been various proposals, such as those utilizing, and liquid crystals have already been put to practical use. Although light control glass using ECD has been delayed in practical use, it has excellent characteristics that liquid crystal can control the energy of transmitted light continuously and has no dependence on viewing angle, which are not present in liquid crystals. The ECD has various types of materials (mainly electrolytes) such as solution type, gel type and all solid type.

【0003】調光ガラスの大型化が要請され、ECDに
おいても大型化の研究開発が進められているが、EC着
色層、電解質層、電極層等をすべて薄膜状に連続的に形
成する全固体型ECDは、貼り合わせや液状材料密封と
いった工程が不要であり、工程上最も大型化が容易と考
えられている。一般に調光ガラスの電極層には透明導電
膜が用いられる。現在多く使われているのはITOであ
るが、ZnOやSnO2 等その他の材料も検討されてい
る。これらの膜は通常、真空蒸着法やスパッタリング法
等で形成される。
A large size of the light control glass has been demanded, and research and development of a large size for the ECD are also in progress. However, an EC solidification layer, an electrolyte layer, an electrode layer, etc. are all formed in a thin film continuously. The mold ECD does not require processes such as bonding and liquid material sealing, and is considered to be the largest in size. Generally, a transparent conductive film is used for the electrode layer of the light control glass. Although ITO is used most often at present, other materials such as ZnO and SnO 2 are also being studied. These films are usually formed by a vacuum vapor deposition method, a sputtering method, or the like.

【0004】[0004]

【発明が解決しようとする課題】ECD調光ガラスの大
型化には種々の技術的問題を伴うが、その中の大きな問
題点の一つに色ムラがある。この色ムラは、ECD着色
時に時間が経過しても着色濃度がECDの全面で一定と
ならないで濃淡差ができる現象であり、外観不良の他、
耐久性低下の原因となる。
There are various technical problems in increasing the size of the ECD light control glass, and one of the major problems is color unevenness. This color unevenness is a phenomenon in which the color density does not become constant over the entire surface of the ECD even when time elapses during ECD coloring, and a difference in shade is generated.
It causes deterioration of durability.

【0005】五層構造のECDの場合、両側の透明電極
を除いたEC三層(還元着色型EC層、イオン導電層、
可逆的電解酸化層)は、電子伝導については絶縁性を有
し、電荷注入は専らイオン電流として行われ、そのイオ
ンが着消色に寄与する。もしEC三層の一部の電子絶縁
性が十分でなく、電子電流即ちリーク電流がある場合に
は、その部分においてイオン注入と引き出しが阻害され
て、特に着色が十分におこらなくなり、結果として前記
色ムラが発生する。
In the case of a five-layer structure ECD, three EC layers (reduction coloring type EC layer, ion conductive layer,
The reversible electrolytic oxidation layer) has an insulating property with respect to electron conduction, and the charge injection is performed exclusively as an ionic current, and the ions contribute to the coloration and decoloration. If a part of the EC three layers does not have sufficient electronic insulation and there is an electron current, that is, a leak current, ion implantation and extraction are hindered in that part, and coloring is not particularly sufficient. Color unevenness occurs.

【0006】局部的なリーク電流(ダスト、成膜ブツな
どによるもの)による色ムラは、調光ガラスの大型化に
伴って発生しやすくなるが、環境の清浄化や成膜条件の
適正化等の工程管理を強化することで、ある程度の改善
は可能である。しかし、EC三層の電子絶縁性が一様で
リーク電流が一様に分布している場合にも、取り出し電
極付近と電極から離れた中央部では色ムラが発生し、こ
の一様なリーク電流を十分におさえることは困難であ
る。この一様なリーク電流による色ムラは、調光ガラス
の大型化に伴って顕著になり問題がある。
[0006] Color unevenness due to local leakage current (due to dust, film formation spots, etc.) is more likely to occur as the size of the light control glass becomes larger, but the environment is cleaned and film formation conditions are optimized. It is possible to improve the process to some extent by strengthening the process control. However, even when the electronic insulation of the EC three layers is uniform and the leakage current is evenly distributed, color unevenness occurs in the vicinity of the extraction electrode and in the central portion apart from the electrode, and this uniform leakage current is generated. It is difficult to hold down enough. The color unevenness due to the uniform leak current becomes remarkable as the size of the light control glass becomes large, and there is a problem.

