JPH0691139B2 - Method for determining the presence / absence of a thin film insulating layer - Google Patents

Method for determining the presence / absence of a thin film insulating layer

Info

Publication number
JPH0691139B2
JPH0691139B2 JP15369990A JP15369990A JPH0691139B2 JP H0691139 B2 JPH0691139 B2 JP H0691139B2 JP 15369990 A JP15369990 A JP 15369990A JP 15369990 A JP15369990 A JP 15369990A JP H0691139 B2 JPH0691139 B2 JP H0691139B2
Authority
JP
Japan
Prior art keywords
tunnel current
probe
absence
insulating
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15369990A
Other languages
Japanese (ja)
Other versions
JPH03283442A (en
Inventor
正昭 丹羽
昌三 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15369990A priority Critical patent/JPH0691139B2/en
Publication of JPH03283442A publication Critical patent/JPH03283442A/en
Publication of JPH0691139B2 publication Critical patent/JPH0691139B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体プロセス等に係り、特に半導体や金属な
どの導電性物質上に形成された絶縁物除去の確認方法に
用いられる薄膜絶縁層の有無判定方法に関する。
Description: TECHNICAL FIELD The present invention relates to a semiconductor process and the like, and in particular, the presence / absence of a thin film insulating layer used in a method for confirming removal of an insulator formed on a conductive substance such as a semiconductor or a metal. Regarding the method.

従来の技術 従来、導電性物質上の絶縁物除去後の残留絶縁物存在の
有無は材料毎に様々な手段が用いられている。例えば表
面化学処理によるシリコン表面上の酸化膜除去後の残留
酸化膜存在の有無は撥水法による方法が多く用いられて
きた(例えば、R.Williams etal(アプライズド・フィ
ジックス・レター)Appl.phys.LeTT.,25,No.10,15Nov.1
974P531-532)。この方法は第3図(a)に示す様にシ
リコン基板8上に付着させた水滴27表面の接線方向がシ
リコン基板8の表面とのなす角度θの大小によりシリコ
ン基板8表面上の酸化膜10の厚さが特定できる簡易法で
あり、同図(b)にはθと残留酸化膜厚dとの関係を示
してある。同図(b)から水滴が“はじきやすい”即
ち、θが大きければ残留酸化膜10厚が薄いという定性的
な判定は可能であり、大まかではあるがある程度の判断
が容易に得られるので、半導体のプロセスにはよく用い
られている。又、上記撥水法以外により厳密にシリコン
表面上の残留酸化膜存在の有無を調べる方法としてオー
ジェ電子分光法(AES)、2次イオン質量分析法(SIM
S)、エネルギー分散型X線微小分析法(EDX)、イオン
散乱分光法(ISS)やX線光電子分光法(XPS)など分析
機器を用いた様々な方法がある。これら分析機器を用い
た残留絶縁膜存在の有無は定量化できるまでに進歩して
おり、前記シリコン及び酸化膜系以外の材料系の組み合
わせでも分析可能であり、高精度の判断が必要な場合に
用いられている。
2. Description of the Related Art Conventionally, various means have been used for each material depending on the presence or absence of residual insulating material after the removal of the insulating material on the conductive material. For example, the presence or absence of a residual oxide film after removal of the oxide film on the silicon surface by surface chemical treatment has often been performed by a water repellent method (for example, R. Williams et al. (Applied Physics Letter) Appl.phys. LeTT., 25, No.10,15Nov.1
974P531-532). In this method, as shown in FIG. 3A, the oxide film 10 on the surface of the silicon substrate 8 depends on the size of the angle θ formed by the tangential direction of the surface of the water droplet 27 deposited on the silicon substrate 8 and the surface of the silicon substrate 8. Is a simple method that can specify the thickness of the residual oxide film, and the relationship between θ and the residual oxide film thickness d is shown in FIG. From FIG. 2B, it is possible to qualitatively judge that the water droplets are “repellent”, that is, the thickness of the residual oxide film 10 is thin if θ is large. Is often used in the process. Further, as a method for strictly checking the presence or absence of a residual oxide film on the silicon surface by a method other than the water repellent method, Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIM
S), energy dispersive X-ray microanalysis (EDX), ion scattering spectroscopy (ISS) and X-ray photoelectron spectroscopy (XPS). The presence / absence of the residual insulating film using these analyzers has advanced to the point where it can be quantified, and it is possible to analyze even with a combination of material systems other than the above-mentioned silicon and oxide film systems. It is used.

発明が解決しようとする課題 上記従来技術には、以下に挙げる欠点がある。Problems to be Solved by the Invention The above-mentioned conventional techniques have the following drawbacks.

(1)上記分析機器を用いた方法は、高精度で定量化で
きる反面、真空チャンバーを始め大がかりな装置が必要
であるばかりでなく、分析結果を得るのに長時間を必要
とする。
(1) The method using the above-mentioned analytical instrument can quantify with high accuracy, but on the other hand, not only a large-scale device such as a vacuum chamber is required, but also a long time is required to obtain an analytical result.

(2)上記分析機器を用いた方法は、非破壊検査ではな
いが事が前提である。
(2) It is premised that the method using the above analytical equipment is not a nondestructive inspection.

(3)上記撥水法は、その方法が非破壊検査で簡易では
あるが、定性的で、おおよその結果しか得られない、例
えば、第3図(a)で実際のθを正確に測定する事は困
難であり、目視でシリコン基板8上の水滴がはじきやす
くなったと思われる時、マイクロには酸化膜は除去され
ているが、ミクロにはどれ位の極薄酸化層10が残留して
いるのか否かの判断ができず、同図(b)より約12Å以
下の判断には限界がある。その為、目視だけで判断し
て、極薄の酸化層が残留したまま次のプロセスに進めた
場合、信頼性上大きな支障を来たす。
(3) The water repellent method is simple by non-destructive inspection, but is qualitative and only approximate results can be obtained. For example, the actual θ is accurately measured in FIG. 3 (a). This is difficult, and when it seems that the water droplets on the silicon substrate 8 are easily repelled, the oxide film is removed on the micro, but how much ultra-thin oxide layer 10 remains on the micro. It is not possible to judge whether or not there is, and there is a limit to the judgment of about 12 Å or less from the figure (b). Therefore, if it is judged only by visual observation and the process is advanced to the next process while the ultra-thin oxide layer remains, it will cause a serious problem in reliability.

本発明は上述の課題に鑑み、導電性物質表面に形成され
た薄膜絶縁膜の有無を大がかりな分析装置を用いること
なく、非破壊で高精度に判定できる薄膜絶縁層の有無判
定方法を提供することを目的とする。
In view of the above problems, the present invention provides a method for determining the presence / absence of a thin film insulating layer that can be nondestructively and highly accurately determined without using a large-scale analyzer for the presence / absence of a thin film insulating film formed on a surface of a conductive substance. The purpose is to

課題を解決するための手段 本発明は上述の課題を解決するため、導電性の探針と前
記探針と導電性試料表面との間にトンネル電流を生じせ
しめるための電圧を印加する手段と、前記探針に流れる
トンネル電流を検出し、増幅する手段及び前記トンネル
電流を一定値に保つための前記探針−試料間距離制御手
段からなるトンネル電流制御機構を用いて、前記試料表
面に前記探針が接触した状態で一定のトンネル電流を検
出することにより残留絶縁膜存在の有無を判定する薄膜
絶縁層の有無判定方法である。
Means for Solving the Problems The present invention, in order to solve the above problems, a means for applying a voltage for causing a tunnel current between the conductive probe and the surface of the conductive sample, A tunnel current control mechanism including a means for detecting and amplifying a tunnel current flowing through the probe and a means for controlling the distance between the probe and the sample for maintaining the tunnel current at a constant value is used to detect the probe on the sample surface. This is a method for determining the presence / absence of a thin film insulating layer that determines the presence / absence of a residual insulating film by detecting a constant tunnel current in the state where the needle is in contact.

