JPH0693553B2 - Conductive composite and method for producing the same - Google Patents

Conductive composite and method for producing the same

Info

Publication number
JPH0693553B2
JPH0693553B2 JP59249375A JP24937584A JPH0693553B2 JP H0693553 B2 JPH0693553 B2 JP H0693553B2 JP 59249375 A JP59249375 A JP 59249375A JP 24937584 A JP24937584 A JP 24937584A JP H0693553 B2 JPH0693553 B2 JP H0693553B2
Authority
JP
Japan
Prior art keywords
conductive
fiber
fibers
conductive fiber
cotton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59249375A
Other languages
Japanese (ja)
Other versions
JPS61127198A (en
Inventor
正敏 松岡
雅博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP59249375A priority Critical patent/JPH0693553B2/en
Publication of JPS61127198A publication Critical patent/JPS61127198A/en
Publication of JPH0693553B2 publication Critical patent/JPH0693553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、合成樹脂、ゴムなどの高分子材料内に導電性
繊維を均一に分散、混入し、電磁波シールド性、制電性
等を向上しうる導電性複合体及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention improves the electromagnetic wave shielding property, antistatic property, etc. by uniformly dispersing and mixing conductive fibers in a polymer material such as synthetic resin or rubber. And a method for producing the same.

〔従来の技術〕[Conventional technology]

近年、コンピュータ、通信機器など、各種の電子機器に
おいては、外部からの電磁波による障害を防止し又内部
で生じる電磁波の放散を防ぎかつ静電気などによる障害
を防止するために、その筐体を導電化させることが必要
となる。又筐体は、成形の容易さ、見映えの向上のため
に、その多くは合成樹脂などの高分子材料を用いて形成
しており、従ってこの高分子材料に導電性素材を混入す
ることによって導電性を付与することが行なわれてい
る。
In recent years, in various electronic devices such as computers and communication devices, their casings have been made electrically conductive in order to prevent disturbances due to electromagnetic waves from the outside, to prevent dissipation of electromagnetic waves generated inside, and to prevent disturbances due to static electricity. Will be required. In addition, most of the casings are made of polymeric materials such as synthetic resins for ease of molding and improvement of appearance. Therefore, by mixing conductive materials into these polymeric materials, Conductivity is being imparted.

このような導電性材料として、カーボンブラツク、炭素
繊維などがあるが、とりわけ、ステンレス鋼、銅、アル
ミニウムなどからなる金属繊維が、優れた導電性が示す
ものとして近年認識されつつある。
Such conductive materials include carbon black, carbon fiber, and the like. In particular, metal fibers made of stainless steel, copper, aluminum, and the like have recently been recognized as having excellent conductivity.

このような金属繊維においても、小径かつアスペクト比
が大なるものを用いるときには、それらを均一にしかも
互いに当接しつつ分散させることによって、金属繊維の
使用量を低減しつつ優れた導電性を発揮することが判明
しており、又このような金属繊維は、高分子材料に均一
かつ互いに当接させて分散することが肝要となる。
Even when such a metal fiber having a small diameter and a large aspect ratio is used, by dispersing them uniformly and in contact with each other, the amount of the metal fiber used is reduced and excellent conductivity is exhibited. It has been proved that it is important to disperse such metal fibers in a polymer material uniformly and in contact with each other.

他方、このような高分子材料に導電性繊維を混入する方
法として、例えば特開昭58−150203号公報が開示するよ
うな、導電性繊維を混合した長さ3〜5mm程度のペレツ
トを形成したうえ、成形に際して母材料と所定の比率で
混合、混練するもの、又は特開昭59−109537号公報など
が開示するごとく、ペレツトに成形することなく導電性
繊維を直接、高分子材料中に導入、混練する方法などが
提案されている。なおいずれの方法においても、混合、
混練した溶融状の素材を、射出成形機、押出し成形機、
カレンダロール等を用いて成形し、前記した筐体の他、
シート状等に成形している。なおシート状のものはその
まま使用するか又は適宜熱変形を加えて所定形状のもの
に成形する。
On the other hand, as a method of mixing conductive fibers into such a polymer material, for example, a pellet having a length of about 3 to 5 mm is formed by mixing conductive fibers as disclosed in JP-A-58-150203. In addition, as disclosed in JP-A-59-109537 or the like, which is mixed and kneaded with a base material at a predetermined ratio in molding, conductive fibers are directly introduced into a polymer material without molding into pellets. , A method of kneading has been proposed. In any method, mixing,
The kneaded molten material is injected into an injection molding machine, an extrusion molding machine,
Molded using a calendar roll, etc., in addition to the above-mentioned housing,
It is formed into a sheet. The sheet-shaped material may be used as it is, or may be appropriately heat-deformed to be molded into a predetermined shape.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし前記したペレツトを用いるもの又直接混合、混練
する従来のものでは、 (a)ペレツト状のものを予め成形するものは勿論のこ
と直接混練するものも、混合、混練作業の困難さから使
用される導電性繊維の長さが5mm程度以下となり、従っ
て長い導電性材料が使用しえず、成形物の導電性に劣
る。
However, in the case of using the pellets described above or in the conventional method of directly mixing and kneading, not only (a) a method of previously molding a pellet-shaped material but also a method of directly kneading is used because of difficulty in mixing and kneading work. Since the length of the conductive fiber is less than about 5 mm, a long conductive material cannot be used, and the conductivity of the molded product is poor.