【0007】本発明の目的は、色ムラが少なくて外観や
耐久性の良好な調光ガラスを提供することにある。
An object of the present invention is to provide a light control glass which has little color unevenness and has good appearance and durability.

【0008】[0008]

【課題を解決するための手段】そのため、本発明は「少
なくともエレクトロクロミック層とこれを挟む一対の透
明電極層とからなるエレクトロクロミック素子を表面に
形成した調光ガラスにおいて、前記一対の透明電極層の
シート抵抗を等しく又はほぼ等しくしたことを特徴とす
る調光ガラス。」を提供する。
Therefore, the present invention provides "a light control glass having on its surface an electrochromic element comprising at least an electrochromic layer and a pair of transparent electrode layers sandwiching the electrochromic layer, said pair of transparent electrode layers. Dimmer glass having the same or approximately equal sheet resistance.

【0009】[0009]

【作用】図1に示す様な全固体型ECDにおける着色状
態を考える。イオン移動による着色が終了し、定常状態
に達してリーク電流だけが流れている状態では、上下の
電極間の電位差がその部分の着色濃度を示していると考
えてよい。今、上下の透明電極M1,M2間のEC三層
Meの膜厚方向の抵抗率をre、厚さをteとして場所
によらず一定とすると、この系は図2に示すような等価
回路を連続化したものとなり、下記の式1〜式3が成立
する。
Consider the colored state of the all-solid-state ECD as shown in FIG. It can be considered that in the state where the coloring due to the ion movement is completed, the steady state is reached, and only the leak current flows, the potential difference between the upper and lower electrodes indicates the coloring density of that portion. Now, assuming that the resistivity in the film thickness direction of the EC three-layer Me between the upper and lower transparent electrodes M1 and M2 is re and the thickness is te and it is constant regardless of the location, this system has an equivalent circuit as shown in FIG. It becomes continuous, and the following equations 1 to 3 are established.

【0010】[0010]

【数1】 [Equation 1]

【0011】[0011]

【数2】 [Equation 2]

【0012】[0012]

【数3】 [Equation 3]

【0013】ここで、V1,I1は上部電極層M1の取
り出し部からの距離がxの位置における上部電極層M1
の電位と層内電流を、V2,I2は同じく距離がxの位
置における下部電極層M2の電位と層内電流を、r1,
r2は上部電極層M1と下部電極層M2の抵抗率を、t
1,t2は上部電極層M1と下部電極層M2の膜厚をそ
れぞれ示し、またIeはEC三層Me内のリーク電流、
Lは電極間距離、Wは電極幅を示す。上下間の電位差V
=V1−V2は、式1〜式3によって位置(x)の関数
として求められ、式4に示す様になる。
Here, V1 and I1 are the upper electrode layer M1 at the position where the distance from the extraction portion of the upper electrode layer M1 is x.
, V2 and I2 are the potential and the intralayer current of the lower electrode layer M2 at the position where the distance is x, r1,
r2 is the resistivity of the upper electrode layer M1 and the lower electrode layer M2,
1, t2 represent the film thicknesses of the upper electrode layer M1 and the lower electrode layer M2, respectively, and Ie represents the leak current in the EC three-layer Me,
L indicates a distance between electrodes, and W indicates an electrode width. Potential difference V between top and bottom
= V1-V2 is obtained as a function of the position (x) by Expressions 1 to 3, and is as shown in Expression 4.

