JPH0692256B2 - Method for manufacturing barium ferrite powder - Google Patents

Method for manufacturing barium ferrite powder

Info

Publication number
JPH0692256B2
JPH0692256B2 JP61308344A JP30834486A JPH0692256B2 JP H0692256 B2 JPH0692256 B2 JP H0692256B2 JP 61308344 A JP61308344 A JP 61308344A JP 30834486 A JP30834486 A JP 30834486A JP H0692256 B2 JPH0692256 B2 JP H0692256B2
Authority
JP
Japan
Prior art keywords
barium ferrite
mol
ferrite powder
barium
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61308344A
Other languages
Japanese (ja)
Other versions
JPS63162531A (en
Inventor
恭二 大段
隆幸 木村
和生 橋本
明 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP61308344A priority Critical patent/JPH0692256B2/en
Publication of JPS63162531A publication Critical patent/JPS63162531A/en
Publication of JPH0692256B2 publication Critical patent/JPH0692256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水熱合成法で六角板状のマグネトプランバイ
ト型バリウムフェライト粉末を製造する方法の改良に関
するものである。
TECHNICAL FIELD The present invention relates to an improvement in a method for producing hexagonal plate-shaped magnetoplumbite-type barium ferrite powder by a hydrothermal synthesis method.

近年、磁気記録の高密度化の要求に伴い、バリウムフェ
ライトを磁気記録媒体として用いる垂直磁気記録方式の
開発が進められている。
In recent years, along with the demand for higher density of magnetic recording, development of a perpendicular magnetic recording system using barium ferrite as a magnetic recording medium has been advanced.

垂直磁気記録方式に用いられるバリウムフェライトとし
ては、保磁力が適当な値(300〜1500Oe)で、飽和磁化
ができるだけ高く、粒子が小さく均一で、分散性のよい
ものが望まれている。
As barium ferrite used in the perpendicular magnetic recording system, it is desired that the coercive force has an appropriate value (300 to 1500 Oe), the saturation magnetization is as high as possible, the particles are small and uniform, and the dispersibility is good.

(従来の技術) 従来、バリウムフェライトの製造方法としては、例えば
共沈法、ガラス結晶化法、水熱合成法等種々の方法が知
られており、水熱合成法については、例えば特公昭46−
3545号公報、特開昭56−149328号公報、特開昭56−1603
28号公報、特開昭58−2224号公報、特開昭59−161002号
公報、特開昭59−164641号公報等で提案されている。
(Prior Art) Conventionally, various methods such as a coprecipitation method, a glass crystallization method, and a hydrothermal synthesis method have been known as a method for producing barium ferrite. −
3545, JP-A-56-149328, JP-A-56-1603
No. 28, JP-A-58-2224, JP-A-59-161002, JP-A-59-164641 and the like.

(発明が解決しようとする問題点) 水熱合成法により得られるバリウムフェライト粉末は一
般に粒子の凝集が少なく比較的分散性はよいが、従来公
知の方法では、粒径の大きなものしかできなかったり、
粒度分布幅が広くて均一でなかったり、またバリウムフ
ェライトの結晶化を進行させてしっかりした形状の粒子
にしようとすると粒子間の焼結が生じ易くなったりし
て、塗料化(インク化)の際の分散性が悪くなったりす
る難点があった。
(Problems to be Solved by the Invention) Barium ferrite powder obtained by a hydrothermal synthesis method generally has few particle aggregation and relatively good dispersibility, but conventionally known methods can only produce particles having a large particle size. ,
The width of the particle size distribution is wide and not uniform, and when crystallization of barium ferrite is promoted to form particles with a firm shape, sintering between particles is likely to occur, which makes it difficult to use paint (ink). There was a problem that the dispersibility at the time became worse.

(発明の目的) 本発明の目的は、水熱合成法における前記難点を解決
し、微粒子で粒度分布が狭く、分散性のよいバリウムフ
ェライト粉末の製造法を提供することにある。
(Object of the Invention) An object of the present invention is to solve the above-mentioned problems in the hydrothermal synthesis method and to provide a method for producing barium ferrite powder having fine particles, a narrow particle size distribution, and good dispersibility.