(b)しかも混合、混練作業は繊維に強い力を与えるこ
とにより、大半の導電性材料が折損して粉末に近い短繊
維となりやすく、得られる成形物の導電性が低下する。
特に前記した小径の金属繊維を用いるときにこの傾向が
著しくなる。
(B) In addition, when the mixing and kneading operations give a strong force to the fibers, most of the conductive materials are likely to break and become short fibers close to powder, and the conductivity of the obtained molded article is lowered.
This tendency becomes remarkable especially when the above-mentioned small-diameter metal fiber is used.

(c)又ペレツトを予め成形するものは、そのペレツト
が長尺体から切断することにより形成しているため、切
断に際して内部の導電性繊維の端部に生じるだれ等によ
って、導電性繊維同志の結合、からみが生じやすく、従
って繊維を折損なく均一分散せしめ所望の導電性を得る
には高度の技術が必要となる。
(C) In the case where the pellet is preformed, the pellet is formed by cutting it from a long body. Bonding and entanglement are likely to occur, and therefore a high level of technology is required to uniformly disperse the fibers and obtain the desired conductivity.

(d)そしてその後の成形工程によって成形された製品
は、その内部で導電性繊維が偏在しがちであり、又射
出、押出しなどの成形に際して導電性繊維が一方向に配
列しやすいことと相俟って、良好な導電性が得られな
い、 などの問題点が存在している。
(D) In the product molded by the subsequent molding step, the conductive fibers tend to be unevenly distributed inside the product, and the conductive fibers are easily arranged in one direction during molding such as injection and extrusion. Therefore, there is a problem that good conductivity cannot be obtained.

さらに前記した各種の成形方法では、例えば厚さ数十ミ
クロンメータ以下という薄厚のフイルム状のものを成形
するのは困難である他、所望の導電性の得がたい。従っ
て希望の導電性をうるためには、導電性材料を多量に混
入することが必要であり、強度、色彩を悪くし、又とき
に必要となる透明性を阻害するという問題があった。
Further, it is difficult to form a thin film-like film having a thickness of, for example, several tens of micrometers or less by the above-mentioned various molding methods, and it is difficult to obtain desired conductivity. Therefore, in order to obtain the desired conductivity, it is necessary to mix a large amount of a conductive material, which deteriorates the strength and color, and sometimes impairs the required transparency.

本発明は、導電性繊維を用いるとともに、高分子材料を
予め繊維状に形成することを基本として、抄紙状に導電
性繊維を均一に分散でき、又小径かつ比較的長い導電性
繊維を用いるときにもその折損を減じうるとともに、該
導電性繊維の混入比率を低減させつつ導電性を高めるこ
とができ、前記問題点を解決しうる導電性複合体及びそ
の製造方法の提供を目的としている。
The present invention is based on the use of conductive fibers and preliminarily forming the polymer material into a fibrous shape, and it is possible to uniformly disperse the conductive fibers in the form of paper, and when using a conductive fiber having a small diameter and a relatively long length. Moreover, it is an object of the present invention to provide a conductive composite and a method for producing the same that can reduce the breakage thereof, can increase the conductivity while reducing the mixing ratio of the conductive fibers, and can solve the above problems.

又導電性繊維として、小径かつアスペクト比の大なる金
属繊維を用いた導電性複合体及びその製造方法の提供を
目的としている。
Another object of the present invention is to provide a conductive composite using a metal fiber having a small diameter and a large aspect ratio as the conductive fiber, and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の導電性複合体1は、熱により軟化し互いに融着
しうる高分子材料からなる非導電性繊維2と、該非導電
性繊維2に抄紙状に分散される導電性繊維3とを、非導
電性繊維2の繊維状部分を残存させつつ、各繊維2、3
が重なる重なり部の融着によって一体に接着した接合体
4からなり、又導電性複合体の製造方法は、高分子材料
を用いた非導電性繊維と、不規則に湾曲、屈曲させた導
電性繊維とを空気中に飛散させ、かつ連続的に移動する
回収コンベヤ上に落下させることにより、導電性繊維が
抄紙状に均一に分散した長尺の綿状体を形成させる綿状
体形成工程と、この綿状体を加熱及び加圧することによ
って前記非導電性繊維とを導電性繊維とを結合する結合
工程とを含んでいる。
A conductive composite 1 of the present invention comprises a non-conductive fiber 2 made of a polymer material that is softened by heat and can be fused to each other, and a conductive fiber 3 dispersed in the non-conductive fiber 2 in a papermaking manner. While leaving the fibrous portion of the non-conductive fiber 2, each fiber 2, 3
Is composed of a joined body 4 adhered integrally by fusing of overlapping overlapping parts, and a method for producing a conductive composite is a non-conductive fiber made of a polymer material and a conductive material that is irregularly curved or bent. A cotton-like body forming step of forming a long cotton-like body in which conductive fibers are uniformly dispersed in a papermaking state by scattering the fibers and air into a collection conveyor that continuously moves. And a bonding step of bonding the non-conductive fiber and the conductive fiber by heating and pressing the cotton-like material.

第1図は、導電性繊維3が、一部に繊維状部分2Aを残存
させつつ非導電性繊維2と重なる重なり部Cと融着する
ことにより結合体4を形成する本発明の一実施例を、各
繊維2、3の重なり本数を省略して示している。
FIG. 1 shows an embodiment of the present invention in which the conductive fiber 3 is fused to the overlapping portion C overlapping with the non-conductive fiber 2 while leaving the fibrous portion 2A in a part thereof to form the combined body 4. The number of overlapping fibers 2 and 3 is omitted.