【0014】[0014]

【数4】 [Equation 4]

【0015】ここで、Vpは印加電圧である。サイズ4
5cm×45cmの全固体透過型ECDにおいて、代表
的な物性値を式4に当てはめて行った計算から得られた
電位差(V1−V2)即ち着色濃度の分布を図3に示
す。上部電極層M1と下部電極層M2のシート抵抗は、
両方とも20Ω、印加電圧は2Vであり、CR1,CR
2,CR3,CR4の曲線は、それぞれEC三層Meの
抵抗(re・de/W)が約7750、1340、44
0、140Ωcmの場合の分布を示す。図3から、リー
ク電流が大きいほど(EC三層の抵抗が小さいほど)電
位差(着色濃度)は低下し、電極取り出し部と中央部の
電位差(着色濃度の差)即ち色ムラは大きくなることが
わかる。
Here, Vp is an applied voltage. Size 4
FIG. 3 shows the potential difference (V1-V2), that is, the distribution of the coloring density, obtained from the calculation performed by applying the typical physical property values to the equation 4 in the all-solid-state transmission ECD of 5 cm × 45 cm. The sheet resistance of the upper electrode layer M1 and the lower electrode layer M2 is
Both are 20Ω, applied voltage is 2V, CR1, CR
The curves of 2, CR3, and CR4 show that the resistance (re · de / W) of the EC three-layer Me is about 7750, 1340, and 44, respectively.
The distribution in the case of 0 and 140 Ωcm is shown. It can be seen from FIG. 3 that the larger the leak current (the smaller the resistance of the EC three layers), the lower the potential difference (coloring density), and the greater the potential difference (coloring density difference) between the electrode extraction portion and the central portion, that is, the color unevenness. Recognize.

【0016】次に、色ムラを上下の電極層M1,M2の
シート抵抗値の大小関係に着目して比較する為に、図4
に上部電極層のシート抵抗が20Ω、下部電極層のシー
ト抵抗が5Ωの時の電位差(着色濃度)分布を示す。C
R11,CR12,CR13,CR14の曲線は、それ
ぞれ図3のCR1〜CR4と同じEC三層の抵抗値(7
750〜140Ωcm)におけるデータを示す。これら
を比べると、電位差(着色濃度)自体は下部電極層M2
の抵抗が小さい方(図4)が大きくなるが、場所による
電位差(着色濃度)の分布についてみると、図3の場合
の方が小さくなっている。図3、4の場合以外の様々な
上下電極層の抵抗値における計算から、上下の電極層の
シート抵抗が等しいか、又はなるべく近いほうが、色ム
ラを少なくするためには望ましいという結果が得られ
た。電位差(着色濃度)の絶対値は印加電圧を大きくす
ることで増すことができるので、色ムラの少ない例えば
図3のような特性を有する調光ガラスが実用上は望まし
い。
Next, in order to compare the color unevenness by focusing on the magnitude relationship of the sheet resistance values of the upper and lower electrode layers M1 and M2, FIG.
Shows the potential difference (coloring density) distribution when the sheet resistance of the upper electrode layer is 20Ω and the sheet resistance of the lower electrode layer is 5Ω. C
The curves of R11, CR12, CR13, and CR14 show the same resistance value (7) of the EC three layers as CR1 to CR4 in FIG.
750 to 140 Ωcm). Comparing these, the potential difference (coloring density) itself is lower electrode layer M2
The smaller resistance (Fig. 4) is larger, but the distribution of the potential difference (coloring density) depending on the place is smaller in Fig. 3. From the calculation of the resistance values of the upper and lower electrode layers other than the cases of FIGS. 3 and 4, it is found that it is desirable that the sheet resistances of the upper and lower electrode layers are equal to or as close as possible in order to reduce color unevenness. It was Since the absolute value of the potential difference (coloring density) can be increased by increasing the applied voltage, a light control glass having characteristics such as those shown in FIG. 3 with less color unevenness is practically desirable.