作用 本発明は上述の構成により、探針が試料表面の絶縁層に
接触するにとどまるため非破壊の状態で、大気中で容易
に測定でき、かつ残留絶縁膜の膜厚が15Å以下の高精度
で検出可能である。
Effect The present invention, with the above-described configuration, can easily measure in the atmosphere in a non-destructive state because the probe is only in contact with the insulating layer on the sample surface, and the residual insulating film has a high precision of 15 Å or less. Can be detected by.

実施例 (実施例1) 以下に、図面に基づいて本発明の実施例1を具体的に説
明する。第1図は本発明の一実施例を示し、第1図
(a)はトンネル電流制御機構を具備したトンネル電流
測定装置の概略構成を示す。シリコン基板8の表面上に
Z方向ピエゾ素子2に装着された金属探針1を移動機構
7により1nmの距離まで接近させると両者の表面原子1A,
8Aの周囲ににじみ出ている電子雲9がつながる。この状
態で両者間に僅かな電圧Vs3を印加するとトンネル電流I
tが流れる。このIt値はトンネル電流検出・増幅回路4
により検出・増幅され、Z方向距離制御回路5により予
め設定された一定値に安定すべくフィードバックがかけ
られ、金属探針−試料表面間距離が制御される。その結
果、Z方向のピエゾ素子2が設定されたIt値になるまで
伸縮し、その変位分の時間依存性が、It値と共にアナラ
イジングレコーダ6で記録される。ここで設定されたIt
値を得るために金属探針1がシリコン基板8に接近する
時に前記シリコン基板8の最表面に酸化層10が存在する
と第1図(b)に示すように金属探針1と酸化層10とが
接触する。そして、接触した金属探針1はその最表面の
原子配列が乱れ、電子のトンネリングを生じる箇所も原
子オーダーで変わる。そのためその新しい箇所からのト
ンネリングによるIt値を制御すべくフィードバックが時
々刻々とかけられるが、観測されるトンネル電流の時間
依存性は非接触の場合に比べて不安定になる。金属探針
1を二次元走査している場合であるとその不安定性はよ
り増大する。表はトンネル電流Itと得られるSTM像の振
幅の関係を示したものであり、トンネル電流の振幅が大
きい場合、即ちIt値の時間依存性が不安定な場合は、得
られたSTM像は試料表面の実凹凸を反映するものではな
くノイズによる疑似STM像となる。一方、前記振幅が小
さい場合、即ちIt値の時間依存性が安定な場合は得られ
たSTM像は試料表面の実凹凸を反映したものとなり、STM
像の振幅がたとえ大きい場合でもIt値が安定していれば
そのSTM信号は実際の試料表面の凹凸を反映した像であ
ると解釈できる。即ち表の中で○は絶縁層が試料表面に
存在せず(検出限界以下)、得られるSTM信号は試料表
面の実凹凸を反映したSTM像であることを示し、×は絶
縁層が試料表面に存在し(検出限界以上)、得られるST
M信号は試料表面の実凹凸を反映したSTM像ではなく、ノ
イズによる疑似STM像であることを示す。
Example (Example 1) Hereinafter, Example 1 of the present invention will be specifically described with reference to the drawings. FIG. 1 shows an embodiment of the present invention, and FIG. 1 (a) shows a schematic configuration of a tunnel current measuring device equipped with a tunnel current control mechanism. When the metal probe 1 mounted on the Z direction piezo element 2 is brought close to the surface of the silicon substrate 8 by the moving mechanism 7 to a distance of 1 nm, both surface atoms 1A,
An electron cloud 9 bleeding around 8A is connected. If a slight voltage Vs3 is applied between the two in this state, the tunnel current I
t flows. This It value is the tunnel current detection / amplification circuit 4
Is detected and amplified by the Z-direction distance control circuit 5, and feedback is applied by the Z-direction distance control circuit 5 to stabilize it at a preset constant value, and the distance between the metal probe and the sample surface is controlled. As a result, the piezo element 2 in the Z direction expands and contracts until it reaches the set It value, and the time dependence of the displacement is recorded by the analyzing recorder 6 together with the It value. It set here
If the oxide layer 10 exists on the outermost surface of the silicon substrate 8 when the metal probe 1 approaches the silicon substrate 8 in order to obtain the value, the metal probe 1 and the oxide layer 10 are formed as shown in FIG. 1 (b). Come into contact with. The atomic arrangement on the outermost surface of the contacting metal probe 1 is disturbed, and the location where electron tunneling occurs changes in atomic order. Therefore, feedback is applied every moment to control the It value due to tunneling from the new location, but the time dependence of the observed tunnel current becomes more unstable than in the non-contact case. The instability is further increased when the metal probe 1 is two-dimensionally scanned. The table shows the relationship between the tunnel current It and the amplitude of the obtained STM image.When the tunnel current amplitude is large, that is, when the time dependence of the It value is unstable, the obtained STM image is the sample. It does not reflect the actual unevenness of the surface, but becomes a pseudo STM image due to noise. On the other hand, when the amplitude is small, that is, when the time dependence of the It value is stable, the obtained STM image reflects the actual unevenness of the sample surface.
Even if the image amplitude is large, if the It value is stable, the STM signal can be interpreted as an image that reflects the unevenness of the actual sample surface. That is, in the table, ○ indicates that the insulating layer does not exist on the sample surface (below the detection limit), the obtained STM signal is an STM image that reflects the actual unevenness of the sample surface, and × indicates that the insulating layer is the sample surface. Existing in (above the detection limit) and obtained ST
It is shown that the M signal is not an STM image that reflects the actual unevenness of the sample surface, but a pseudo STM image due to noise.

第1図(c)は印加電圧(Vs)が0.5V,設定トンネル電
流値が0.5nAの場合のトンネル電流の時間変化を示して
いる。第1図C−1は12Å程度の酸化層が存在する場合
の測定例でIt値が乱れている。一方、第1図C−2は他
の分析手段によって酸化層の存在は検出限界以下である
ことが確認されたものについての測定例であり、It値が
安定している。これらの試料は撥水法ではいずれも撥水
が確認されており、酸化層は存在しないと判断される
が、本発明のトンネル電流測定装置の検出精度が高い事
を意味する。
FIG. 1 (c) shows the change over time of the tunnel current when the applied voltage (Vs) is 0.5 V and the set tunnel current value is 0.5 nA. FIG. 1C-1 is an example of measurement when an oxide layer of about 12 Å exists, and the It value is disturbed. On the other hand, FIG. 1C-2 shows a measurement example of the case where the presence of the oxide layer is confirmed to be below the detection limit by other analysis means, and the It value is stable. Water repellency was confirmed in all of these samples by the water repellent method, and it is judged that the oxide layer does not exist, which means that the tunnel current measuring device of the present invention has high detection accuracy.