非導電性繊維2は、例えばABS、ポリエチレン、ナイロ
ン、塩化ビニール、ポリスチレン、ポリプロピレンなど
の熱可塑性合成樹脂の他、合成ゴムなどの各種のゴム材
などからなりかつ加熱によって軟化し互いに融着しうる
高分子材料を用いて形成される。又非導電性繊維2は、
押出しなど通常の繊維形成方法により形成したものの
他、高分子材料からなるシート体を裁断したものをも利
用でき、又種類の異なる高分子材料からなる複数種類の
非導電性繊維2を混在して用いることもできる。
The non-conductive fiber 2 is made of, for example, a thermoplastic synthetic resin such as ABS, polyethylene, nylon, vinyl chloride, polystyrene, polypropylene, etc., as well as various rubber materials such as synthetic rubber, and can be softened by heating and fused to each other. It is formed using a polymer material. Also, the non-conductive fiber 2 is
In addition to those formed by a normal fiber forming method such as extrusion, sheets obtained by cutting a sheet body made of a polymer material can be used, and a plurality of types of non-conductive fibers 2 made of polymer materials of different types are mixed. It can also be used.

又非導電性繊維2は、連続繊維を切断した、長さ10〜20
0mm程度の短繊維が好適に使用でき、又より短寸のもの
をも使用できる。さらに非導電性繊維2は、5〜500μ
m程度の繊維径のものさらにはより小径又は大径のもの
が適宜利用できる。又その断面形状も、円形、楕円形形
状の他、多角形形状などの非円形のものなど各種のもの
が利用できる。このような非導電性繊維2の長さ、直
径、断面形状、材質等は目的とする導電性複合体1の特
性に応じて、又生産性を考慮して任意に定めうる。
The non-conductive fiber 2 has a length of 10 to 20 obtained by cutting continuous fiber.
Short fibers of about 0 mm can be preferably used, and shorter fibers can also be used. Furthermore, the non-conductive fiber 2 is 5 to 500 μ.
A fiber having a fiber diameter of about m, and a fiber having a smaller diameter or a larger diameter can be appropriately used. The cross-sectional shape may be circular, elliptical, or non-circular such as polygonal. The length, diameter, cross-sectional shape, material and the like of such non-conductive fibers 2 can be arbitrarily determined according to the characteristics of the target conductive composite 1 and in consideration of productivity.

又非導電性繊維2における非導電性とは、前記導電性繊
維3に比して導電性に劣ることをいい、非導電性繊維2
には、熱により溶融できさえすれば、高分子材料に少量
のカーボンブラツクなどを混入した、ある程度の導電性
を有するものをも包含している。
The non-conductivity of the non-conducting fiber 2 means that the non-conducting fiber 2 is inferior in electroconductivity to the electro-conducting fiber 3.
The term also includes a material having a certain degree of conductivity in which a small amount of carbon black or the like is mixed in a polymer material as long as it can be melted by heat.

前記導電性繊維3は、金属繊維の他、炭素繊維、さらに
はガラス繊維、高分子材料からなる繊維などの非導電性
繊維に金属膜をメツキ、蒸着等により付着することによ
って導電性を発揮させたもの、又はカーボンブラツク、
金属粉などの粉体を混入した繊維を用いることができ
る。なお高分子材料に導電処理を施したものは、前記非
導電性繊維2による融着によっても、導電性を保持しう
るものを選択する。
The conductive fiber 3 exhibits conductivity by attaching a metal film to the non-conductive fiber such as carbon fiber, glass fiber, fiber made of polymer material, etc. by plating, vapor deposition, etc. in addition to metal fiber. Tata, or carbon black,
Fibers mixed with powder such as metal powder can be used. As the polymer material subjected to the conductive treatment, a material that can maintain the conductivity even when it is fused with the non-conductive fiber 2 is selected.

又金属繊維は、鉄、ニツケル、アルミニウム、銅、チタ
ン等の金属もしくはステンレス鋼、黄銅などの各種の合
金を用いて形成しうる。
The metal fibers can be formed by using metals such as iron, nickel, aluminum, copper and titanium, or various alloys such as stainless steel and brass.

導電性繊維3は、繊維径が2〜100μm程度、繊維長さ
2〜200mm程度の、非導電性繊維2と抄紙状に効率よく
分散しうる長さ、太さのものを選定する。又アスペクト
比(L/D)、混合率については、成形品の用途、目的を
考慮して決定されるが、好ましい例としては、アスペク
ト比通常200以上、又混合率は結合体4に対して体積比
0.1〜50%程度、より好ましくは0.3〜15%程度混入す
る。なお50%以上を含ませてもよい。又金属繊維などの
良導電性のものを用いるときには、混入比率を低減で
き、又好ましくは小径、例えば2〜30μm程度、アスペ
クト比200以上のものを使用することにより混入体積比
を下げつつ導電性等を向上しうるのである。
As the conductive fiber 3, a fiber having a diameter of 2 to 100 μm and a fiber length of 2 to 200 mm and having a length and a thickness that can be efficiently dispersed in a paper-like state with the non-conductive fiber 2 is selected. Also, the aspect ratio (L / D) and the mixing ratio are determined in consideration of the use and purpose of the molded product, but as a preferred example, the aspect ratio is usually 200 or more, and the mixing ratio is relative to the combined body 4. Volume ratio
About 0.1 to 50%, more preferably about 0.3 to 15% is mixed. The content may be 50% or more. Further, when using a metal fiber or the like having good conductivity, it is possible to reduce the mixing ratio, and it is preferable to use a material having a small diameter, for example, about 2 to 30 μm and an aspect ratio of 200 or more to reduce the mixing volume ratio and improve the conductivity. Etc. can be improved.