(問題点を解決するための手段) 本発明は、六万晶バリウムフェライト粉末を製造するに
当り、出発原料としてバリウム1グラム原子に対して、
鉄3〜11グラム原子、カルシウム0.01〜0.5グラム原子
およびケイ素0.001〜0.1グラム素子を割合のそれぞれの
元素の化合物を用い、該出発原料を水に溶解し、これに
混合後の溶液中の水酸化アルカリ濃度が3モル/以上
となるように水酸化アルカリを加えて沈澱物を生成さ
せ、該沈澱物を含むスラリを150〜270℃で水熱処理した
後、生成した沈澱物に融剤を混合し、混合物を800〜950
℃で焼成し、得られた焼成物を洗浄することを特徴とす
るバリウムフェライト粉末の製造法に関するものであ
る。
(Means for Solving Problems) In the present invention, in producing a hexagonal barium ferrite powder, 1 gram atom of barium as a starting material,
Iron 3 to 11 gram atom, calcium 0.01 to 0.5 gram atom, and silicon 0.001 to 0.1 gram element are used in proportions of the respective compounds of the elements, and the starting materials are dissolved in water and mixed with water to oxidize the solution. Alkali hydroxide was added so that the alkali concentration was 3 mol / mol or more to form a precipitate, and the slurry containing the precipitate was hydrothermally treated at 150 to 270 ° C., and then the resulting precipitate was mixed with a flux. , Mixture 800-950
The present invention relates to a method for producing barium ferrite powder, which comprises calcination at ℃ and washing the obtained calcinated product.

本発明においては、まず出発原料であるバリウム、鉄、
カルシウムおよびケイ素のそれぞれの化合物を水に溶解
し、これに水酸化アルカリを加えて沈澱物を生成させ
る。
In the present invention, first, starting materials barium, iron,
The respective compounds of calcium and silicon are dissolved in water, and alkali hydroxide is added to this to form a precipitate.

バリウム化合物としては、硝酸バリウム、塩化バリウ
ム、水酸化バリウム等が用いられる。バリウムの使用量
は、バリウム濃度が0.03〜0.23モル/の範囲になるよ
うにするのが六角板状の形状のよい粒子を得るうえで望
ましい。
As the barium compound, barium nitrate, barium chloride, barium hydroxide or the like is used. The amount of barium used is preferably such that the barium concentration is in the range of 0.03 to 0.23 mol / mol in order to obtain particles having a good hexagonal plate shape.

鉄化合物としては、硝酸第二鉄、塩化第二鉄等が用いら
れる。鉄の使用量はバリウム1グラム原子に対して、3
〜11グラム原子である。鉄の量が少なすぎると、マグネ
トプランバイト型バリウムフェライトの生成量が少な
く、形状も六角板状でなくなる。また鉄の量が多すぎる
とヘマタイトが副正したり、またバリウムフェライトの
粒子が大きくなり、磁気特性も劣ってくる。
As the iron compound, ferric nitrate, ferric chloride or the like is used. The amount of iron used is 3 for 1 gram atom of barium.
~ 11 grams atom. When the amount of iron is too small, the amount of magnetoplumbite-type barium ferrite produced is small and the shape is not hexagonal. Further, if the amount of iron is too large, hematite will be corrected, and particles of barium ferrite will become large, resulting in poor magnetic properties.

カルシウム化合物としては、硝酸カルシウム、塩化カル
シウム等が用いられる。カルシウムの使用量は、バリウ
ム1グラム原子に対して、0.01〜0.5グラム原子であ
る。カルシウムの量が少なすぎると粒度分布が広くな
り、分散性が悪くなる。さらに塗膜した場合の飽和。磁
束密度が小さくなる。またカルシウムの量が多すぎると
飽和磁化が低下するので好ましくない。
As the calcium compound, calcium nitrate, calcium chloride or the like is used. The amount of calcium used is 0.01 to 0.5 gram atom per 1 gram atom of barium. If the amount of calcium is too small, the particle size distribution will be broad and the dispersibility will be poor. Saturation when further coated. The magnetic flux density becomes small. Further, if the amount of calcium is too large, the saturation magnetization will decrease, which is not preferable.