(実施例2) 以下に、図面に基づいて本発明の実施例2を具体的に説
明する。第2図は本発明の一実施例を示し、第2図
(a)は走査型トンネル顕微鏡(以下STMと略称する)
を用いてフッ酸で表面に形成された酸化膜を除去し、空
気中にしばらく放置した後のシリコン基板表面を観察し
たSTM(scanning tunneling microscope)像である。酸
化膜の除去は撥水法で確認した。このSTM像は以下の様
にして得られる。第2図(b)に示すXYZのピエゾ素子1
3,14,15からなる3次元アクチュエータの先端に取り付
けられた金属探針16を移動機構25を用いて試料であるシ
リコン基板17表面に1nmまで接近させると両者の表面原
子16−A,17−Aの周囲ににじみ出ている電子の雲26がつ
ながり、この状態で両者間に僅かな電圧Vs18を印加する
とトンネル電流Itが流れる。このIt値はトンネル電流検
出・増幅回路19により検出・増幅され、Z方向距離制御
回路20により、予め設定された一定値に安定すべくフィ
ードバックがかけられ、金属探針−試料表面間距離が制
御される。その結果、Z方向のピエゾ素子15が制御され
たIt値になるまで伸縮し、その変位分及びX−Y走査回
路21により制御されたX,Y方向のピエゾ素子変位分をメ
モリ22に記憶させ、コンピュータ23を経て表示装置24に
試料表面のミクロな凹凸情報が増幅されて、STM像と呼
ばれる2次元実空間の像が得られる。第2図(a)のST
M像は試料印加電圧Vsを0.2V,設定トンネル電流It値を1n
Aとしたときの観察結果である。このIt値の時間依存性
は、平坦な領域12に相当する部分では安定な部分として
認められた。又、周辺部の乱れた領域11に相当する部分
では総じて不安定な依存性となった。第2図(a)の平
坦な領域12はフッ酸処理直後の表面トポロジーと同じも
ので、極めて平坦なシリコン基板表面が露出しているも
のと考えられる。一方、周辺部の乱れた領域11は空気中
に放置しておく事による自然酸化が進行した領域であ
る。この領域11においては、金属探針16は所定のトンネ
ル電流値の1nAになる様にシリコン基板17表面に接近
し、両者の間に存在する厚さが約12Å以上と思われる極
薄酸化膜17Bに接触し、膜内部に入り込んでいる為に表
面トポロジーが乱れた様に見える。この状態でシリコン
表面を撥水法で確認すると水滴は十分にはじかれ、酸化
膜が存在しないと判断される結果となった。シリコン基
板17を更に長時間放置すると表面全体が乱れたトポロジ
ーとして観測され、表面全体が完全に再酸化されたもの
と思われる。これらの挙動は、XPSなど他の分析手段か
らも確認された。以上の様に、シリコン基板の酸化膜の
存在をSTMを用いる事により、従来の撥水法に比べより
高精度で、しかも非破壊で大気中で容易に確認する事が
できた。
Second Embodiment Hereinafter, a second embodiment of the present invention will be specifically described with reference to the drawings. FIG. 2 shows an embodiment of the present invention, and FIG. 2 (a) is a scanning tunneling microscope (hereinafter abbreviated as STM).
Fig. 2 is an STM (scanning tunneling microscope) image of the surface of a silicon substrate observed after removing the oxide film formed on the surface using hydrofluoric acid and leaving it in the air for a while. The removal of the oxide film was confirmed by a water repellent method. This STM image is obtained as follows. XYZ piezo element 1 shown in FIG. 2 (b)
When the metal probe 16 attached to the tip of the three-dimensional actuator composed of 3,14,15 is brought close to the surface of the silicon substrate 17 as the sample to 1 nm by using the moving mechanism 25, both surface atoms 16-A, 17- An electron cloud 26 that oozes out around A is connected, and when a slight voltage Vs18 is applied between them in this state, a tunnel current It flows. This It value is detected / amplified by the tunnel current detection / amplification circuit 19, and is fed back by the Z-direction distance control circuit 20 to stabilize it at a preset constant value, and the distance between the metal probe and the sample surface is controlled. To be done. As a result, the piezo element 15 in the Z direction expands and contracts until it reaches the controlled It value, and the displacement and the piezo element displacement in the X and Y directions controlled by the XY scanning circuit 21 are stored in the memory 22. The microscopic unevenness information on the sample surface is amplified on the display device 24 via the computer 23, and a two-dimensional real space image called an STM image is obtained. ST in Figure 2 (a)
M image shows sample applied voltage Vs of 0.2 V and set tunnel current It value of 1 n
It is an observation result when it is set to A. This time dependence of the It value was recognized as a stable portion in the portion corresponding to the flat region 12. Further, in the part corresponding to the disordered region 11 in the peripheral part, the dependence became unstable as a whole. The flat region 12 in FIG. 2 (a) has the same surface topology as that immediately after the hydrofluoric acid treatment, and it is considered that an extremely flat silicon substrate surface is exposed. On the other hand, the disordered region 11 in the peripheral portion is a region where natural oxidation progressed by leaving it in the air. In this region 11, the metal probe 16 approaches the surface of the silicon substrate 17 so as to have a predetermined tunnel current value of 1 nA, and an ultrathin oxide film 17B existing between the two seems to have a thickness of about 12 Å or more. It seems that the surface topology is disturbed because it contacts the inside of the membrane and penetrates inside the membrane. When the silicon surface was confirmed by the water repellent method in this state, the water droplets were sufficiently repelled, and it was judged that the oxide film did not exist. When the silicon substrate 17 is left for a longer time, the entire surface is observed as a disordered topology, and it is considered that the entire surface is completely reoxidized. These behaviors were also confirmed by other analytical means such as XPS. As described above, by using STM, the presence of the oxide film on the silicon substrate could be easily confirmed in the atmosphere with higher accuracy than the conventional water repellent method and nondestructively.