このような金属繊維の成形には、例えば特開昭55−1574
43号公報が開示するごとく、金属棒を工具により、びび
り振動を生じさせつつ切削するいわゆるびびり切削法、
又は引き抜き、押出しなどにより単線づつ成形する連続
した金属線をうる単線線引き法、さらには特公昭50−39
069などにより提案された、外管内に外部を被覆した多
数本の単線を挿入した複合体を引抜き等により小径化し
たのち、被覆材、外管を除去する、いわゆる集束伸線法
等の他、各種の方法を用いうる。又連続した繊維は、例
えば特公昭51−4314などが開示する、周速の異なるロー
ラを用いて繊維を切断する連続的切断方法、又カツタ等
を用いて直切りすることにより、いわゆるスライバー、
チヨツプドストランドなどの金属短繊維状に切断する。
なお金属繊維は、からみ合わせを良好化するために、端
部にだれ等がないのが好ましい。
For molding such a metal fiber, for example, JP-A-55-1574 can be used.
As disclosed in Japanese Patent No. 43, a so-called chatter cutting method of cutting a metal rod with a tool while causing chatter vibration,
Alternatively, a single wire drawing method can be used to obtain a continuous metal wire, which is formed by drawing or extruding into single wires.
Proposed by 069, etc., after reducing the diameter of the composite by inserting a large number of single wires coating the outside into the outer tube by drawing out, etc., the coating material, the outer tube is removed, other than the so-called focused wire drawing method, etc. Various methods can be used. Further, the continuous fiber, for example, a so-called sliver by a continuous cutting method disclosed in JP-B-51-4314 or the like, in which the fiber is cut using rollers having different peripheral speeds, or by directly cutting using a cutter,
Cut into chopped strands or other short metal fibers.
In addition, in order to improve the entanglement, the metal fiber preferably has no sagging at the end.

又各導電性繊維3は、非導電性繊維2と重なる重なり部
Cとの融着によって、該導電性繊維3が連続して順次接
するごとく、ほぼ全面に亘って略均一に抄紙状に分散
し、各導電性繊維3は好ましくは少なくともその1個所
で、他の導電性繊維3と接触する。
Further, each conductive fiber 3 is substantially uniformly dispersed in a papermaking state over almost the entire surface by the fusion of the non-conductive fiber 2 and the overlapping portion C overlapping with each other so that the conductive fibers 3 are successively and sequentially contacted. , Each conductive fiber 3 preferably contacts at least one of the conductive fibers 3 with another conductive fiber 3.

なお導電性繊維3は、第1図に示すように比較的真直な
ものの他、第3図に示すごとく、導電性複合体1内にお
いて、不規則に湾曲、屈曲する折曲げ部6…を形成する
こともできる。この折曲げ部6は導電性繊維3、3間の
接触個所を増し、導電性複合体1の導電性を向上する。
なお導電性繊維3は、その折損による粉末部分の発生が
抑制され、抄紙状に均一に分散している。なお「抄紙
状」とは一般の紙抄き法で得られる分散状態をいう。
The conductive fiber 3 is relatively straight as shown in FIG. 1, and as shown in FIG. 3, it has bent portions 6 ... Which are curved and bent irregularly in the conductive composite 1. You can also do it. The bent portion 6 increases the contact points between the conductive fibers 3 and 3, and improves the conductivity of the conductive composite 1.
It should be noted that the conductive fibers 3 are suppressed from being powdered due to their breakage, and are dispersed uniformly in a papermaking state. The term "papermaking" means a dispersed state obtained by a general papermaking method.

又導電性繊維3は、平面方向の他、厚さ方法にも分散さ
せることもできる。
Further, the conductive fibers 3 can be dispersed by the thickness method as well as the plane direction.

なお第1図は、図面の簡略化のために少本数の非導電性
繊維に、導電性繊維3を結合した場合を示しているが、
実用上は、インキ等を用いてにじみなく描写しうる程度
のフイルム状、シート状となるごとく、非導電性繊維
2、導電性繊維3を集合させることもできる。
It should be noted that FIG. 1 shows a case where the conductive fiber 3 is bonded to a small number of non-conductive fibers for simplification of the drawing.
In practice, the non-conductive fibers 2 and the conductive fibers 3 can be aggregated into a film shape or a sheet shape that can be drawn with ink or the like without bleeding.

又繊維部分を残すことにより、導電性複合体1に通気性
を付与でき、内部熱の放熱に役立つ。なお繊維状部分
は、加圧によって偏平化してもよい。
Further, by leaving the fiber portion, it is possible to impart air permeability to the conductive composite body 1 and to help dissipate internal heat. The fibrous portion may be flattened by pressing.