【0017】以上、説明した様に調光ガラスの色ムラは
上下電極層M1,M2のシート抵抗を等しくするか、又
はなるべく近づけることにより少なくできる。上下電極
層M1,M2のシート抵抗(r1/d1,r2/d2)
を等しくするためには、抵抗率r1,r2及び/または
膜厚d1,d2を制御すれば良い。着色濃度からいって
も、着消色の応答速度からいっても上下電極層M1,M
2のシート抵抗の絶対値は、できるだけ小さい方が好ま
しい。しかし、一般に低抵抗率の透明電極層を得るため
には、蒸着、スパタリング等のような方法においても成
膜時の加熱(200〜300°C)が必要であることが
多いが、EC層をこのような高温で加熱するとその着消
色動作が劣化する。この原因は、着消色動作に大きな役
割を果たすといわれている膜中含有水が除去されるため
と考えられる。従って、EC層成膜前に行う下部透明電
極層の成膜にくらべるとEC層成膜後に行う上部透明電
極層の成膜ではEC層の劣化を防ぐために成膜時の温度
を低くせざるを得ず、結果として上部透明電極層の抵抗
率は下部透明電極層のそれよりも高くなってしまう。
As described above, the color unevenness of the light control glass can be reduced by making the sheet resistances of the upper and lower electrode layers M1 and M2 equal or close to each other. Sheet resistance of the upper and lower electrode layers M1 and M2 (r1 / d1, r2 / d2)
To make them equal, the resistivities r1 and r2 and / or the film thicknesses d1 and d2 may be controlled. The upper and lower electrode layers M1 and M, both in terms of color density and response speed of color fading
The absolute value of the sheet resistance of 2 is preferably as small as possible. However, in general, in order to obtain a transparent electrode layer having a low resistivity, heating (200 to 300 ° C.) during film formation is often necessary even in a method such as vapor deposition, sputtering, etc. When heated at such a high temperature, the coloring / decoloring operation deteriorates. It is considered that this is because the water contained in the film is said to be removed, which is said to play a large role in the color-decoloring operation. Therefore, in order to prevent the deterioration of the EC layer, the temperature at the time of film formation must be lowered in the film formation of the upper transparent electrode layer after the EC layer is formed, as compared with the film formation of the lower transparent electrode layer before the EC layer is formed. As a result, the resistivity of the upper transparent electrode layer becomes higher than that of the lower transparent electrode layer.

【0018】そこで、上下の透明電極層のシート抵抗を
等しくするためには、下部透明電極層の抵抗率を上部透
明電極層に合わせて高くするか、または上部透明電極層
の膜厚を厚くするか、または下部透明電極層の膜厚を薄
くするか、あるいはこれらの組み合わせを行うと良い。
Therefore, in order to make the sheet resistances of the upper and lower transparent electrode layers equal, the resistivity of the lower transparent electrode layer is increased according to the upper transparent electrode layer, or the film thickness of the upper transparent electrode layer is increased. Alternatively, the thickness of the lower transparent electrode layer may be reduced, or a combination thereof may be performed.

【0019】[0019]

【実施例】図5に示す45cm×45cmサイズの全固
体型ECD調光ガラスを以下の手順で作製した。 (1)45cm×45cmサイズのガラス製素子基板S
の表面全体にスパッタリングによりITO電極層を形成
した。スパッタリング時の基板加熱温度は200°C、
ITO電極層の膜厚は1000Å、ITO電極層のシー
ト抵抗は20Ωであった。
EXAMPLE An all-solid-state ECD light control glass of size 45 cm × 45 cm shown in FIG. 5 was produced by the following procedure. (1) 45 cm x 45 cm size glass element substrate S
An ITO electrode layer was formed on the entire surface of by sputtering. The substrate heating temperature during sputtering is 200 ° C,
The film thickness of the ITO electrode layer was 1000Å, and the sheet resistance of the ITO electrode layer was 20Ω.