(実施例3) 以下に図面に基づいて本発明の実施例3を具体的に説明
する。第4図〜第6図は本発明の一実施例を示す。第4
図(a)は通常の洗浄処理をした後のシリコン基板表面
のSTM像であり、実施例2で述べた原理により得られた
表面凹凸像を示すSTM像である。同図(b)は前記洗浄
処理後、高純度窒素雰囲気中で熱処理した後のSTM像で
ある。熱処理は800℃の乾燥窒素雰囲気に保たれた石英
管の中にシリコン基板を挿入し、同雰囲気中に900℃2
時間保管した後に再び800℃に降温してシリコン基板を
取り出して行われた。シリコン基板が酸化されるのを防
ぐ為に、熱処理中はシリコン基板は室温以外の高温時に
おいて終始高純度窒素ガス雰囲気中に保管され、大気に
さらされない状態にした。同図(a),(b)を比較す
ると熱処理をすることにより表面が荒れる様に見えるの
が判る。同図(c)は同(a)を測定した時のトンネル
電流Itの時間変化を示したものであり、同図(d)は同
図(b)の測定時におけるトンネル電流Itの時間変化を
示したものである。同図(c),(d)を比較すると通
常の洗浄処理のみを施したシリコン表面のトンネル電流
Itは安定で定常値を保っている(同図(c))のに対
し、洗浄後窒素熱処理を施した場合にはトンネル電流It
が大きく乱れているのが明白である(同図(d))。こ
の事から通常の洗浄を施したシリコン表面のSTM像(同
図(a))は実際の微細凹凸を反映したトポロジーを示
していると考えられ、原子的にも平坦な表面が表われて
いる事を示している。一方、洗浄後高純度窒素による熱
処理が施された表面のSTM像(同図(b))は実際の凹
凸を反映したトポロジーではなく、実施例1で示したの
と同じ理由により絶縁性の極薄層が表面に存在する事を
意味する。この極薄絶縁層は窒素熱処理により生成され
た窒化物であると推察される。第5図は、この生成物を
確認する為に2次イオン質量分析法(SIMS)によるSi+
Nの深さ方向の分布を調べた結果である。同図より窒素
熱処理したシリコン最表面において、熱処理しない表面
に比べて窒素が多く検出されており、この量はドーズ量
にして3倍程度存在する事が判明した。第6図はこの最
表面の窒化物を熱リン酸で除去した後の表面トポロジー
を調べた結果である。第6図(a)は第4図(a)の試
料を、第6図(b)は第4図(b)の試料をそれぞれ熱
リン酸処理した後、通常のフッ酸処理してSTMで測定し
た結果である。更にそれらのトンネル電流Itの時間依存
性を示したものが第6図(c),(d)であり、それぞ
れ第6図(a),(b)の試料表面に対応する。同図よ
り両試料のトンネル電流Itの振まいは同程度に安定して
おり、この事から第6図(a),(b)で示された同程
度のトポロジーは実表面の微小凹凸を示し、しかも両試
料表面共平坦である事が分る。以上の事より第4図
(b)で示された絶縁性極薄層は熱リン酸で除去された
シリコン窒化物である事が明らかとなった。以上の様に
本実施例によればSTMを用いることによりゲート酸化膜
形成前の窒素雰囲気による極薄の絶縁性窒化物がシリコ
ン基板の最表面に存在する事が明らかにされた。
Example 3 Example 3 of the present invention will be specifically described below with reference to the drawings. 4 to 6 show an embodiment of the present invention. Fourth
FIG. 7A is an STM image of the surface of the silicon substrate after the usual cleaning treatment, and is an STM image showing the surface unevenness image obtained by the principle described in the second embodiment. FIG. 6B is an STM image after the cleaning treatment and heat treatment in a high-purity nitrogen atmosphere. The heat treatment was performed by inserting the silicon substrate into a quartz tube kept in a dry nitrogen atmosphere at 800 ° C and then 900 ° C in the same atmosphere.
After keeping for a while, the temperature was lowered to 800 ° C. again and the silicon substrate was taken out. In order to prevent the silicon substrate from being oxidized, the silicon substrate was kept in a high-purity nitrogen gas atmosphere throughout the heat treatment at a high temperature other than room temperature so that it was not exposed to the air. Comparing (a) and (b) in the figure, it can be seen that the surface appears to be roughened by heat treatment. FIG. 7C shows the change over time of the tunnel current It when measuring FIG. 7A, and FIG. 9D shows the change over time of the tunnel current It during measurement in FIG. It is shown. Comparing the figures (c) and (d), the tunnel current on the silicon surface that has been subjected only to the normal cleaning treatment
While It is stable and maintains a steady value ((c) in the figure), the tunnel current It when the nitrogen heat treatment is applied after cleaning
Is clearly disturbed (Fig. 4 (d)). From this, it is considered that the STM image of the silicon surface that has been subjected to normal cleaning (Fig. (A)) shows a topology that reflects the actual fine irregularities, and an atomically flat surface appears. It shows a thing. On the other hand, the STM image of the surface subjected to the heat treatment with high-purity nitrogen after cleaning (FIG. 7B) does not reflect the actual unevenness, and the insulating polarities are the same for the same reason as shown in Example 1. Means that a thin layer is present on the surface. This ultra-thin insulating layer is presumed to be a nitride produced by nitrogen heat treatment. Figure 5 shows Si + by secondary ion mass spectrometry (SIMS) to confirm this product.
It is the result of examining the distribution of N in the depth direction. From the figure, it was found that a larger amount of nitrogen was detected on the outermost surface of the silicon subjected to the nitrogen heat treatment as compared with the surface not subjected to the heat treatment, and this amount was about three times the dose amount. FIG. 6 shows the results of examining the surface topology after removing the nitride on the outermost surface with hot phosphoric acid. FIG. 6 (a) shows the sample of FIG. 4 (a), and FIG. 6 (b) shows the sample of FIG. 4 (b) after hot phosphoric acid treatment, followed by normal hydrofluoric acid treatment with STM. It is the result of measurement. Further, the time dependence of the tunnel current It is shown in FIGS. 6C and 6D, which correspond to the sample surface in FIGS. 6A and 6B, respectively. From the figure, the behaviors of the tunnel current It of both samples are stable to the same degree, and from this fact, the similar topologies shown in FIGS. 6 (a) and 6 (b) show minute irregularities on the actual surface. Moreover, it can be seen that the surfaces of both samples are flat. From the above, it became clear that the insulating ultrathin layer shown in FIG. 4 (b) is silicon nitride removed by hot phosphoric acid. As described above, according to the present embodiment, it was revealed that the use of STM causes the existence of an extremely thin insulating nitride in the nitrogen atmosphere before the formation of the gate oxide film on the outermost surface of the silicon substrate.