又導電性繊維3は表面を露出することなく非導電性繊維
2の溶融体内部に注填される場合には、表面での、導電
性繊維3によるケバ立ちを防ぐ。又表面への露出のない
ものは、電磁波シールド用として好適に利用できる。な
お導電性繊維3の露出させてもよくこのとき、導電性複
合体1は帯電防止用として使用するのがよい。
When the conductive fiber 3 is poured into the melt of the non-conductive fiber 2 without exposing the surface, the conductive fiber 3 prevents fluffing on the surface. Further, those which are not exposed to the surface can be suitably used for electromagnetic wave shielding. The conductive fibers 3 may be exposed, and at this time, the conductive composite 1 is preferably used for antistatic purposes.

又第1図に示す結合体4は、厚さが1mm以下のフイルム
状の長尺テープ体として形成されている。
The combined body 4 shown in FIG. 1 is formed as a film-shaped long tape body having a thickness of 1 mm or less.

なお導電性複合体1は、フイルム状、シート状の他、厚
肉にも形成でき、又非導電性繊維2の溶融に際して、各
種の形状のものに形成でき、例えば箱状体など各種の用
途に多用できる。
The conductive composite 1 can be formed into a film, a sheet, or a thick wall, and can be formed into various shapes when the non-conductive fiber 2 is melted, for example, various applications such as a box-shaped body. Can be used for a lot.

次に本発明の綿状体形成工程と結合工程とを有する導電
性複合体の製造方法の一例を説明する。
Next, an example of a method for producing a conductive composite having the step of forming a cotton-like body and the step of bonding according to the present invention will be described.

第3図は綿状体形成工程で用いる、導電性繊維3を非導
電性繊維2内に抄紙状に分散させつつ均一に混合する混
合装置7を例示している。なお非導電性繊維2、導電性
繊維3は、長さ、繊維径が同一の場合の他、ときに導電
性繊維3よりも大きな繊維径と長さの非導電性繊維2を
用いるなど、互いに異ならせてもよい。なお導電性繊維
3として、その端部を、カツタなどにより切断した短繊
維を用いるときは、切断だれ等によるからみを充分にほ
ぐし、独立した繊維体に分離させておくことが好まし
い。
FIG. 3 exemplifies a mixing device 7 used in the step of forming a cotton-like material, in which the conductive fibers 3 are dispersed in the non-conductive fibers 2 in a papermaking manner and uniformly mixed. The non-conductive fiber 2 and the conductive fiber 3 have the same length and fiber diameter, and sometimes the non-conductive fiber 2 having a larger fiber diameter and length than the conductive fiber 3 is used. You can make them different. When the conductive fiber 3 is a short fiber whose end is cut by a cutter or the like, it is preferable to sufficiently loosen the entanglement due to a cutting sag or the like and separate it into an independent fibrous body.

第3図は、混合装置7がいわゆるエヤーレード機である
場合を示している。
FIG. 3 shows a case where the mixing device 7 is a so-called air raid machine.

エヤーレード機30は、夫々周回方向にやや傾斜する針を
具えた搬送コンベヤ31、成形ロール32、送り出しロール
33とを連設しており、又送り出すロール33の下方には該
送り出しロール33を横切る空気吹出し口34を設けてい
る。従って、前記針により非導電性繊維2と導電性繊維
3と均一に混合しつつ搬送でき、又前記空気吹出しノズ
ル34からの空気流によって、送り出しロール33表面の繊
維2、3を空気中に飛散させ、回収コンベヤ35に落下さ
せることにより、従来の混練するものに比して導電性繊
維の折損を減じ、しかも導電性繊維3が抄紙状に均一に
分散し、非導電性繊維2と混合する綿状体13が形成す
る。
The air raid machine 30 includes a conveyor 31 having a needle slightly inclined in the orbiting direction, a forming roll 32, and a delivery roll.
An air outlet 34 is provided below the delivery roll 33 so as to traverse the delivery roll 33. Therefore, the non-conductive fiber 2 and the conductive fiber 3 can be uniformly mixed and conveyed by the needle, and the air flow from the air blowing nozzle 34 scatters the fibers 2, 3 on the surface of the delivery roll 33 into the air. Then, by dropping it on the recovery conveyor 35, the breakage of the conductive fibers is reduced as compared with the conventional kneading, and the conductive fibers 3 are uniformly dispersed in a papermaking state and mixed with the non-conductive fibers 2. A cotton-like body 13 is formed.

なおこのエヤーレード機を用いることによって、連続し
た綿状体の製作が可能となり、又単位面積当りの目付量
等の調整も容易になしうる。又エヤーレード機を用いた
際にも、導電性繊維3の折損を生じない程度の比較的遅
い速度で処理するのがよい。又綿状体13は一層ものの
他、多層に重ね合わせたウエブを形成したのち、前記加
圧、加熱装置15を用いて第1図に示した繊維状部分を残
存させた結合体4又は非導電性繊維を完全に溶解させた
導電性複合体を形成する。
By using this air raid machine, it is possible to manufacture a continuous cotton-like material, and it is possible to easily adjust the basis weight per unit area. Also, even when an air-raid machine is used, it is preferable to process at a relatively slow speed at which the conductive fibers 3 are not broken. In addition to one layer of the cotton-like body 13, a web of laminated layers is formed, and then the pressurizing / heating device 15 is used to leave the fibrous portion shown in FIG. A conductive composite is formed in which the organic fibers are completely dissolved.