ケイ素化合物としては、ケイ酸、ケイ酸ナトリウム等が
用いられる。ケイ素の使用量はバリウム1グラム原子に
対して、0.001〜0.1グラム原子、好ましくは0.005〜0.0
8グラム原子である。ケイ素の量が少なすぎると粒子が
大きくなったり、粒度分布が広くなったりし、また粒子
間の焼結が生じ易くなり、塗料化の際の分散性が悪くな
る。また多すぎると磁気特性が悪くなるので好ましくな
い。
As the silicon compound, silicic acid, sodium silicate or the like is used. The amount of silicon used is 0.001 to 0.1 gram atom, preferably 0.005 to 0.0, per 1 gram atom of barium.
It is 8 grams atom. If the amount of silicon is too small, the particles become large, the particle size distribution becomes broad, and sintering between particles is likely to occur, resulting in poor dispersibility in forming a coating material. On the other hand, if the amount is too large, the magnetic properties deteriorate, which is not preferable.

水酸化アルカリとしては、水酸化ナトリウム、水酸化カ
リウム等が用いられる。水酸化アルカリの使用量は水酸
化アルカリを混合した後の溶液中の水酸化アルカリ濃度
が3モル/以上となる量が必要であり、4〜8モル/
の範囲が好ましい。水酸化アルカリの量が少なすぎる
と粒子が大きくなったり、粒度分布が広くなったり、ま
たヘマタイトが生成する。また水酸化アルカリを過度に
多くするのは経済的でない。
As the alkali hydroxide, sodium hydroxide, potassium hydroxide or the like is used. The amount of alkali hydroxide used should be such that the alkali hydroxide concentration in the solution after mixing the alkali hydroxide is 3 mol / or more, and is 4 to 8 mol /
Is preferred. If the amount of alkali hydroxide is too small, the particles become large, the particle size distribution becomes broad, and hematite is formed. Also, it is not economical to increase the amount of alkali hydroxide excessively.

前記出発原料の水溶液に水酸化アルカリを混合する方法
については、特に制限はないが、例えば出発原料の水溶
液に、直接水酸化アルカリを添加するか、あるいは水酸
化アルカリの水溶液を添加する方法がある。あるいは鉄
以外の出発原料の少なくとも一種を水酸化アルカリの水
溶液側に加えて、これと鉄を含む水溶液を混合する方法
がある。
The method of mixing the starting material aqueous solution with the alkali hydroxide is not particularly limited, and for example, there is a method of directly adding the alkaline hydroxide to the starting material aqueous solution or adding the aqueous solution of the alkali hydroxide. . Alternatively, there is a method in which at least one of starting materials other than iron is added to the aqueous solution of alkali hydroxide, and this is mixed with an aqueous solution containing iron.

さらに、予め出発原料の水溶液に従来のバリウムフェラ
イトに添加されている種々の元素、例えばCo、Ni、Mn、
Zn、Pb、Sr、Ti、In、Nb、La、Ce、Smなどの化合物、例
えば塩化物、硝酸塩などを若干添加することができ、特
にCoおよびTiの化合物の添加は保磁力をコントロールす
るうえで好ましい。CoおよびTiの化合物としては、塩化
物、硝酸塩、アルコキシドなどが使用される。その添加
量は鉄原子に対して、原子比でCo/Fe、Ti/Feがそれぞれ
0.01〜0.20の範囲が好適である。
Further, various elements previously added to the conventional barium ferrite in the aqueous solution of the starting material, such as Co, Ni, Mn,
Compounds such as Zn, Pb, Sr, Ti, In, Nb, La, Ce and Sm, such as chlorides and nitrates, can be added to a small amount. In particular, addition of Co and Ti compounds is effective for controlling coercive force. Is preferred. As the compound of Co and Ti, chlorides, nitrates, alkoxides and the like are used. The amount of addition is Co / Fe and Ti / Fe in terms of atomic ratio with respect to iron atoms, respectively.
The range of 0.01 to 0.20 is preferable.

次に、沈澱物を含むスラリを水熱処理することにより、
バリウムフェライトの微細な結晶が生成、沈澱する。水
熱処理の温度は150〜270℃である。温度が低すぎると結
晶の生成が充分でなく、また温度が高すぎると最終的に
得られるバリウムフェライト粉末の粒径が大きくなるの
で好ましくない。水熱処理時間は普通、0.5〜20時間程
度であり、水熱処理には通常、オートクレーブが採用さ
れる。
Next, by hydrothermally treating the slurry containing the precipitate,
Fine crystals of barium ferrite are formed and precipitated. The temperature of hydrothermal treatment is 150 to 270 ° C. If the temperature is too low, the formation of crystals will not be sufficient, and if the temperature is too high, the particle size of the barium ferrite powder finally obtained will be large, such being undesirable. The hydrothermal treatment time is usually about 0.5 to 20 hours, and an autoclave is usually adopted for the hydrothermal treatment.

次いで、水熱処理により生成した微細な結晶の沈澱物を
水洗して、遊離のアルカリ分を除去した後、得られた沈
澱物に融剤を混合する。融剤としては、塩化ナトリウ
ム、塩化カリウム、塩化バリウム、塩化ストロンチウム
およびフッ化ナトリウムのうち少なくとも一種が用いら
れる。融剤の使用量は沈澱物(乾燥物基準)に対して、
10〜180重量%、特に30〜120重量%であることが好まし
い。融剤の量が少なすぎると粒子の燃焼が起り、また多
すぎても多くしたことによる利点はなく、経済的でな
い。沈澱物と融剤の混合方法は特に制限はなく、例えば
沈澱物のスラリに融剤を加えて湿式混合した後、スラリ
を乾燥してもよく、あるいは沈澱物を乾燥した後、融剤
を加えて乾式混合してもよい。
Next, the precipitate of fine crystals produced by the hydrothermal treatment is washed with water to remove the free alkali content, and then the resulting precipitate is mixed with a flux. As the flux, at least one of sodium chloride, potassium chloride, barium chloride, strontium chloride and sodium fluoride is used. The amount of flux used is based on the precipitate (dry matter basis)
It is preferably from 10 to 180% by weight, particularly preferably from 30 to 120% by weight. If the amount of the flux is too small, combustion of the particles will occur, and if the amount is too large, there is no advantage due to increasing the amount and it is not economical. The method of mixing the precipitate and the flux is not particularly limited, and for example, the flux may be added to the slurry of the precipitate and wet-mixed, and then the slurry may be dried, or the precipitate may be dried and then the flux is added. You may dry-mix.

次いで、得られた混合物を焼成することにより、バリウ
ムフェライトの結晶化が完全に行われる。焼成温度は80
0〜950℃、好ましくは820〜930℃である。温度が低すぎ
ると結晶化が進まず、飽和磁化が低くなる。また温度が
高すぎると粒子が大きくなったり、焼結が行こるので好
ましくない。焼成時間は1〜30時間程度が適当である。
焼成雰囲気は特に制限されないが、例えば空気、窒素等
が用いられる。
Then, the obtained mixture is fired to completely crystallize the barium ferrite. Firing temperature is 80
The temperature is 0 to 950 ° C, preferably 820 to 930 ° C. If the temperature is too low, crystallization does not proceed and the saturation magnetization becomes low. On the other hand, if the temperature is too high, the particles become large and the sintering may occur, which is not preferable. A firing time of 1 to 30 hours is suitable.
The firing atmosphere is not particularly limited, but, for example, air, nitrogen or the like is used.

得られた焼成物を洗浄後、過、乾燥することにより、
バリウムフェライト粉末が得られる。洗浄は焼成物中の
融剤、過剰のバリウムなどの不純物を十分に除去できれ
ばどのような方法で行ってもよい。洗浄液としては水や
硝酸、塩酸などの無機酸、酢酸、プロピオン酸などの有
機酸などを用いることができる。
After washing the obtained baked product, by overdrying,
Barium ferrite powder is obtained. The washing may be performed by any method as long as impurities such as flux and excess barium in the fired product can be sufficiently removed. As the cleaning liquid, water, an inorganic acid such as nitric acid or hydrochloric acid, an organic acid such as acetic acid or propionic acid, or the like can be used.