(実施例4) 所望のトランジスタ特性を再現よく且つシリコン基板内
で一様に得ることはLSI開発にとって必要不可欠であ
る。例えばゲート酸化前後の略によってトランジスタの
閾値電圧(以下Vthと略称する)が変動することがあ
る。閾値電圧VthはMOSダイオードにおいて半導体表面に
反転層が形成されるためのゲート電圧と定義される。本
発明の実施例3では意図的に極薄の窒化膜を形成した
が、本実施例においては実デバイスのVth変動について
取り扱う。以下に図面に基づいて本発明の実施例4を具
体的に説明する。第7図はp型シリコン基板を用いたN
チャンネルMOS-LSIのゲート電極部の実デバイス構造を
示したものである。LOCOS活性領域30に設けられたゲー
ト酸化膜31はエッチングや犠牲酸化などの表面清浄化工
程を経た後にシリコン基板32上に熱酸化により形成され
る。その後、ポリシリコンからなるゲート電極(以下ポ
リシリコンゲート電極と略称する)33を化学気相成長等
の方法で堆積した後に熱処理工程などを経て形成され
る。第8図に実デバイス構造のC−V特性から測定した
フラットバンド電圧VFBの一例を示す。同図(a)の縦
軸はVFB、○印は正常値、●印は異常値を示す。横軸は
シリコン基板の番号を示し、この順序で電気炉に挿入さ
れ熱処理された。また、VFBの変動特性は再現性よくVth
のそれと一対一に対応した。各基板とも同一ロットで処
理されるのに同図(a)のような特性の差異が確認され
る原因についてゲート酸化を含む熱処理工程に於ける基
板挿入時の並べ方に起因することに着目した。同図
(b)は前記熱処理時に於ける石英内管内のシリコン基
板の配置を示したものである。基板保持台34上に本番ロ
ット35を13枚のダミー基板36、37をそれぞれ前後に配置
して表面を電気炉38側に向けて番号順に設置する。その
後に、高純度窒素ガスを石英内管31の後部からフローさ
せた状態で矢印の方向に電気炉の炉心管(石英外管)41
に挿入する。このとき電気炉38後部からも高純度窒素ガ
スをフローさせてある。同図(c)はゲート酸化膜31形
成時の温度プロファイルの概略を示したものである。炉
心管41内温度が800℃で前記内管40を挿入し、炉心管41
内温度が再び800℃で安定してから900℃に昇温し、温度
が十分安定してから管内ガスを窒素から酸素、水素の混
合ガスに切り替えてゲート酸化膜形成を行う。この後、
再び窒素ガスに切り替え950℃まで昇温して膜質改善を
行い、800℃まで降温し管内温度が安定した後に内管40
を取り出す。本実施例におけるゲート酸化膜31はウエッ
ト酸化膜で膜厚が200Åであった。Vth変動発生の原因と
考えられるプロセスはこの基板配置に起因する気体飛来
確率によるものと考えられる。p型半導体の場合、シリ
コンの表面ポテンシャルは反転層形成時においてθ5
2θfとなり、閾値電圧Vthは次式のように表される。
(Embodiment 4) It is indispensable for LSI development to obtain desired transistor characteristics reproducibly and uniformly in a silicon substrate. For example, the threshold voltage of a transistor (hereinafter abbreviated as V th ) may vary depending on the difference before and after gate oxidation. The threshold voltage V th is defined as the gate voltage for forming the inversion layer on the semiconductor surface in the MOS diode. In Example 3 of the present invention, an extremely thin nitride film was intentionally formed, but in this Example, V th fluctuation of an actual device is dealt with. Embodiment 4 of the present invention will be specifically described below with reference to the drawings. FIG. 7 shows N using a p-type silicon substrate.
3 shows an actual device structure of a gate electrode part of a channel MOS-LSI. The gate oxide film 31 provided in the LOCOS active region 30 is formed on the silicon substrate 32 by thermal oxidation after a surface cleaning process such as etching or sacrificial oxidation. After that, a gate electrode (hereinafter abbreviated as polysilicon gate electrode) 33 made of polysilicon is deposited by a method such as chemical vapor deposition, and then a heat treatment step or the like is performed. FIG. 8 shows an example of the flat band voltage V FB measured from the CV characteristics of the actual device structure. In the figure (a), the vertical axis indicates V FB , the ○ mark indicates a normal value, and the ● mark indicates an abnormal value. The horizontal axis represents the number of the silicon substrate, which was inserted into the electric furnace and heat-treated in this order. In addition, the variation characteristics of V FB have good reproducibility and V th
It corresponds one-to-one with that. The reason why the difference in characteristics as shown in FIG. 9A is confirmed even though each substrate is processed in the same lot is due to the arrangement of the substrates when they are inserted in the heat treatment process including gate oxidation. FIG. 3B shows the arrangement of the silicon substrate in the quartz inner tube during the heat treatment. On the substrate holder 34, the production lot 35 is arranged with thirteen dummy substrates 36 and 37 in front and back, respectively, and the surfaces thereof are installed in the order of numbers facing the electric furnace 38 side. After that, high-purity nitrogen gas is allowed to flow from the rear part of the quartz inner tube 31 in the direction of the arrow in the furnace core tube (quartz outer tube) 41 of the electric furnace.
To insert. At this time, the high-purity nitrogen gas is also made to flow from the rear part of the electric furnace 38. FIG. 6C shows an outline of the temperature profile when the gate oxide film 31 is formed. When the inner temperature of the core tube 41 is 800 ° C. and the inner tube 40 is inserted,
After the internal temperature stabilizes again at 800 ° C and then rises to 900 ° C, and after the temperature becomes sufficiently stable, the gas inside the tube is switched from nitrogen to a mixed gas of oxygen and hydrogen to form a gate oxide film. After this,
Switch to nitrogen gas again and raise the temperature to 950 ° C to improve the film quality, then lower the temperature to 800 ° C to stabilize the internal temperature, then
Take out. In this example, the gate oxide film 31 was a wet oxide film and had a film thickness of 200Å. The process considered to be the cause of the V th fluctuation is considered to be due to the probability of gas coming in due to this substrate arrangement. In the case of p-type semiconductor, the surface potential of silicon is θ 5 =
f , and the threshold voltage V th is expressed by the following equation.

Vth=2θf+VFB+〔2εfεoqNa(2θf)〕1/2*Co-1ここ
で、θfはフェルミポテンシャル、VFBはフラットバンド
電圧、εfはシリコンの比誘電率、εoは真空の誘電率、
qは電子の電荷量、Naはイオン化したアクセプタの密
度、Coはゲート酸化膜の固定容量を示す。上式におい
て、第一項は反転層に対応し、第三項は空乏層に対応す
る成分であり半導体の種類と伝導型が決まれば自動的に
決まる。しかし、第二項はフラットバンド電圧VFBがゲ
ート電極形成プロセスに微妙に起因する項目で、同電圧
をゲート電極に印加してもMOSダイオードが反転したり
しなかったりするためにMOSトランジスタ動作を極めて
不安定にする原因となる。そしてさらに、このVFBは次
式のように表される。
V th = 2θ f + V FB + [2ε f ε o qN a (2θ f )] 1/2 * Co -1 where θ f is the Fermi potential, V FB is the flat band voltage, and ε f is the silicon ratio. Permittivity, ε o is the permittivity of vacuum,
q is the electron charge quantity, N a is the density of ionized acceptors, the C o shows the fixed capacitance of the gate oxide film. In the above equation, the first term corresponds to the inversion layer and the third term corresponds to the depletion layer, which is automatically determined if the type and conduction type of the semiconductor are determined. However, the second term is an item in which the flat band voltage V FB is subtly attributed to the gate electrode formation process, and even if the same voltage is applied to the gate electrode, the MOS diode operation is not inverted or the MOS transistor operation is not performed. It will cause extremely instability. Further, this V FB is expressed by the following equation.

VFB=VMS=QSS/Co+Vo ここで、VMSはゲート電極と半導体との仕事関数差、即
ち接触電位差、QSSは固定表面順位電荷、Voは酸化膜中
に存在する陽イオンの電位効果を補償するために必要な
負のゲート電圧を示す。第一項は半導体の種類と伝導型
が決まれば自動的に決まるが、第二及び三項はゲート電
極形成プロセスに微妙に起因する項目でQSSはシリコン
基板の伝導型や抵抗率に依存せず酸化膜の膜厚にも依存
しないが、酸化膜とシリコンとの界面に局在する過剰シ
リコンに起因するため酸化条件や熱処理条件に強く依存
する。また、Voは酸化膜中のナトリウムイオンなどの可
動イオンや放射線損傷などによるトラップが原因とされ
ている。ゲート電極33直下のシリコン基板32表面部分に
不純物層が存在すると上式の第二項以下、特にQSSが変
化しVFBが変動し、さらにはVthの変動を引き起こすもの
と考えられる。しかし、本実施例の様に実際に発生する
事例では本発明の実施例3のように意図的に絶縁性の不
純物層を形成していないので二次イオン質量分析(以下
SIMSと略称する)では上記不純物は検出限界以下であ
り、Vth値変動要因の直接測定が不可能であったためそ
の原因が不明であった。STM測定用試料としては第8図
で示した基板の♯1と♯5を小片に切り出して用いた。
そして、加熱した水酸化カリウム水溶液でゲートポリシ
リコン電極33を除去した後にフッ酸水溶液でゲート酸化
膜31を除去してシリコン基板32表面を露出させる。STM
測定に際しては露出させた前記シリコン基板32表面をST
M試料ホルダーに固定させ、トンネル電流It=0.50nA,試
料印加電圧Vs=1.78V,走査面積S=800Å2の条件で測定
した。第9図にトンネル電流の振幅平均値△Itの定義
(同図a)と、実際にトランジスタを形成した実デバイ
ス構造の電気特性測定結果から1ロット中においてVth
値変動が認められた基板(●印)と認められない正常基
板(○印)の△It測定結果を示す。正常基板は△Itが小
さく、トンネル電流が安定して設定値に制御されている
のに対しVth値変動が認められる基板の△Itが総じて大
きい、即ちトンネル電流が不安定である。このことは本
発明の実施例1で述べたのと同じ理由によりVth値変動
が認められたロットのゲート電極33直下のシリコン基板
32表面に絶縁性の不純物層が存在することを意味する。
また、本実施例では上述のようにSIMS分析では検出限界
以下の不純物でも検出でき、本発明による方法が極めて
高感度であることを示している。
V FB = V MS = Q SS / C o + V o where V MS is the work function difference between the gate electrode and the semiconductor, that is, the contact potential difference, Q SS is the fixed surface order charge, and V o is in the oxide film. The negative gate voltage required to compensate for the potential effect of positive ions is shown. The first term is automatically determined if the semiconductor type and conductivity type are determined, but the second and third terms are items that are subtly attributed to the gate electrode formation process, and Q SS depends on the conductivity type and resistivity of the silicon substrate. Although it does not depend on the thickness of the oxide film, it depends strongly on the oxidation condition and the heat treatment condition because it is caused by excess silicon localized at the interface between the oxide film and silicon. Also, V o is attributed to mobile ions such as sodium ions in the oxide film and traps due to radiation damage. It is considered that the presence of the impurity layer on the surface of the silicon substrate 32 immediately below the gate electrode 33 causes the second term and below in the above equation, especially Q SS to change, V FB to change, and further V th to change. However, in the case of actually occurring as in this embodiment, since the insulating impurity layer is not intentionally formed as in the third embodiment of the present invention, the secondary ion mass spectrometry (hereinafter
In SIMS), the above impurities were below the detection limit, and the cause of the change in the V th value could not be determined because it could not be directly measured. As STM measurement samples, # 1 and # 5 of the substrate shown in FIG. 8 were cut into small pieces and used.
Then, after removing the gate polysilicon electrode 33 with the heated potassium hydroxide aqueous solution, the gate oxide film 31 is removed with the hydrofluoric acid aqueous solution to expose the surface of the silicon substrate 32. STM
When measuring, the exposed surface of the silicon substrate 32
The sample was fixed on an M sample holder and measured under the conditions of tunnel current It = 0.50nA, sample applied voltage Vs = 1.78V, and scanning area S = 800Å 2 . Ninth amplitude average value in Figure to the tunnel current △ It Defining and (FIG. A), V actually in one of the lot from the electrical characteristic measurement result of the actual device structure formed transistor th
The ΔIt measurement results are shown for the substrate where the value change was observed (●) and the normal substrate where it was not observed (○). The ΔIt of the normal substrate is small and the tunnel current is stably controlled to the set value, whereas the ΔIt of the substrate in which the V th value variation is recognized is large, that is, the tunnel current is unstable. This is due to the same reason as described in the first embodiment of the present invention. The silicon substrate immediately below the gate electrode 33 of the lot in which the Vth value fluctuation was recognized.
32 This means that there is an insulating impurity layer on the surface.
Further, in the present example, as described above, SIMS analysis can detect even impurities below the detection limit, indicating that the method according to the present invention has extremely high sensitivity.

(実施例5) 以下に図面に基づいて本発明の実施例5を具体的に説明
する。LSIの微細化に伴い実施例4で述べたゲート酸化
膜界面の微細構造のほかにコンタクトホールの微細化も
必要不可欠な課題として挙げられる。コンタクトホール
の微細化が進むと必然的にコンタクト抵抗が増大するの
でその低抵抗化の努力がなされている。第10図はコンタ
クトホール部の断面図(同図(a))及び同領域をSTM
で走査(走査面積500×500Å2、走査時間30秒)したと
きのトンネル電流(設定値は0.50nA)の変動量、即ち不
安定性の平均値をレジストパターン端からの距離をパラ
メータとして測定した結果(同図(b))を示す。同図
(b)はパターン形成したレジスト42(厚さ1500nm)を
マスクとし、シリコン基板43上の熱酸化膜44(厚さ600n
m)を反応性イオンエッチング装置によりエッチングし
て2mm2のコンタクトホール45を拡散領域46上に形成した
後、レジストパターン42端、即ちコンタクトホール45端
から50μm.200μm.1mm離れた3つの測定点においてSTM
走査したときの測定したトンネル電流の振幅の平均値△
Itを示してある。△Itの定義は本実施例4で述べたもの
と同様である。同図(b)の結果から明らかなようにレ
ジストパターン42端近傍に於けるトンネル電流の変動量
は大きく、レジストパターン42端から遠ざかるに伴いそ
の変動量は小さくなり、トンネル電流の安定性が向上す
る。このことは本発明の実施例1で述べたものと同じ理
由によりレジストパターン42端付近のシリコン基板43表
面には絶縁性の不純物層が存在し、レジストパターン端
から遠ざかるにつれてその不純物層の濃度は低下し、導
電性は向上することを意味する。測定結果には再現性が
あり、前記絶縁性不純物層の分布に対応した電気抵抗の
分布が存在すると考えられる。有機材料で構成される前
記レジスト42はこのドライエッチング処理中に微量の炭
素(C)やフッ素(F)などの成分元素がプラズマプロ
セスを介して前記拡散領域46中に不純物として混入す
る。そのためアルミニウム(Al)などの配線材料を前記
コンタクトホール45に堆積してコンタクト形成を行った
場合、結果としてコンタクト抵抗の増大をもたらす。従
って、コンタクトホール45の微細化が進むとコンタクト
抵抗がより増大するものと理解される。本実施例では本
発明の実施例3のように意図的に絶縁性の不純物層を形
成していないのでこの不純物成分の含有量が極微量であ
ることに加えレジストパターン42端という幾何学的に複
雑な箇所であるため2次イオン質量分析計やラザフォー
ド後方散乱法などによる通常の分析手段では検出でき
ず、コンタクト抵抗増大原因の同定が不可能であった事
を鑑みると本発明による方法が極めて高感度で有用であ
ることがわかる。
(Fifth Embodiment) A fifth embodiment of the present invention will be specifically described below with reference to the drawings. Along with the miniaturization of LSIs, the miniaturization of contact holes in addition to the microstructure of the interface of the gate oxide film described in the fourth embodiment is also an essential issue. As the contact hole becomes finer, the contact resistance inevitably increases, and efforts are being made to reduce the contact resistance. Fig. 10 shows a cross-sectional view of the contact hole (Fig. (A)) and STM of the same area.
The result of measuring the fluctuation amount of the tunnel current (set value is 0.50 nA) when scanning (scan area 500 × 500Å 2 , scan time 30 seconds), that is, the average value of instability using the distance from the resist pattern edge as a parameter. (The figure (b)) is shown. In the same figure (b), the patterned resist 42 (thickness 1500 nm) is used as a mask and the thermal oxide film 44 (thickness 600 n) on the silicon substrate 43 is used.
m) is etched by a reactive ion etching device to form a 2 mm 2 contact hole 45 on the diffusion region 46, and then three measurement points 50 μm.200 μm.1 mm apart from the resist pattern 42 end, that is, the contact hole 45 end. At STM
Average value of measured tunnel current amplitude during scanning △
It is shown. The definition of ΔIt is the same as that described in the fourth embodiment. As is clear from the result of FIG. 7B, the fluctuation amount of the tunnel current near the end of the resist pattern 42 is large, and the fluctuation amount becomes smaller as the distance from the end of the resist pattern 42 increases, and the stability of the tunnel current is improved. To do. For this reason, an insulating impurity layer exists on the surface of the silicon substrate 43 near the edge of the resist pattern 42 for the same reason as described in the first embodiment of the present invention, and the concentration of the impurity layer increases as the distance from the edge of the resist pattern increases. It means that the conductivity is lowered and the conductivity is improved. It is considered that the measurement results have reproducibility and that there is a distribution of electric resistance corresponding to the distribution of the insulating impurity layer. During the dry etching process of the resist 42 made of an organic material, a small amount of component elements such as carbon (C) and fluorine (F) are mixed as impurities into the diffusion region 46 through a plasma process. Therefore, when a wiring material such as aluminum (Al) is deposited in the contact hole 45 to form a contact, as a result, the contact resistance is increased. Therefore, it is understood that the contact resistance further increases as the contact hole 45 becomes finer. In this embodiment, unlike the third embodiment of the present invention, since the insulating impurity layer is not intentionally formed, the content of this impurity component is extremely small, and in addition, the resist pattern 42 has the geometrical edge. The method according to the present invention is extremely difficult in view of the fact that it is impossible to detect the cause of the increase in contact resistance because it cannot be detected by a usual analysis means such as a secondary ion mass spectrometer or Rutherford backscattering method because it is a complicated place. It turns out that it is highly sensitive and useful.

発明の効果 以上説明して来た様に、本発明によればトンネル顕微鏡
と同様な機構を有する装置を用いてトンネル電流を観測
する事により、半導体や金属などの導電性物質表面に形
成された絶縁膜の有無を高精度で、大気中で容易に、し
かも非破壊で測定できる。又、前記装置に2次元走査機
構を組み込んだ走査型トンネル顕微鏡を用いる事によ
り、極薄の絶縁層の分布が大気中で容易に測定できる。
このように本発明はゲート酸化前の洗浄評価やMOSトラ
ンジスタの閾値電圧変動要因解析、コンタクトホール部
のドライエッチ表面の評価などLSIのプロセス評価に適
応でき、半導体や材料作製の信頼性向上に大いに貢献す
ることができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, the tunnel current is observed by using the device having the same mechanism as that of the tunnel microscope, so that it is formed on the surface of the conductive material such as semiconductor or metal. The presence or absence of an insulating film can be measured with high accuracy, easily in the atmosphere, and nondestructively. Further, by using a scanning tunnel microscope in which a two-dimensional scanning mechanism is incorporated in the above device, the distribution of the extremely thin insulating layer can be easily measured in the atmosphere.
As described above, the present invention can be applied to LSI process evaluation such as cleaning evaluation before gate oxidation, analysis of a threshold voltage variation factor of a MOS transistor, and evaluation of a dry-etched surface of a contact hole portion, and greatly improves reliability of semiconductor and material manufacturing. You can contribute.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明の実施例1を示すトンネル電流制
御機構を示す構成図、第1図(b)は同図(a)のシリ
コン表面上に酸化膜が存在する場合の探針及びシリコン
表面部を示す断面図、第1図(c)は同図(a)の機構
を用いて測定したシリコン表面のトンネル電流の時間依
存性を示す図、第2図(a)は本発明の実施例2を示す
シリコン表面のSTM像を示す図、第2図(b)は同図
(a)の測定に用いた走査型トンネル顕微鏡装置系を示
す構成図、第3図(a)は従来例の一例で撥水法による
シリコン表面上の残留酸化膜厚と水滴との付着度に関す
る断面図、第3図(b)は同図(a)における水滴の付
着度とシリコン基板上の残留酸化膜厚との関係を示す特
性曲線図、第4図(a)は本発明の実施例3を示す通常
の洗浄処理を施したシリコン表面のSTM像を示す図、第
4図(b)は通常の洗浄処理の後窒素雰囲気中で熱処理
したシリコン表面のSTM像を示す図、第4図(c),
(d)は同図(a),(b)の測定中に観測したトンネ
ル電流の時間依存性を示す図、第5図は第4図(b)に
示した試料表面の2次イオン質量分析結果を示す図、第
6図(a)は第4図(a)の試料表面を熱リン酸エッチ
したシリコン表面のSTM像を示す図、第6図(b)は第
4図(b)の試料表面を熱リン酸エッチしたシリコン表
面のSTM像を示す図、第6図(c),(d)はそれぞれ
同図(a),(b)の測定中に観測したトンネル電流の
時間依存性を示す図、第7図はMOSLSIゲート電極部の実
デバイス構造の断面図、第8図(a)は実デバイス構造
のフラットバンド電圧値(VFB)対シリコン基板位置の
関係図、第8図(b)は熱処理時におけるシリコン基板
の配置図、第8図(c)はゲート酸化膜形成時の温度プ
ロファイル図、第9図(a)はトンネル電流振幅平均値
(△It)の定義図、第9図(b)は、△It値対シリコン
基板配置の関係図、第10図(a)はコンタクトホール部
の断面図、第10図(b)は△I値対コンタクトホール内
STM測定位置の関係図である。 1,16……金属探針、2,15……Z方向ピエゾ素子、3,18…
…バイアス電圧、4,19……トンネル電流検出・増幅回
路、5,20……Z方向距離制御回路、6……アナライジン
グレコーダ、7,25……移動機構、8,17……シリコン基
板、9,26……電子雲、10,17B……シリコン基板上の酸化
膜(酸化膜の原子)、11……シリコン表面(酸化領域)
のSTM像、12……シリコン表面(非酸化領域)のSTM像、
13……X方向ピエゾ素子、14……Y方向ピエゾ素子、21
……X−Y走査回路。
FIG. 1 (a) is a configuration diagram showing a tunnel current control mechanism showing Embodiment 1 of the present invention, and FIG. 1 (b) is a probe in the case where an oxide film exists on the silicon surface of FIG. 1 (a). And FIG. 1 (c) is a sectional view showing the silicon surface portion, FIG. 1 (c) is a view showing the time dependence of the tunnel current of the silicon surface measured using the mechanism of FIG. 1 (a), and FIG. 2 (a) is the present invention. 2 is a view showing an STM image of a silicon surface showing Example 2 of FIG. 2, FIG. 2 (b) is a configuration view showing a scanning tunneling microscope apparatus system used for the measurement of FIG. 2 (a), and FIG. 3 (a) is FIG. 3B is a cross-sectional view of the residual oxide film thickness on the silicon surface by the water repellent method and the degree of adhesion of water droplets in an example of a conventional example, and FIG. 3B is the degree of adhesion of water droplets in FIG. FIG. 4 (a) is a characteristic curve diagram showing the relationship with the oxide film thickness, and FIG. 4 (a) is a view showing the third embodiment of the present invention after the usual cleaning treatment. Shows a STM image of Con surface, Fig. 4 (b) is a diagram showing an STM image of heat treated silicon surface in a nitrogen atmosphere after normal washing process, Fig. 4 (c),
(D) is a diagram showing the time dependence of the tunnel current observed during the measurement of FIGS. (A) and (b), and FIG. 5 is a secondary ion mass spectrometry of the sample surface shown in FIG. 4 (b). FIG. 6 (a) is a diagram showing the results, FIG. 6 (a) is a diagram showing an STM image of the silicon surface obtained by etching the sample surface of FIG. 4 (a) with hot phosphoric acid, and FIG. 6 (b) is a diagram of FIG. 4 (b). The figure which shows the STM image of the silicon surface where the sample surface was hot phosphoric acid etched, and Fig. 6 (c) and (d) are the time dependence of the tunnel current observed during the measurement of the same figure (a) and (b), respectively. FIG. 7 is a cross-sectional view of the actual device structure of the MOSLSI gate electrode part, FIG. 8 (a) is a relationship diagram of the flat band voltage value (V FB ) vs. silicon substrate position of the actual device structure, FIG. 8 FIG. 8B is a layout view of the silicon substrate during heat treatment, FIG. 8C is a temperature profile view during gate oxide film formation, and FIG. ) Is a definition diagram of the tunnel current amplitude average value (ΔIt), FIG. 9 (b) is a relational diagram of ΔIt value vs. silicon substrate arrangement, FIG. 10 (a) is a sectional view of the contact hole portion, and FIG. Figure (b) shows ΔI value vs. contact hole
It is a relational diagram of STM measurement positions. 1,16 …… Metal probe, 2,15 …… Z direction piezo element, 3,18…
… Bias voltage, 4,19 …… Tunnel current detection / amplification circuit, 5,20 …… Z direction distance control circuit, 6 …… Analyzing recorder, 7,25 …… Movement mechanism, 8,17 …… Silicon substrate, 9,26 ... Electron cloud, 10,17B ... Oxide film (atoms of oxide film) on silicon substrate, 11 ... Silicon surface (oxidized region)
STM image of 12 ... STM image of silicon surface (non-oxidized region),
13 …… X direction piezo element, 14 …… Y direction piezo element, 21
... XY scanning circuit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】導電性物質表面に形成された絶縁膜を物理
的もしくは化学的な方法で除去し、前記絶縁膜が完全に
除去されたかを判定する場合において、導電性の探針
と、前記探針を試料表面との間にトンネル電流を生じせ
しめるための電圧を印加する手段と、前記探針に流れる
トンネル電流を検出し、増幅する手段、及び前記トンネ
ル電流を一定値に保つ為の前記探針−試料表面間距離制
御手段からなるトンネル電流制御機構を用いて、前記試
料表面に前記探針が接触した状態で一定のトンネル電流
を検出することにより残留絶縁膜存在の有無を判定する
ことを特徴とする薄膜絶縁層の有無判定方法。
1. A conductive probe and the above method for determining whether or not the insulating film is completely removed by physically or chemically removing the insulating film formed on the surface of the conductive material. A means for applying a voltage for generating a tunnel current between the probe and the sample surface, a means for detecting and amplifying a tunnel current flowing through the probe, and a means for maintaining the tunnel current at a constant value. The presence or absence of a residual insulating film is determined by detecting a constant tunnel current in a state where the probe is in contact with the sample surface by using a tunnel current control mechanism including a probe-sample surface distance control means. A method for determining the presence / absence of a thin film insulating layer, characterized by:
【請求項2】請求項1記載のトンネル電流制御機構に2
次元方向の走査機構を付加した走査型トンネル顕微鏡を
用いることを特徴とする薄膜絶縁層の有無判定方法。
2. The tunnel current control mechanism according to claim 1, wherein
A method for determining the presence / absence of a thin film insulating layer, which uses a scanning tunneling microscope with a dimensional scanning mechanism.
【請求項3】請求項1記載のトンネル電流制御機構を用
いて、MOSトランジスタのゲート絶縁膜界面の絶縁性残
留不純物を測定することにより、前記MOSトランジスタ
の閾値電圧変動要因を特定することを特徴とする評価方
法。
3. The tunnel current control mechanism according to claim 1, wherein the threshold residual voltage variation factor of the MOS transistor is specified by measuring the insulating residual impurities at the gate insulating film interface of the MOS transistor. And the evaluation method.
【請求項4】請求項1記載のトンネル電流制御機構を用
いて、ドライエッチングした半導体基板上のコンタクト
ホール底面の絶縁性残留不純物を測定することにより、
コンタクト抵抗増大要因を特定することを特徴とする評
価方法。
4. The tunnel current control mechanism according to claim 1 is used to measure an insulating residual impurity on a bottom surface of a contact hole on a semiconductor substrate dry-etched,
An evaluation method characterized by identifying a factor of increasing contact resistance.
JP15369990A 1989-07-17 1990-06-12 Method for determining the presence / absence of a thin film insulating layer Expired - Lifetime JPH0691139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15369990A JPH0691139B2 (en) 1989-07-17 1990-06-12 Method for determining the presence / absence of a thin film insulating layer