綿状体13は、各繊維2、3の摩擦抵抗等によるからみ合
い等である程度のグリーン強度(green Strength)を有
するのがよい。なおグリーン強度を発揮しえないような
混合体でも用いうる。又導電性繊維3は図に矢印で示す
ように搬送コンベヤ31と、成形ロール32との互いに逆行
する針にて引張られることにより第2図に示すように、
長さ方向に比較的不規則に湾曲した折曲げ部6を形成す
ることもできる。
The cotton-like body 13 preferably has a certain degree of green strength due to entanglement due to frictional resistance of the fibers 2 and 3. It should be noted that a mixture that does not exhibit green strength can also be used. As shown in FIG. 2, the conductive fiber 3 is pulled by the needles of the conveyor 31 and the forming roll 32, which are opposite to each other, as shown by the arrow in FIG.
It is also possible to form the bent portion 6 that is relatively irregularly curved in the length direction.

次に第6図に示す加圧、加熱装置15に綿状体13を搬入す
る。
Next, the cotton-like material 13 is carried into the pressure / heating device 15 shown in FIG.

加圧、加熱装置15は、例えば上下に配するヒートロール
16、16を具えており、該ヒートロール16、16は綿状体13
を加熱しつつ挟圧、搬送できる。
The pressurizing / heating device 15 is, for example, a heat roll arranged vertically.
16 and 16, the heat rolls 16 and 16 are cotton-like bodies 13
It can be pinched and conveyed while heating.

又ヒートロール16は、非導電性繊維2を形成する高分子
材料の軟化温度をこえて加温する。例えば高分子材料が
ポリエチレンの場合には、通常120〜200度程度に加温す
る。加温状態において、ヒートロール16は綿状体13を挟
圧することにより、非導電性繊維2は互いに融着し、厚
さを減じたシート状に結合する。特に温度が比較的低温
であるとき又はヒートロール16との接触時間が短いとき
には、第1図に示すような、繊維状部分を残した結合体
4が形成される。
The heat roll 16 heats the polymer material forming the non-conductive fiber 2 above the softening temperature of the polymer material. For example, when the polymer material is polyethylene, it is usually heated to about 120 to 200 degrees. In the heated state, the heat roll 16 presses the cotton-like body 13 so that the non-conductive fibers 2 are fused to each other and bonded to each other in a sheet shape with reduced thickness. In particular, when the temperature is relatively low or when the contact time with the heat roll 16 is short, the bonded body 4 having the fibrous portion as shown in FIG. 1 is formed.

又加圧圧力を増すことによって、高分子材料が高粘度で
あるときにも、溶融した高分子材料を導電性繊維3とと
もに流動させ、従って厚さを調整できる。又厚さ調整と
ともに、導電性繊維3の面積当りの混入率を調整でき
る。また例えば非導電性繊維2を介して平面的に交差す
る上下2本の導電性繊維3、3が分布する場合には、加
熱、加圧に伴って、各繊維を押圧し、その結果中間の非
導電性繊維2は、その部分で溶断され、前記2本の導電
性繊維同志3、3は確実に接触して導電性を大きく高め
ることができる。
Further, by increasing the pressurizing pressure, even when the polymer material has a high viscosity, the melted polymer material is allowed to flow together with the conductive fibers 3, and thus the thickness can be adjusted. In addition to adjusting the thickness, the mixing ratio of the conductive fibers 3 per area can be adjusted. Further, for example, when two upper and lower conductive fibers 3 and 3 that intersect in a plane via the non-conductive fiber 2 are distributed, each fiber is pressed with heating and pressurization, and as a result, the intermediate The non-conductive fiber 2 is blown off at that portion, and the two conductive fibers 3, 3 are surely brought into contact with each other, so that the conductivity can be greatly enhanced.

なお非導電性繊維2を溶融温度を越えて加熱することも
でき、又連続的に抄紙することもできる。
The non-conductive fiber 2 can be heated above the melting temperature, or can be continuously made into paper.

また加圧、加熱装置15として、いわゆるホツトプレスを
用いるものや加熱器等での高温空気流によって加温しつ
つロールを用いて加圧するものを用いることもでき、さ
らに空気中で混合するカード方式によって混合する混合
装置を利用するなど種々なものが利用できる。
Further, as the pressurizing and heating device 15, a so-called hot press or a pressurizing device using a roll while being heated by a high-temperature air flow in a heater or the like can be used. Various things can be used, such as using a mixing device for mixing.

〔発明の効果〕〔The invention's effect〕

叙上のごとく、本発明の導電性複合体は、導電材と高分
子材料とを予め繊維状に形成し、導電性繊維を抄紙状に
分散したうえ高分子材料の繊維状部分を残存させつつ各
繊維の重なり部の融着により一体化しているため、導電
性繊維はほとんど折損することなく、導電性複合体に通
気性を付与でき、内部熱の放熱に役立つ。又導電性繊維
は、均一に方向性を有することなく分散でき、導電性、
静電性などの諸特性を向上できる。又導電性繊維として
金属繊維を用いたときにも、その折損はなく又小径かつ
長さの大なるものを用いることによって、導電性、制電
性の諸特性を向上しうる。又混入比率を減じ、生産コス
トの低下にも役立つ。又導電性繊維は三次元的にランダ
ムに配向させることもできる。
As mentioned above, the conductive composite of the present invention, the conductive material and the polymeric material is formed into a fibrous shape in advance, while the conductive fibers are dispersed in a papermaking state while leaving the fibrous portion of the polymeric material. Since the overlapping portions of the respective fibers are integrated by fusing, the conductive fibers are hardly broken, and the conductive composite can be provided with air permeability, which is useful for radiating internal heat. In addition, the conductive fibers can be uniformly dispersed without having directivity,
It is possible to improve various characteristics such as electrostatic properties. Further, even when a metal fiber is used as the conductive fiber, it is possible to improve various properties of conductivity and antistatic property by using a fiber which does not break and has a small diameter and a large length. It also reduces the mixing ratio and helps reduce production costs. The conductive fibers can also be three-dimensionally randomly oriented.