【0020】(2)フォトエッチングまたはレーザーカ
ッティングにより上部ITO電極層A用の取り出し電極
層Fと下部電極層Bとの間に溝を形成した。これにより
取り出し部Fとそれより隔離した下部ITO電極層Bを
形成した。尚、ITOをマスク蒸着することにより直接
にこれらのパターンを形成してもよい。 (3)スパッタリングにより酸化イリジウムと酸化スズ
との混合物からなる可逆的電解酸化層C、酸化タンタル
のイオン導電層D、酸化タングステン層Eを順次形成し
た。
(2) A groove was formed between the extraction electrode layer F for the upper ITO electrode layer A and the lower electrode layer B by photoetching or laser cutting. This formed the extraction part F and the lower ITO electrode layer B separated from it. Alternatively, these patterns may be directly formed by subjecting ITO to mask vapor deposition. (3) A reversible electrolytic oxide layer C made of a mixture of iridium oxide and tin oxide, an ion conductive layer D of tantalum oxide, and a tungsten oxide layer E were sequentially formed by sputtering.

【0021】(4)スパッタリングにより上部ITO電
極層Aを形成して、ECDを作製した。この時、ITO
電極層は既に素子基板S上に形成された取り出し部Fと
一端が接触するように形成した。また、スパッタリング
時の基板加熱は行わず(抵抗率は下部電極層のそれより
も高くなる)、上部ITO電極層Aの膜厚を3000Å
にして上部ITO電極層Aのシート抵抗が下部電極層B
と同じ20Ωになるようにした。
(4) An upper ITO electrode layer A was formed by sputtering to prepare an ECD. At this time, ITO
The electrode layer was formed so that one end of the electrode layer was in contact with the extraction portion F already formed on the element substrate S. The substrate is not heated during sputtering (resistivity is higher than that of the lower electrode layer), and the thickness of the upper ITO electrode layer A is 3000 Å
And the sheet resistance of the upper ITO electrode layer A is lower than that of the lower electrode layer B.
It was set to the same 20Ω as the above.

【0022】(5)断面がコの字型で長さが45cmの
リン青銅またはステンレス製の導電性クリップHを2本
用意した。この導電性クリップH2本を図6に示す様に
素子基板Sの対抗する辺に装着し、これにより導電性ク
リップHが上部、下部各電極層の取り出し部を圧着する
ようにした。 (6)エポキシ樹脂R及びガラス製の封止基板Gにより
素子を封止した。そして、上部電極層及び下部電極層の
取り出し部にそれぞれ外部配線LA,LBをボンディン
グして本発明実施例の調光ガラスを作製した。
(5) Two conductive clips H made of phosphor bronze or stainless steel having a U-shaped cross section and a length of 45 cm were prepared. As shown in FIG. 6, the two conductive clips H were attached to the opposite sides of the element substrate S, so that the conductive clips H crimp the extraction portions of the upper and lower electrode layers. (6) The element was sealed with the epoxy resin R and the glass sealing substrate G. Then, external wirings LA and LB were bonded to the lead-out portions of the upper electrode layer and the lower electrode layer, respectively, to fabricate the light control glass of the example of the present invention.

【0023】この様にして作製した調光ガラスに駆動電
源Suから2Vの着色電圧を2分間印加して、この時の
調光ガラス全面におけるC光源による透過率分布を測定
したところ30〜33%であり、気になる色ムラは観察
されなかった。次に、−2Vの消色電圧を1分間印加す
ると透過率は70〜72%に回復し、消色中も消色後も
気になる色ムラは観察されなかった。
A coloring voltage of 2 V was applied from the driving power source Su to the light control glass thus manufactured for 2 minutes, and the transmittance distribution by the C light source on the entire light control glass at this time was measured to be 30 to 33%. No noticeable color unevenness was observed. Next, when a decoloring voltage of -2 V was applied for 1 minute, the transmittance was restored to 70 to 72%, and no noticeable color unevenness was observed during or after the decoloring.

【0024】[0024]

【比較例】下部ITO電極層の膜厚を4000Åとして
シート抵抗を5Ωとした他は実施例と全く同様にして調
光ガラスを作製した。この調光ガラスに駆動電源から2
Vの着色電圧を2分間印加して調光ガラス全面における
C光源による透過率分布を測定したところ22〜32%
であり、明らかな色ムラが観察された。次に、−2Vの
消色電圧を1分間印加すると透過率は62〜65%に回
復したが、消色中に気になる色ムラが観察された。
[Comparative Example] A light control glass was produced in exactly the same manner as in Example except that the film thickness of the lower ITO electrode layer was set to 4000Å and the sheet resistance was set to 5Ω. 2 from the driving power supply to this light control glass
When a coloring voltage of V was applied for 2 minutes and the transmittance distribution by the C light source on the entire surface of the light control glass was measured, it was 22 to 32%.
And clear color unevenness was observed. Next, when a decoloring voltage of -2 V was applied for 1 minute, the transmittance was recovered to 62 to 65%, but annoying color unevenness was observed during the decoloring.

【0025】[0025]

【発明の効果】以上の通り、本発明によれば、調光ガラ
スの上下一対の透明導電層のシート抵抗を等しく又はほ
ぼ等しくしているので、調光ガラスの色ムラを低減して
外観や耐久性を向上させることができる。
As described above, according to the present invention, since the sheet resistances of the pair of upper and lower transparent conductive layers of the light control glass are made equal or substantially the same, the color unevenness of the light control glass can be reduced and the appearance and appearance can be reduced. The durability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明にかかる調光ガラスの構成及び電気
的状態を示す説明図である。
FIG. 1 is an explanatory diagram showing a configuration and an electrical state of a light control glass according to the present invention.

【図2】は、本発明にかかる調光ガラスの電子等価回路
図である。
FIG. 2 is an electronic equivalent circuit diagram of the light control glass according to the present invention.

【図3】は、上下電極層のシート抵抗値を等しく(20
Ω)した時の45cm×45cmサイズ調光ガラスの電
位差(着色濃度)分布を計算により求めたデータ図であ
る。
FIG. 3 shows that the sheet resistance values of the upper and lower electrode layers are equal (20
FIG. 4 is a data diagram in which a potential difference (coloring density) distribution of a 45 cm × 45 cm size light control glass when subjected to (Ω) is calculated.

【図4】は、同じ大きさの調光ガラスで上部電極層のシ
ート抵抗値を20Ω、下部電極層のシート抵抗値を5Ω
とした時の電位差(着色濃度)分布を計算により求めた
データ図である。
FIG. 4 shows a sheet resistance value of the upper electrode layer of 20Ω and a sheet resistance value of the lower electrode layer of 5Ω for the same size of light control glass.
It is a data figure which calculated | required the electric potential difference (coloring density) distribution at the time of.

【図5】は、本発明の実施例である調光ガラスの概略垂
直断面図である。
FIG. 5 is a schematic vertical sectional view of a light control glass that is an embodiment of the present invention.

【図6】は、実施例の製造途中にある調光ガラスの概略
垂直断面図である。
FIG. 6 is a schematic vertical sectional view of a light control glass in the process of being manufactured according to an example.

【符号の説明】[Explanation of symbols]

A・・・上部ITO電極層 B・・・下部ITO電極層 E・・・酸化タングステン層 D・・・イオン導電層 C・・・可逆的電解酸化層 ECD・・・エレクトロクロミック素子 S・・・素子基板 H・・・導電性クリップ M1・・上部電極層 M2・・下部電極層 Me・・EC三層 V1・・上部電極層M1の電位 V2・・下部電極層M2の電位 I1・・上部電極層M1の層内電流 I2・・下部電極層M2の層内電流 Ie・・EC三層Me内のリーク電流 d1・・上部電極層M1の膜厚 d2・・下部電極層M2の膜厚 de・・EC三層Meの膜厚 W・・・電極幅 L・・・電極間距離 r1・・上部電極層M1の抵抗率 r2・・下部電極層M2の抵抗率 re・・EC三層Meの膜厚方向の抵抗率 A ... Upper ITO electrode layer B ... Lower ITO electrode layer E ... Tungsten oxide layer D ... Ion conductive layer C ... Reversible electrolytic oxidation layer ECD ... Electrochromic element S ... Element substrate H ... conductive clip M1 ... upper electrode layer M2 ... lower electrode layer Me ... EC three layers V1 ... potential of upper electrode layer M1 V2 ... potential of lower electrode layer M1 ... upper electrode In-layer current I2 of layer M1 ... In-layer current of lower electrode layer M2 Ie ... Leakage current in EC three layers Me d1 .. Thickness of upper electrode layer M1 d2 ..... Thickness of lower electrode layer M2 de・ Film thickness of EC three-layer Me W ... Electrode width L ... Electrode distance r1 ... Resistivity of upper electrode layer M1 r2 ... Resistivity of lower electrode layer M2 re ... EC three-layer Me film Resistivity in thickness direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくともエレクトロクロミック層とこ
れを挟む一対の透明電極層とからなるエレクトロクロミ
ック素子を表面に形成した調光ガラスにおいて、前記一
対の透明電極層のシート抵抗を等しく又はほぼ等しくし
たことを特徴とする調光ガラス。
1. In a light control glass on the surface of which an electrochromic element comprising at least an electrochromic layer and a pair of transparent electrode layers sandwiching the electrochromic layer is formed, the sheet resistances of the pair of transparent electrode layers are made equal or substantially equal. Light control glass characterized by.
JP4247646A 1992-09-17 1992-09-17 Light control glass Pending JPH0695168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4247646A JPH0695168A (en) 1992-09-17 1992-09-17 Light control glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4247646A JPH0695168A (en) 1992-09-17 1992-09-17 Light control glass

Publications (1)

Publication Number Publication Date
JPH0695168A true JPH0695168A (en) 1994-04-08

Family

ID=17166590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4247646A Pending JPH0695168A (en) 1992-09-17 1992-09-17 Light control glass

Country Status (1)

Country Link
JP (1) JPH0695168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028473A (en) * 2011-07-27 2013-02-07 Institute Of Physical & Chemical Research Electric control dimmer element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028473A (en) * 2011-07-27 2013-02-07 Institute Of Physical & Chemical Research Electric control dimmer element

Similar Documents

Publication Publication Date Title
US20230077475A1 (en) Angled bus bar
CA2115266C (en) Electrochromic device having refractive index-matched structure and methods of operating and manufacturing
US5066111A (en) Electrochromic window with integrated bus bars
JP3943576B2 (en) Electrochromic device and power supply method thereof
JP3353905B2 (en) Electrochromic glass
US5187607A (en) Electrochromic device with low resistance electrical connections
US4240713A (en) Electrode barrier layer for hydrogen-colored electrochromic displays
JPH06167724A (en) Production of light control glass
JPH0695168A (en) Light control glass
JPS63271321A (en) Fully solid-state high-polymer type electrochromic display element
JPH0228500Y2 (en)
JPS6186733A (en) Electrochromic element
JPH0784288A (en) Light controllable window glass and its production
US20240052688A1 (en) Connecting element for insulated glazing with an electrically conductive coating and/or electrically controllable functional element
JPH0140330B2 (en)
JP2827247B2 (en) Electrochromic element that uniformly colors
JPH02273721A (en) Color liquid crystal display element
JPH06289435A (en) Electrochromic element
JP3465255B2 (en) Optical device and driving method thereof
JP2725352B2 (en) Electrochromic device
JP2501553B2 (en) Electrochromic element
JPH0134367B2 (en)
JPS6156323A (en) Liquid crystal display element
JPH0219443B2 (en)
JPH03172820A (en) Panel heater and liquid crystal device with panel heater