(実施例) 実施例1 水1200mlに、硝酸第二鉄[Fe(NO3・9H2O]を2.67
モル、硝酸コバルト[Co(NO3・6H2O]を0.22モル
および四塩化チタン(TiCl4)を0.22モル溶解し、別に
水1500mlに、水酸化バリウム[Ba(OH)・8H2O]を0.
32モル、塩化カルシウム(CaCl2・2H2O)を0.07モル、
ケイ酸ナトリウム(Na2SiO3)を0.01モルおよび水酸化
ナトリウム(NaOH)を30モル溶解し、両溶液を混合して
沈澱物を生成させた。沈澱物生成後のスラリ中のNaOH濃
度は7.3モル/であった。得られた沈澱物を含むスラ
リをオートクレーブに入れ、250℃で2時間水熱処理を
行った。次いで得られた沈澱物を十分に水洗した後、
過、乾燥し、これに融剤としてNaClを沈澱物に対して10
0重量%加えて乾式混合した。この混合物を空気雰囲気
下で880℃で40分間焼成した。得られた焼成物を水で十
分水洗した後、過、乾燥してバリウムフェライト粉末
を得た。
(Example) Example 1 water 1200 ml, ferric nitrate [Fe (NO 3) 3 · 9H 2 O] 2.67
Mol, cobalt nitrate [Co (NO 3) 2 · 6H 2 O] and 0.22 mol dissolved 0.22 mol and titanium tetrachloride (TiCl 4), separately from water 1500 ml, barium hydroxide [Ba (OH) 2 · 8H 2 O] to 0.
32 mol, 0.07 mol of calcium chloride (CaCl 2 · 2H 2 O),
0.01 mol of sodium silicate (Na 2 SiO 3 ) and 30 mol of sodium hydroxide (NaOH) were dissolved, and both solutions were mixed to form a precipitate. The concentration of NaOH in the slurry after formation of the precipitate was 7.3 mol /. The slurry containing the obtained precipitate was placed in an autoclave and subjected to hydrothermal treatment at 250 ° C. for 2 hours. Next, after thoroughly washing the obtained precipitate with water,
Then, dry it and add NaCl as a flux to the precipitate to 10 times.
0 wt% was added and dry mixed. The mixture was calcined under air atmosphere at 880 ° C. for 40 minutes. The obtained fired product was thoroughly washed with water, dried and dried to obtain barium ferrite powder.

得られたバリウムフェライト粉末について透過型電子顕
微鏡(TEM)で粒子形状(粒径、厚み、分布)を測定し
た結果(粒子100個の平均値)および振動試料式磁力計
で磁気特性を測定した結果を第1表に示す。
The particle shape (particle size, thickness, distribution) of the obtained barium ferrite powder was measured with a transmission electron microscope (TEM) (average value of 100 particles), and the magnetic characteristics were measured with a vibrating sample magnetometer. Is shown in Table 1.

また分散性をみるために、バリウムフェライト粉末をバ
インダーおよび溶媒とサンドミルでミリングした後のイ
ンキを篩目が1μmの篩で過したときの過率(イン
キ全量が篩を通過した場合を過率100%とする)およ
び充填性をみるために塗膜での飽和磁束密度を測定した
結果を第1表に示す。またバリウムフェライト粉末のTE
Mによる写真(倍率40000倍)を第1図に示す。
In addition, in order to check the dispersibility, an excess rate when the ink after milling barium ferrite powder with a binder and a solvent by a sand mill was passed through a sieve with a mesh size of 1 μm (excess rate when the total amount of ink passed through the sieve was 100%). %) And the results of measuring the saturation magnetic flux density in the coating film for checking the filling property are shown in Table 1. In addition, TE of barium ferrite powder
A photograph by M (magnification 40,000 times) is shown in FIG.

実施例2〜6 実施例1の塩化カルシウムの添加量0.07モルを0.05モ
ル、ケイ酸ナトリウムの添加量0.01モルを0.005モルに
かえた(実施例2)、融剤NaClをBaCl2に、また焼成温
度を880℃から900℃にかえた(実施例3)、水熱処理温
度を250℃から180℃に、ケイ酸ナトリウムの添加量0.01
モルを0.02モルに、また融剤の添加量100重量%を50重
量%にかえた(実施例4)、水熱処理温度を250℃から2
00℃に、塩化カルシウムの添加量0.07モルを0.04モル
に、また焼成温度を880℃から900℃にかえた(実施例
5)、焼成雰囲気を空気から窒素にかえた(実施例
6)、ほかは、実施例1と同様にしてバリウムフェライ
ト粉末を製造し、粒子形状、磁気特性、過率および塗
膜の飽和磁束密度を測定した。その結果を第1表に示
す。
Examples 2 to 6 The amount of calcium chloride added in Example 1 was changed from 0.07 mol to 0.05 mol, the amount of sodium silicate added to 0.01 mol was changed to 0.005 mol (Example 2), and the flux NaCl was changed to BaCl 2 and calcined. The temperature was changed from 880 ° C to 900 ° C (Example 3), the hydrothermal treatment temperature was changed from 250 ° C to 180 ° C, and the addition amount of sodium silicate was 0.01.
The mol was changed to 0.02 mol, the amount of the flux added was changed from 100% by weight to 50% by weight (Example 4), and the hydrothermal treatment temperature was changed from 250 ° C. to 2%.
The amount of calcium chloride added was changed from 0.07 mol to 0.04 mol, the firing temperature was changed from 880 to 900 ° C. (Example 5), and the firing atmosphere was changed from air to nitrogen (Example 6). In the same manner as in Example 1, barium ferrite powder was produced, and the particle shape, magnetic properties, excess rate and saturation magnetic flux density of the coating film were measured. The results are shown in Table 1.

比較例1〜4 実施例1の塩化カルシウムとケイ酸ナトリウムを添加し
なかった(比較例1)、NaOHの添加量30モルを15.4モル
(沈澱物生成後のスラリ中のNaOH濃度2モル/)にか
えた(比較例2)、焼成温度を880℃から1000℃にかえ
た(比較例3)、融剤のNaClを添加しなかった(比較例
4)、ほかは、実施例1と同様にしてバリウムフェライ
ト粉末を製造し、粒子形状、磁気特性、過率および塗
膜の飽和磁束密度を測定した。その結果を第1表に示
す。また比較例1で得られたバリウムフェライト粉末の
TEMによる写真(倍率40000倍)を第2図に示す。
Comparative Examples 1 to 4 Calcium chloride and sodium silicate of Example 1 were not added (Comparative Example 1), 30 mol of NaOH was added to 15.4 mol (concentration of NaOH in the slurry after formation of precipitates: 2 mol /). (Comparative Example 2), the firing temperature was changed from 880 ° C. to 1000 ° C. (Comparative Example 3), NaCl as a flux was not added (Comparative Example 4), and otherwise the same as in Example 1. Barium ferrite powder was manufactured by using the above method, and the particle shape, magnetic properties, excess rate and saturation magnetic flux density of the coating film were measured. The results are shown in Table 1. Further, the barium ferrite powder obtained in Comparative Example 1
A TEM photograph (magnification: 40,000 times) is shown in FIG.

(発明の効果) 本判明によれば、結晶状態が良く、六角板状で平均粒径
100nm以下、粒度分布100〜30nm、標準偏差35nm以下の微
小で均一なマグネトプランバイト型バリウムフェライト
粉末を得ることができる。またこのバリウムフェライト
粉末は分散性、充填性も良好で、板状比が2〜5の範囲
にあり、300〜1500Oeの保磁力および 55emu/g以上の高い飽和磁化を示す。さらに保磁力につ
いては、前記したTiおよびCoを添加することにより、自
由にコントロールすることができる。
(Effects of the Invention) According to this finding, the crystalline state is good, the hexagonal plate has an average particle size
It is possible to obtain fine and uniform magnetoplumbite-type barium ferrite powder having a particle size distribution of 100 nm or less, a particle size distribution of 100 to 30 nm, and a standard deviation of 35 nm or less. The barium ferrite powder also has good dispersibility and filling properties, has a plate ratio of 2 to 5, and has a coercive force of 300 to 1500 Oe and a coercive force of 300 to 1500 Oe. It exhibits high saturation magnetization of 55emu / g or more. Further, the coercive force can be freely controlled by adding Ti and Co described above.