又本発明の製造方法によれば、導電性繊維と非導電性繊
維とを空気中に飛散させ、かつ連続的に移動する回収コ
ンベヤ上に落下させて長尺の綿状体を生成しうる工程を
含むものであるため、筐体状の厚肉品の他、フイルム、
シート状等の薄厚品の連続製作が可能となり生産性を向
上しうる。又非導電性繊維として透明な素材を用いたと
きには、導電性繊維の混入比率を低下しうることと相俟
って導電性複合体は優れた透明性を発揮でき、例えばブ
ラウン管等の電磁液シールド用のスクリーンとしての
他、静電防止用の包装紙などとして広い範囲で利用でき
る。又その製造も簡易化でき生産性を高め、かつ製品コ
ストを低減する。
Further, according to the production method of the present invention, a step in which conductive fibers and non-conductive fibers are scattered in the air and dropped onto a continuously moving recovery conveyor to form a long cotton-like material In addition to the case-shaped thick-walled product, the film,
It is possible to continuously manufacture thin products such as sheets and improve productivity. Further, when a transparent material is used as the non-conductive fiber, the conductive composite can exhibit excellent transparency in combination with the fact that the mixing ratio of the conductive fiber can be reduced, and for example, a liquid crystal shield such as a cathode ray tube can be provided. It can be used in a wide range as an antistatic wrapping paper as well as a screen. Further, the manufacturing thereof can be simplified, the productivity is increased, and the product cost is reduced.

なお本発明の導電性複合体は、自在に重ね合わせて用い
る他、適宜の被膜処理を施すこともできる。又高分子材
料として従来複合化の困難であったゴム材料を用いても
導電性複合体を製造しうるなど、各種材料の複合化に役
立ち、工業性に優れている。
The conductive composite of the present invention may be used by freely stacking it, or may be subjected to an appropriate coating treatment. Further, it is useful for compounding various materials such that a conductive compound can be produced even when a rubber material, which has been difficult to compound as a polymer material, is used, and is excellent in industrial property.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す平面図、第2図は導電
性繊維を例示する平面図、第3図は混合装置を略示する
斜視図、第4図は綿状体を例示する斜視図、第5図は加
圧、加熱装置を例示する線図である。 2…非導電性繊維、3…導電性繊維、 4…結合体、6…折曲げ部、 7…混合装置、13…綿状体、 15…加圧、加熱装置。
FIG. 1 is a plan view showing an embodiment of the present invention, FIG. 2 is a plan view illustrating a conductive fiber, FIG. 3 is a perspective view schematically showing a mixing device, and FIG. 4 is a cotton-like body. FIG. 5 is a diagram illustrating a pressurizing and heating device. 2 ... Non-conductive fiber, 3 ... Conductive fiber, 4 ... Combined body, 6 ... Bent part, 7 ... Mixing device, 13 ... Cotton body, 15 ... Pressurizing and heating device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 D04H 1/42 A 7199−3B D21H 27/30 H01B 5/16 13/00 HCA P 7244−5G 501 P 7244−5G ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location D04H 1/42 A 7199-3B D21H 27/30 H01B 5/16 13/00 HCA P 7244-5G 501 P 7244-5G

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】熱により軟化し互いに融着しうる高分子材
料からなる非導電性繊維と、該非導電性繊維に抄紙状に
分散させつつ混合された導電性繊維とを、前記非導電性
繊維の繊維状部分を残存させつつ、各繊維が重なる重な
り部の融着によって一体に接着した接合体からなる導電
性複合体。
1. A non-conductive fiber comprising a non-conductive fiber made of a polymer material which is softened by heat and fusible with each other, and a conductive fiber which is mixed with the non-conductive fiber while being dispersed in a papermaking form. The electrically conductive composite body comprising a joined body in which the fibrous portions of (1) are left while the fibers are overlapped and the overlapping portions are bonded together by fusion.
【請求項2】前記導電性繊維は金属繊維であることを特
徴とする特許請求の範囲第1項記載の導電性複合体。
2. The conductive composite according to claim 1, wherein the conductive fiber is a metal fiber.
【請求項3】導電性繊維が結合体中に50%以下の比率で
混入されたことを特徴とする特許請求の範囲第1項記載
の導電性複合体。
3. The conductive composite according to claim 1, wherein the conductive fibers are mixed in the bonded body at a ratio of 50% or less.
【請求項4】前記結合体はフィルム状をなすことを特徴
とする特許請求の範囲第1項記載の導電性複合体。
4. The conductive composite body according to claim 1, wherein the combined body is in the form of a film.
【請求項5】高分子材料を用いた非導電性繊維と、不規
則に湾曲、屈曲させた導電性繊維とを空気中に飛散さ
せ、かつ連続的に移動する回収コンベヤ上に落下させる
ことにより、導電性繊維が抄紙状に均一に分散した長尺
の綿状体を形成させる綿状体形成工程と、この綿状体を
加熱及び加圧することによって前記非導電性繊維とを導
電性繊維とを結合する結合工程とを含んでなる導電性複
合体の製造方法。
5. A non-conductive fiber made of a polymer material and a conductive fiber which is irregularly curved or bent are scattered in the air and dropped onto a continuously moving recovery conveyor. , A cotton-like body forming step of forming a long cotton-like body in which the conductive fibers are uniformly dispersed in a papermaking state, and the non-conductive fibers and the conductive fibers by heating and pressing the cotton-like body A method for producing a conductive composite, which comprises a bonding step of bonding.
【請求項6】前記導電性繊維は金属繊維であることを特
徴とする特許請求の範囲第5項記載の導電性複合体の製
造方法。
6. The method for producing a conductive composite according to claim 5, wherein the conductive fiber is a metal fiber.
【請求項7】導電性繊維が結合体中に50%以下の比率で
混入されたことを特徴とする特許請求の範囲5又は6項
記載の導電性複合体の製造方法。
7. The method for producing a conductive composite according to claim 5, wherein the conductive fibers are mixed in the bonded body at a ratio of 50% or less.
JP59249375A 1984-11-26 1984-11-26 Conductive composite and method for producing the same Expired - Fee Related JPH0693553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249375A JPH0693553B2 (en) 1984-11-26 1984-11-26 Conductive composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249375A JPH0693553B2 (en) 1984-11-26 1984-11-26 Conductive composite and method for producing the same