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP18408889 1989-07-17
JP1-184088 1989-07-17
JP3995290 1990-02-21
JP2-39952 1990-02-21
JP15369990A JPH0691139B2 (en) 1989-07-17 1990-06-12 Method for determining the presence / absence of a thin film insulating layer

Publications (2)

Publication Number Publication Date
JPH03283442A JPH03283442A (en) 1991-12-13
JPH0691139B2 true JPH0691139B2 (en) 1994-11-14

Family

ID=27290318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15369990A Expired - Lifetime JPH0691139B2 (en) 1989-07-17 1990-06-12 Method for determining the presence / absence of a thin film insulating layer

Country Status (1)

Country Link
JP (1) JPH0691139B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112817051A (en) * 2019-11-18 2021-05-18 南昌海立电器有限公司 Detection device, detection system and detection method for air suction port of compressor

Also Published As

Publication number Publication date
JPH03283442A (en) 1991-12-13

Similar Documents

Publication Publication Date Title
Olbrich et al. Conducting atomic force microscopy for nanoscale electrical characterization of thin SiO 2
US6027951A (en) Method of making high aspect ratio probes with self-aligned control electrodes
US7397254B1 (en) Methods for imperfect insulating film electrical thickness/capacitance measurement
Petersen et al. Review of electrical characterization of ultra-shallow junctions with micro four-point probes
US6566650B1 (en) Incorporation of dielectric layer onto SThM tips for direct thermal analysis
JP2001185593A (en) Apparatus and method for evaluating semiconductor device, and method of manufacturing semiconductor device
US5182452A (en) Method for determining the presence of thin insulating films
US5242831A (en) Method for evaluating roughness on silicon substrate surface
JPH0691139B2 (en) Method for determining the presence / absence of a thin film insulating layer
US20050142672A1 (en) Method for monitoring an ion implanter
Rödiger et al. Evaluation of chamber contamination in a scanning electron microscope
JP5276926B2 (en) Contact hole side wall resistance measurement method
KR100785036B1 (en) Method of fabricating electrical field sensor having electrical field shield
Polspoel et al. Nanometer-scale leakage measurements in high vacuum on de-processed high-k capacitors
Hoffmann et al. Thermovoltage in scanning tunneling microscopy
JP2900764B2 (en) Evaluation method of semiconductor surface thin film
Polspoel et al. Physical degradation of gate dielectrics induced by local electrical stress using conductive atomic force microscopy
JP4578705B2 (en) Impurity concentration measurement method
Olbrich et al. A new AFM-based tool for testing dielectric quality and reliability on a nanometer scale
JP3300545B2 (en) Method for evaluating electrical properties of semiconductor materials
Porti et al. Electrical characterization and fabrication of SiO2 based metal–oxide–semiconductor nanoelectronic devices with atomic force microscopy
US6642518B1 (en) Assembly and method for improved scanning electron microscope analysis of semiconductor devices
Olbrich et al. Local Electrical Thickness-mapping of Thin Oxides with Conducting Atomic Force Microscopy
JPH1032234A (en) Evaluation of soi substrate
JPH0815283A (en) Scanning type probe microscope and manufacture of cantilever made of silicon single crystal