【図面の簡単な説明】 第1図および第2図は、それぞれ実施例1、比較例1で
得られたバリウムフェライト粉末の粒子形状を示す図面
に代える透過型電子顕微鏡写真(40000倍)である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and FIG. 2 are transmission electron micrographs (40,000 times), respectively, which are drawings showing the particle shapes of the barium ferrite powders obtained in Example 1 and Comparative Example 1, respectively. .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−141625(JP,A) 特開 昭60−137002(JP,A) 特開 昭59−174530(JP,A) 特開 昭61−136923(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A 61-141625 (JP, A) JP-A 60-137002 (JP, A) JP-A 59-174530 (JP, A) JP-A 61- 136923 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】六方晶バリウムフェライト粉末を製造する
に当り、出発原料としてバリウム1グラム原子に対し
て、鉄3〜11グラム原子、カルシウム0.01〜0.5グラム
原子およびケイ素0.001〜0.1グラム原子の割合のそれぞ
れの元素の化合物を用い、該出発原料を水に溶解し、こ
れに混合後の溶液中の水酸化アルカリ濃度が3モル/
以上となるように水酸化アルカリを加えて沈澱物を生成
させ、該沈澱物を含むスラリを150〜270℃で水熱処理し
た後、生成した沈澱物に融剤を混合し、混合物を800〜9
50℃で焼成し、得られた焼成物を洗浄することを特徴と
するバリウムフェライト粉末の製造法。
1. When producing hexagonal barium ferrite powder, a ratio of 3 to 11 gram atoms of iron, 0.01 to 0.5 gram atom of calcium and 0.001 to 0.1 gram atom of silicon per 1 gram atom of barium is used as a starting material. Using the compounds of the respective elements, the starting materials were dissolved in water, and the alkali hydroxide concentration in the solution after mixing was 3 mol /
Alkali hydroxide is added to form a precipitate as described above, and a slurry containing the precipitate is hydrothermally treated at 150 to 270 ° C., and then a flux is mixed with the formed precipitate to form a mixture of 800 to 9
A method for producing barium ferrite powder, which comprises firing at 50 ° C. and washing the obtained fired product.
JP61308344A 1986-12-26 1986-12-26 Method for manufacturing barium ferrite powder Expired - Lifetime JPH0692256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61308344A JPH0692256B2 (en) 1986-12-26 1986-12-26 Method for manufacturing barium ferrite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61308344A JPH0692256B2 (en) 1986-12-26 1986-12-26 Method for manufacturing barium ferrite powder

Publications (2)

Publication Number Publication Date
JPS63162531A JPS63162531A (en) 1988-07-06
JPH0692256B2 true JPH0692256B2 (en) 1994-11-16

Family

ID=17979930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61308344A Expired - Lifetime JPH0692256B2 (en) 1986-12-26 1986-12-26 Method for manufacturing barium ferrite powder

Country Status (1)

Country Link
JP (1) JPH0692256B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115112450A (en) * 2022-06-29 2022-09-27 宝钢磁业(江苏)有限公司 Preparation method of ferrite standard sample

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174530A (en) * 1983-03-22 1984-10-03 Tohoku Metal Ind Ltd Manufacture of w-phase type hexagonal ferrite particles
JPS60137002A (en) * 1983-12-26 1985-07-20 Toda Kogyo Corp Manufacture of tabular ba ferrite fine particle powder for magnetic recording
JPS61136923A (en) * 1984-12-07 1986-06-24 Fuji Photo Film Co Ltd Hexagonal ferrite magnetic body for magnetic recording and its manufacture

Also Published As

Publication number Publication date
JPS63162531A (en) 1988-07-06

Similar Documents

Publication Publication Date Title
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JPH08702B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
KR960002626B1 (en) Process for producing microcrystalline co/ti-substituted barium ferrite platelets
JPH0526727B2 (en)
JPH0692256B2 (en) Method for manufacturing barium ferrite powder
JPS63233017A (en) Magnetic powder of barium ferrite and its production
JPS6259531A (en) Production of barium ferrite powder
JPS62207720A (en) Preparation of barium ferrite powder
JPH0688794B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH06104576B2 (en) Barium ferrite magnetic powder and method for producing the same
JPH0432005B2 (en)
JPH0645462B2 (en) Method for manufacturing barium ferrite powder
JPH0647467B2 (en) Barium ferrite magnetic powder and method for producing the same
JP2577945B2 (en) Barium ferrite magnetic powder and method for producing the same
JPH04362020A (en) Ferritic magnetic powder and its production
JPH0647468B2 (en) Barium ferrite magnetic powder and method for producing the same
JPH0649579B2 (en) Method for producing barium ferrite magnetic powder
JPH0723223B2 (en) Method for producing plate-shaped barium ferrite magnetic powder for magnetic recording
JPH0674146B2 (en) Barium ferrite powder manufacturing method
JPS63195125A (en) Barium ferrite magnetic powder and production thereof
JPH0649578B2 (en) Method for producing hexagonal magnetoplumbite ferrite magnetic powder
JPH013021A (en) Barium ferrite magnetic powder and its manufacturing method
JPH0677034A (en) Method of manufacturing compound ferrite magnetic particles
JPH0712933B2 (en) Magnetic powder for magnetic recording
JPS60151224A (en) Manufacture of barium ferrite powder