Publications (2)

Publication Number Publication Date
JPS61127198A JPS61127198A (en) 1986-06-14
JPH0693553B2 true JPH0693553B2 (en) 1994-11-16

Family

ID=17192082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249375A Expired - Fee Related JPH0693553B2 (en) 1984-11-26 1984-11-26 Conductive composite and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0693553B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2917271B2 (en) * 1987-09-25 1999-07-12 日本電気株式会社 Radio wave absorber
JPH01187896A (en) * 1988-01-21 1989-07-27 Nec Corp Material for radio wave absorber
JP2606741B2 (en) * 1989-06-15 1997-05-07 金井 宏之 Electromagnetic wave shielding material
JPH03191599A (en) * 1989-12-21 1991-08-21 Idemitsu Petrochem Co Ltd Electromagnetic-wave shielding material and manufacture thereof
WO2009035059A1 (en) * 2007-09-12 2009-03-19 Kuraray Co., Ltd. Electroconductive film, electroconductive member, and process for producing electroconductive film
JP5221088B2 (en) * 2007-09-12 2013-06-26 株式会社クラレ Transparent conductive film and method for producing the same
TW200946266A (en) * 2008-02-27 2009-11-16 Kuraray Co Method of manufacturing metalnanowire and dispersion medium comprising the resultant metalnanowire, and transparent conductive film
GB0908300D0 (en) 2009-05-14 2009-06-24 Dupont Teijin Films Us Ltd Polyester films
CN108589022B (en) * 2018-07-02 2023-12-05 海安国洋机械科技有限公司 Metal fiber stretch-breaking spraying device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460504A (en) * 1977-10-24 1979-05-16 Toray Industries Radio wave shielding material
JPS58201399A (en) * 1982-05-19 1983-11-24 三井東圧化学株式会社 Method of producing radio wave absorber
JPS5944709A (en) * 1982-09-07 1984-03-13 十條製紙株式会社 Electromagnetic wave shield paper

Also Published As

Publication number Publication date
JPS61127198A (en) 1986-06-14

Similar Documents

Publication Publication Date Title
KR950008907B1 (en) Composite material for manufacturing plastic product including ribbed fiber and plastic product manufactured by using said material
JP4708330B2 (en) Non-woven mat, method for producing the non-woven mat, and fiber composite material
JPH0693553B2 (en) Conductive composite and method for producing the same
JPS6326783B2 (en)
JPH08118490A (en) Crosshead die, and manufacture of long fiber-reinforced resin structure
US4645566A (en) Process for producing electroconductive films
CA1194688A (en) Plastic article containing electrically conductive fibers
JPH07290449A (en) Sheet like electromagnetic shield molding material and production thereof
JPH0682947B2 (en) Method for producing conductive composite
US2509845A (en) Apparatus for forming ribbons of glass and other thermoplastic materials
US3222149A (en) Method for producing conductive glass fiber yarn
JP4958146B2 (en) Conductive synthetic resin rod and method for producing the same
JP2829323B2 (en) Equipment for manufacturing fiber-reinforced resin molding materials
US3287474A (en) Method of preparing non-woven fabrics
JP3330402B2 (en) Method for producing fiber-reinforced thermoplastic resin structure
JP3724067B2 (en) Method for producing composite material and mat-like composite material
JPH08294918A (en) Raw material for manufacturing frtp product and manufacture thereof
JP3210694B2 (en) Method for producing fiber-reinforced composite material
JPH054246A (en) Manufacture of fiber composite sheet
KR100787562B1 (en) A method of preparing resin composition pellet for shielding electro-magnetic interference and molded articles using it
JPH06254855A (en) Manufacture of filament reinforced synthetic resin strand
JPH01150528A (en) Thermoplastic resin sheet-like object excellent in antistatic property
JPS63143707A (en) Anisotropic conducting material and manufacture thereof
JPH04135714A (en) Manufacture of fiber composite sheet
JP2763056B2 (en) Method for producing composite nonwoven sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees