JPH0689736A - Solid electrolyte with porous surface - Google Patents

Solid electrolyte with porous surface

Info

Publication number
JPH0689736A
JPH0689736A JP4240446A JP24044692A JPH0689736A JP H0689736 A JPH0689736 A JP H0689736A JP 4240446 A JP4240446 A JP 4240446A JP 24044692 A JP24044692 A JP 24044692A JP H0689736 A JPH0689736 A JP H0689736A
Authority
JP
Japan
Prior art keywords
solid electrolyte
negative electrode
fuel cell
electrolysis
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4240446A
Other languages
Japanese (ja)
Inventor
Hitoshi Miyamoto
均 宮本
Masao Sumi
正夫 角
Fusayuki Nanjo
房幸 南條
Koichi Takenobu
弘一 武信
Tsuneaki Matsudaira
恒昭 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4240446A priority Critical patent/JPH0689736A/en
Publication of JPH0689736A publication Critical patent/JPH0689736A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To provide a solid electrolyte for fuel cell by allowing the electrode reaction to take place at all points on each particulate or a thin film. CONSTITUTION:A solid electrolyte 1 is zirconia which is stabilized with 8mol% yttoria. Alcohol and surface active agent are added to 0.5-mum particles to turn them into slurry, which is dried naturally on a teflon sheet and high temp. baked in the air. A thin and flat plate obtained is immersed in a mixture liquid of HF and HNO3 and the surface is roughened. The resultant is immersed in nickel nitrate solution and exposed to the air at 600 deg.C, and NiO particles 2'' are precipitated. On this layer, a slurry consisting of a mixture of 60wt.% NiO and 40wt.% yttoria-stabilized zirconia (YSZ) is screen printed to form a negative electrode 2. A solution of a mixture of La(NO3)3 and Mn(NO3)4 and Si(NO3)2 in a specified mol proportion is applied to form a positive electrode 3, which is baked in the air to produce particulates 3'', and thereon LaMnO3 is screen printed and baked. Thereby an effective fuel cell and a steam decomposition cell are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温水蒸気電解装置、高
温固体電解質型燃料電池などの電解セルに用いられる固
体電解質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte used in electrolytic cells such as high temperature steam electrolyzers and high temperature solid oxide fuel cells.

【0002】[0002]

【従来の技術】従来の固体電解質型水蒸気電解装置の電
解セルの構成を図3によって説明する。固体電解質1は
平板であり、平板の固体電解質1の両側に負極粒子2′
からなる負極(カソード)2と正極粒子3′からなる正
極(アノード)3を設け、反応ガスの供給排出と電子の
授受を担わせている。負極粒子2′としては一般にはN
iと固体電解質の構成材料であるイットリア安定化ジル
コニアのサーメットが使われ、正極粒子3′としては一
般にはLaMnO3 等のペロブスカイト化合物が用いら
れている。
2. Description of the Related Art The structure of an electrolysis cell of a conventional solid electrolyte type steam electrolysis apparatus will be described with reference to FIG. The solid electrolyte 1 is a flat plate, and the negative electrode particles 2 ′ are provided on both sides of the flat plate solid electrolyte 1.
A negative electrode (cathode) 2 made of and a positive electrode (anode) 3 made of positive electrode particles 3 ′ are provided to supply and discharge a reaction gas and exchange electrons. Generally, N is used as the negative electrode particles 2 '.
i and a cermet of yttria-stabilized zirconia, which is a constituent material of the solid electrolyte, are used, and a perovskite compound such as LaMnO 3 is generally used as the positive electrode particles 3 ′.

【0003】これらの電極では図3の負極の拡大図であ
る図4に示すような反応が起る。すなわち、負極2では
水蒸気11が供給され、負極2と固体電解質1の界面部
では負極2から電子eが供給され、水蒸気11が分解さ
れて水素12が生成し、図4には図示省略したが正極3
では固体電解質1中移動した酸素イオンO2-が電子eを
放出して酸素が生成する。
At these electrodes, a reaction occurs as shown in FIG. 4, which is an enlarged view of the negative electrode shown in FIG. That is, water vapor 11 is supplied to the negative electrode 2, electrons e are supplied from the negative electrode 2 at the interface between the negative electrode 2 and the solid electrolyte 1, the water vapor 11 is decomposed to generate hydrogen 12, and although not shown in FIG. Positive electrode 3
Then, the oxygen ion O 2- moved in the solid electrolyte 1 releases the electron e to generate oxygen.

【0004】固体電解質型燃料電池は水蒸気電解装置の
逆作動であり、正極、負極は同じであるがアノードとカ
ソードの名称は逆となる。また、図3において酸素イオ
ン、電子、水素、水蒸気の移動方向は逆となり、正極
(カソード)から来た酸素イオンは電子を放出して水素
と反応し水蒸気を生成する。
A solid oxide fuel cell has a reverse operation of a steam electrolyzer. The positive electrode and the negative electrode are the same, but the names of the anode and the cathode are opposite. Further, in FIG. 3, the moving directions of oxygen ions, electrons, hydrogen, and water vapor are opposite, and the oxygen ions coming from the positive electrode (cathode) release electrons and react with hydrogen to generate water vapor.

【0005】[0005]

【発明が解決しようとする課題】上述した作動原理に基
づいて水蒸気電解および燃料電池は作動する。水蒸気電
解装置において、水蒸気が電解される場所は固体電解質
1と負極(カソード)2および水蒸気ガスが接するとこ
ろ(これを3層界面と呼ぶ)に限定される。なぜなら、
電子の供給、水蒸気の供給、酸素イオンの固体電解質中
への移動の3つのいずれかが欠けても反応が成立しない
からである。同様に固体電解質型燃料電池において、水
蒸気が生成する場所は固体電解質1と正極(アノード)
2および水素ガスが接するところ(これを3層界面と呼
ぶ)に限定される。水蒸気の供給あるいは排出のために
は電極は多孔質である必要があり、そのため、図3に示
すように電極は数〜10μmの比較的大きな粒子が用い
られていた。
The steam electrolysis and the fuel cell operate based on the above-mentioned operation principle. In the steam electrolyzer, the place where steam is electrolyzed is limited to the place where the solid electrolyte 1, the negative electrode (cathode) 2 and the steam gas are in contact (this is called a three-layer interface). Because
This is because the reaction cannot be established even if any one of the supply of electrons, the supply of water vapor, and the transfer of oxygen ions into the solid electrolyte is lacking. Similarly, in the solid oxide fuel cell, the place where water vapor is generated is the solid electrolyte 1 and the positive electrode (anode).
It is limited to where 2 and hydrogen gas contact (this is called a three-layer interface). In order to supply or discharge water vapor, the electrode needs to be porous. Therefore, as shown in FIG. 3, the electrode uses relatively large particles of several to 10 μm.

【0006】この場合、実際に水蒸気分解等の反応が起
こる面積が小さいことが欠点である。水蒸気電解の場
合、たとえ水蒸気がその場所では十分に分解されていて
も、有効面積が小さいために固体電解質の面積あたりに
換算すると、平均の分解能力は小さくなってしまう欠点
があった。燃料電池の場合も同様である。
In this case, the disadvantage is that the area where reactions such as steam decomposition actually occur is small. In the case of steam electrolysis, even if steam is sufficiently decomposed at that location, there is a drawback that the average decomposition ability becomes small when converted into the area of the solid electrolyte because the effective area is small. The same applies to the case of fuel cells.

【0007】本発明はこのような課題をかんがみて、有
効通電面積が大きい高性能の反応能力を発揮する固体電
解質を提供しようとするものである。
In view of the above problems, the present invention aims to provide a solid electrolyte having a large effective current-carrying area and exhibiting high-performance reaction ability.

【0008】[0008]

【課題を解決するための手段】本発明は (1)両面に凹凸面を有する平板状固体電解質の凹部
に、それぞれ微粒または薄膜の正極材料及び負極材料を
付与してなることを特徴とする電解および燃料電池用固
体電解質。
Means for Solving the Problems (1) Electrolysis characterized in that fine particles or thin film positive electrode material and negative electrode material are applied to the concave portions of a plate-like solid electrolyte having concave and convex surfaces on both sides. And a solid electrolyte for a fuel cell.

【0009】(2)平板状固体電解質を15〜25%フ
ッ化水素酸、5〜15%硝酸の混酸に浸漬してその両面
に凹凸面を形成してなることを特徴とする上記(1)の
電解および燃料電池用固体電解質。
(2) The flat solid electrolyte is dipped in a mixed acid of 15 to 25% hydrofluoric acid and 5 to 15% nitric acid to form uneven surfaces on both sides thereof (1). Solid electrolyte for electrolysis and fuel cells.

【0010】(3)焼成前の平板状固体電解質前駆体の
両面に有機樹脂粒子を混入した固体電解質スラリを塗
布、焼成し、平板状固体電解質の両面に凹凸面を形成し
てなることを特徴とする上記(1)の電解および燃料電
池用固体電解質。
(3) The flat solid electrolyte precursor before firing is coated with a solid electrolyte slurry containing organic resin particles on both sides and fired to form uneven surfaces on both sides of the flat solid electrolyte. A solid electrolyte for electrolysis and a fuel cell according to (1) above.

【0011】(4)正極および負極の電極材料の付与が
無電解メッキによってなされることを特徴とする上記
(1)〜(3)いずれかに記載の電解および燃料電池用
固体電解質。
(4) The solid electrolyte for electrolysis and fuel cells according to any one of the above (1) to (3), characterized in that the electrode materials for the positive electrode and the negative electrode are applied by electroless plating.

【0012】(5)正極および負極の電極材料の付与が
電極材料の塩溶液を塗布した後、焼成熱分解することに
よってなされることを特徴とする上記(1)〜(3)い
ずれかに記載の電解および燃料電池用固体電解質。 である。
(5) The above-mentioned (1) to (3), wherein the application of the electrode material for the positive electrode and the negative electrode is performed by applying a salt solution of the electrode material and then pyrolyzing it. Solid electrolyte for electrolysis and fuel cells. Is.

【0013】すなわち、本発明においては正極に接する
固体電解質の表層を凹凸とし、凹凸部にも正極材料を付
与し、負極に接する固体電解質の表層を凹凸とし、凹凸
部にも負極材料を付与することによって、水蒸気分解反
応および酸素発生反応がおこる場所を広くした手段を採
ったものである。
That is, in the present invention, the surface layer of the solid electrolyte in contact with the positive electrode is made uneven, and the positive electrode material is applied to the uneven portion, and the surface layer of the solid electrolyte in contact with the negative electrode is made uneven, and the negative electrode material is applied to the uneven portion. Therefore, a means for widening the places where the steam decomposition reaction and the oxygen generation reaction occur is adopted.

【0014】[0014]

【作用】本発明による固体電解質は以下の作用をする。
以下、全体構成を示す図1及びその拡大図である図2に
従って説明する。まず水蒸気電解操作における本発明の
作用について説明する。固体電解質(例えば安定化ジル
コニア)1の負極(カソード)側表面に形成された凹凸
部においてはガス透過性と電極による電子導電性を合わ
せもっているので、固体電解質1との界面で下記の電極
反応(水蒸気分解反応)を起こし水素12を生成する。 H2 O + 2e → H2 + O2-
The solid electrolyte according to the present invention has the following functions.
Hereinafter, description will be given with reference to FIG. 1 showing the overall configuration and FIG. 2 which is an enlarged view thereof. First, the function of the present invention in the steam electrolysis operation will be described. Since the unevenness formed on the surface of the solid electrolyte (eg, stabilized zirconia) 1 on the negative electrode (cathode) side has both gas permeability and electronic conductivity by the electrode, the following electrode reaction at the interface with the solid electrolyte 1 is performed. (Steam decomposition reaction) is caused to generate hydrogen 12. H 2 O + 2e → H 2 + O 2-

【0015】ここで、H2 O(水蒸気)11は多孔質の
負極(電解時カソード)2を通過して凹凸形状をもつ固
体電解質1表面に到達する。また、電子eは電子導電性
をもつ負極(電解時カソード)2から凹凸形状をもつ固
体電解質1表面に供給される。電子を得た酸素イオンO
2-は固体電解質1中を移動して正極(電解時アノード)
3に向かう。正極(電解時アノード)3に到達した酸素
イオンO2-は凹凸部において、正極(電解時アノード)
3に電子eを放出し、酸素ガスを生成する。 O2- → 1/2O2 + 2e-
Here, the H 2 O (water vapor) 11 passes through the porous negative electrode (cathode during electrolysis) 2 and reaches the surface of the solid electrolyte 1 having an uneven shape. Further, the electrons e are supplied from the negative electrode (cathode during electrolysis) 2 having electronic conductivity to the surface of the solid electrolyte 1 having an uneven shape. Oxygen ion O that got an electron
2- moves in the solid electrolyte 1 and becomes a positive electrode (anode during electrolysis)
Head to 3. Oxygen ions O 2− that have reached the positive electrode (anode during electrolysis) 3 are positive and negative (anode during electrolysis) in the uneven portion.
Electrons e are emitted to 3 to generate oxygen gas. O 2- → 1 / 2O 2 + 2e -

【0016】このように、本発明においては、電極反応
が図4に示した従来法のように電極粒子と固体電解質の
表面に限られておらず、図2に示すように微粒子または
薄膜のあらゆる点で反応が起こる。
As described above, in the present invention, the electrode reaction is not limited to the surface of the electrode particles and the solid electrolyte as in the conventional method shown in FIG. 4, but any kind of fine particles or thin films as shown in FIG. The reaction occurs at the point.

【0017】燃料電池操作における本発明の作用につい
ても、以下に記述するように水蒸気電解操作と同様であ
る。正極(電池時カソード)3に到達した酸素ガスは凹
凸部において、正極(電池時カソード)3から電子eを
受領し、酸素イオンO2-を生成して固体電解質1を移動
し負極(電池時アノード)2に向かう。負極(電池時ア
ノード)2に到達した酸素イオンO2-は凹凸部におい
て、負極(電池時アノード)2に電子eを放出し、水素
ガスと反応して水蒸気を生成する。 H2 + O2- → H2 O + 2e-
The operation of the present invention in fuel cell operation is also similar to steam electrolysis operation as described below. The oxygen gas that has reached the positive electrode (cathode during battery) 3 receives electrons e from the positive electrode (cathode during battery) 3 in the uneven portion and generates oxygen ions O 2− to move in the solid electrolyte 1 to move to the negative electrode (during battery). Anode) 2. The oxygen ions O 2− that have reached the negative electrode (anode during battery) release electrons e to the negative electrode (anode during battery) 2 in the uneven portion and react with hydrogen gas to generate water vapor. H 2 + O 2- → H 2 O + 2e -

【0018】このように、燃料電池操作においても、電
極反応が従来のように大きな電極粒子と固体電解質の接
する僅かな場所に限られておらず、凹凸部全体で電極反
応が起こる。
As described above, also in the operation of the fuel cell, the electrode reaction is not limited to the small place where the large electrode particles and the solid electrolyte are in contact with each other as in the conventional case, but the electrode reaction occurs in the entire uneven portion.

【0019】[0019]

【実施例】本発明による実施例を図1に基づいて説明す
る。 (実施例1)固体電解質1は8mol%のイットリアで
安定化したジルコニアであり、0.5μmの粒子にアル
コールと界面活性剤を加えてスラリ化し、テフロンシー
ト上にこのスラリを乗せて自然乾燥させた後、1500
℃で1時間、空気中で焼成して得た。生成した安定化ジ
ルコニア板は75mm×75mmの平板であり、厚さは
250μmである。
Embodiment An embodiment according to the present invention will be described with reference to FIG. (Example 1) Solid electrolyte 1 is zirconia stabilized with 8 mol% of yttria. Alcohol and a surfactant are added to 0.5 μm particles to make a slurry, and the slurry is placed on a Teflon sheet and naturally dried. After 1500
It was obtained by firing in air at 0 ° C. for 1 hour. The generated stabilized zirconia plate is a 75 mm × 75 mm flat plate and has a thickness of 250 μm.

【0020】この固体電解質を20%フッ化水素酸と1
0%硝酸の混合酸液に60分浸漬し表面を粗面化する。
この混酸の濃度については、フッ化水素酸については1
5〜25%、硝酸については5〜15%の濃度範囲がよ
く、この濃度範囲以下であると凹凸にする効果が小さ
く、またこの濃度以上であると極度に処理時間を短くす
る必要があり、再現性のある操作が困難となる。このよ
うにして形成した凹凸をもつ固体電解質に次のようにし
て電極を形成した。
This solid electrolyte was mixed with 20% hydrofluoric acid and 1
The surface is roughened by immersion in a mixed acid solution of 0% nitric acid for 60 minutes.
Regarding the concentration of this mixed acid, 1 for hydrofluoric acid
The concentration range of 5 to 25% and nitric acid is preferably 5 to 15%. If it is less than this concentration range, the effect of making unevenness is small, and if it is more than this concentration, it is necessary to extremely shorten the treatment time. Reproducible operation becomes difficult. Electrodes were formed on the thus-formed solid electrolyte having irregularities as follows.

【0021】まず、片一方の面をポリエチレンシートと
シリコンシーラントで遮蔽し、露出した面を硝酸ニッケ
ルの液に浸漬した。これを大気中600℃に曝してNi
O粒子2″を析出させた。固体電解質1の凹部4に生成
した薄膜の断面を電子顕微鏡で観察して粒径0.5〜1
μmの粒子の生成を確認した。この層の上に負極2とし
てNiO60重量%とイットリア安定化ジルコニア(Y
SZ)40重量%を混合したスラリを常法のスクリーン
印刷法により施工した。
First, one surface was shielded with a polyethylene sheet and a silicone sealant, and the exposed surface was immersed in a solution of nickel nitrate. This is exposed to 600 ° C in the atmosphere and Ni
O particles 2 ″ were deposited. The cross section of the thin film formed in the concave portion 4 of the solid electrolyte 1 was observed with an electron microscope to give a particle size of 0.5 to 1
Generation of μm particles was confirmed. On this layer, as the negative electrode 2, 60% by weight of NiO and yttria-stabilized zirconia (Y
The slurry mixed with 40% by weight of SZ) was applied by a conventional screen printing method.

【0022】また、正極3としてはLa(NO3 3
Mn(NO3 4 とSr(NO3 2 を所定のモル比
(0.9:1.0:0.1)で混合した溶液を塗布し、
大気中600℃で焼成して粒径0.5〜1μmの微粒子
3″を得、この上にLaMnO 3 を常法のスクリーン印
刷法により施工した。これを1300℃で焼成して燃料
電池セルおよび水蒸気分解セルを製造した。
As the positive electrode 3, La (NO3)3When
Mn (NO3)FourAnd Sr (NO3) 2The given molar ratio
Apply the mixed solution at (0.9: 1.0: 0.1),
Fine particles with a particle size of 0.5 to 1 μm after firing in air at 600 ° C.
3 ″ is obtained, and LaMnO is added on this. 3The conventional screen mark
It was constructed by the printing method. This is burned at 1300 ° C and fueled
Battery cells and steam cracking cells were manufactured.

【0023】(実施例2)固体電解質1は8mol%の
イットリアで安定化したジルコニアであり、0.5μm
の粒子にアルコールと界面活性剤を加えてスラリ化し、
テフロンシート上にこのスラリを乗せて自然乾燥させた
(この固体電解質を中層膜とする。)。続いて同様な組
成のスラリに粒径0.5〜1μmのスチレン粒子を10
重量%添加したスラリを作り、上記の中層膜の両側に塗
布し、これを1500℃で1時間、空気中で焼成して固
体電解質膜1を得た。
Example 2 Solid electrolyte 1 is zirconia stabilized with 8 mol% yttria and has a thickness of 0.5 μm.
Add alcohol and a surfactant to the particles to make a slurry,
The slurry was placed on a Teflon sheet and naturally dried (this solid electrolyte serves as an intermediate layer film). Subsequently, 10 parts of styrene particles having a particle size of 0.5 to 1 μm were added to a slurry having the same composition.
A slurry with a weight% added was prepared and applied to both sides of the above-mentioned middle layer membrane, and this was baked in air at 1500 ° C. for 1 hour to obtain a solid electrolyte membrane 1.

【0024】生成した安定化ジルコニア板は75mm×
75mmの平板で、厚さは250μmであり、上層、下
層は添加したスチレンが燃焼消滅した後は多孔性であ
り、その凹凸はそれぞれ約5μmであった。これに実施
例1と同様な方法で負極を施工した。また正極3として
もLaMnO3 を、実施例1と同じ方法で施工した。こ
れを1300℃で焼成して燃料電池セルおよび水蒸気分
解セルを製造した。
The resulting stabilized zirconia plate is 75 mm x
It was a flat plate of 75 mm, the thickness was 250 μm, the upper layer and the lower layer were porous after the added styrene was burnt out, and the unevenness was about 5 μm. A negative electrode was applied to this in the same manner as in Example 1. Also the LaMnO 3 as a positive electrode 3, was constructed in the same manner as in Example 1. This was fired at 1300 ° C. to manufacture a fuel cell and a steam decomposition cell.

【0025】(実施例3)実施例1で説明した方法で製
造した凹凸をもつ固体電解質に対して、常法でNiの無
電解メッキを行い、厚さ1〜3μm前後のNi薄膜2″
を得、この上に実施例1と同様な方法で負極材料を塗布
焼成して負極2を施工した。また正極3としてもLaM
nO3 を、実施例1と同じ方法で施工した。これを13
00℃で焼成して燃料電池セルおよび水蒸気分解セルを
製造した。
(Embodiment 3) The solid electrolyte having irregularities manufactured by the method described in Embodiment 1 is electrolessly plated with Ni by a conventional method to form a Ni thin film 2 ″ having a thickness of about 1 to 3 μm.
Then, a negative electrode material was applied and fired thereon in the same manner as in Example 1 to construct the negative electrode 2. Also, as the positive electrode 3, LaM
nO 3 was applied in the same manner as in Example 1. This is 13
The fuel cell and the steam decomposition cell were manufactured by firing at 00 ° C.

【0026】[0026]

【発明の効果】本発明により下記の効果が奏される。 (1)性能が向上する。すなわち、従来法による反応面
積は電極粒子と固体電解質が接する所に限定されるが、
本発明においては固体電解質表面の全域において反応が
可能なためである。 (2)固体電解質の耐久性が向上する。すなわち、水蒸
気電解操作の場合、固体電解質に加わる電位が卑になる
と、具体的には空気を参照極とする負極電位がおよそ−
2.8V以下になると安定化ジルコニアが金属ジルコニ
アに還元される現象がおこる。本発明においては、反応
が固体電解質の全表面で起こるため、局部的に電流が集
中しない。そのため、電位が従来法に比べて貴に保つこ
とができ、これは固体電解質の耐久性の向上に寄与す
る。また、正極側もポーラスであるため、酸素ガスが発
生しても速やかに排出される。従来例であると、発生し
た酸素ガスにより、アノード粒子がもち上げられ、アノ
ード膜が剥離する可能性があるが、本発明においては発
生部分が前表面にわたり、かつアノード粒子をもち上げ
るようには力が働かないため、耐久性が向上する。
The present invention has the following effects. (1) Performance is improved. That is, the reaction area by the conventional method is limited to the place where the electrode particles and the solid electrolyte are in contact,
This is because, in the present invention, the reaction is possible over the entire surface of the solid electrolyte. (2) The durability of the solid electrolyte is improved. That is, in the case of steam electrolysis operation, when the potential applied to the solid electrolyte becomes base, specifically, the negative electrode potential using air as a reference electrode is approximately −
At 2.8 V or less, a phenomenon occurs in which the stabilized zirconia is reduced to metallic zirconia. In the present invention, since the reaction occurs on the entire surface of the solid electrolyte, the current is not locally concentrated. Therefore, the potential can be kept more noble as compared with the conventional method, which contributes to improvement in durability of the solid electrolyte. Further, since the positive electrode side is also porous, even if oxygen gas is generated, it is quickly discharged. In the conventional example, the generated oxygen gas may raise the anode particles and peel off the anode film, but in the present invention, the generation portion extends over the front surface and the anode particles are raised. Since the force does not work, durability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係わる固体電解質型水蒸
気電解装置及び固体電解質型燃料電池の原理図。
FIG. 1 is a principle diagram of a solid oxide steam electrolyzer and a solid oxide fuel cell according to a first embodiment of the present invention.

【図2】本発明実施例の水蒸気電解装置の負極付近で起
こる現象の説明図。
FIG. 2 is an explanatory diagram of a phenomenon that occurs in the vicinity of the negative electrode of the steam electrolyzer of the example of the present invention.

【図3】従来の水蒸気電解装置及び固体電解質型燃料電
池の原理図。
FIG. 3 is a principle diagram of a conventional steam electrolysis device and a solid oxide fuel cell.

【図4】従来の水蒸気電解装置の負極付近で起こる現象
の説明図。
FIG. 4 is an explanatory diagram of a phenomenon that occurs near a negative electrode of a conventional steam electrolyzer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武信 弘一 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 松平 恒昭 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koichi Takenobu, Koichi Takenobu 1-1-1, Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Tsuneaki Matsudaira Kazu, Hyogo-ku, Kobe-shi, Hyogo 1-1-1, Tasakicho Mitsubishi Heavy Industries Ltd. Kobe Shipyard

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 両面に凹凸面を有する平板状固体電解質
の凹部に、それぞれ微粒または薄膜の正極材料及び負極
材料を付与してなることを特徴とする電解および燃料電
池用固体電解質。
1. A solid electrolyte for electrolysis and a fuel cell, characterized in that a positive electrode material and a negative electrode material, which are fine particles or thin films, are applied to the concave portions of a flat plate-shaped solid electrolyte having concave and convex surfaces on both sides, respectively.
【請求項2】 平板状固体電解質を15〜25%フッ化
水素酸、5〜15%硝酸の混酸に浸漬してその両面に凹
凸面を形成してなることを特徴とする請求項1の電解お
よび燃料電池用固体電解質。
2. A flat solid electrolyte is immersed in a mixed acid of 15 to 25% hydrofluoric acid and 5 to 15% nitric acid to form uneven surfaces on both surfaces thereof. And a solid electrolyte for a fuel cell.
【請求項3】 焼成前の平板状固体電解質前駆体の両面
に有機樹脂粒子を混入した固体電解質スラリを塗布、焼
成し、平板状固体電解質の両面に凹凸面を形成してなる
ことを特徴とする請求項1の電解および燃料電池用固体
電解質。
3. A plate-like solid electrolyte precursor before firing is coated with a solid electrolyte slurry containing organic resin particles on both sides and fired to form uneven surfaces on both sides of the plate-like solid electrolyte. A solid electrolyte for electrolysis and a fuel cell according to claim 1.
【請求項4】 正極および負極の電極材料の付与が無電
解メッキによってなされることを特徴とする請求項1〜
3いずれかに記載の電解および燃料電池用固体電解質。
4. The electrode material for the positive electrode and the negative electrode is applied by electroless plating.
3. The solid electrolyte for electrolysis and fuel cells according to any one of 3 above.
【請求項5】 正極および負極の電極材料の付与が電極
材料の塩溶液を塗布した後、焼成熱分解することによっ
てなされることを特徴とする請求項1〜3いずれかに記
載の電解および燃料電池用固体電解質。
5. The electrolysis and fuel according to any one of claims 1 to 3, wherein the application of the electrode material for the positive electrode and the negative electrode is performed by applying a salt solution of the electrode material and then pyrolyzing it. Solid electrolyte for batteries.
JP4240446A 1992-09-09 1992-09-09 Solid electrolyte with porous surface Withdrawn JPH0689736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4240446A JPH0689736A (en) 1992-09-09 1992-09-09 Solid electrolyte with porous surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4240446A JPH0689736A (en) 1992-09-09 1992-09-09 Solid electrolyte with porous surface

Publications (1)

Publication Number Publication Date
JPH0689736A true JPH0689736A (en) 1994-03-29

Family

ID=17059623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4240446A Withdrawn JPH0689736A (en) 1992-09-09 1992-09-09 Solid electrolyte with porous surface

Country Status (1)

Country Link
JP (1) JPH0689736A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2729400A1 (en) * 1995-01-18 1996-07-19 Univ Paris Curie Plasma-assisted deposition of metal oxide thin film
JP2004507862A (en) * 2000-05-18 2004-03-11 コーニング インコーポレイテッド Roughened electrolyte interface layer for solid oxide fuel cells
JP2011150932A (en) * 2010-01-22 2011-08-04 Tomosuke Okumura Electrode formed on surface of solid electrolyte, fuel cell including the same, hydrogen generator, and selective hydrogen permeation device
JPWO2021020423A1 (en) * 2019-07-29 2021-02-04
US11038199B2 (en) 2018-09-06 2021-06-15 Samsung Electronics Co., Ltd. Solid electrolyte, method of preparing the same, and secondary battery including the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2729400A1 (en) * 1995-01-18 1996-07-19 Univ Paris Curie Plasma-assisted deposition of metal oxide thin film
JP2004507862A (en) * 2000-05-18 2004-03-11 コーニング インコーポレイテッド Roughened electrolyte interface layer for solid oxide fuel cells
JP2011150932A (en) * 2010-01-22 2011-08-04 Tomosuke Okumura Electrode formed on surface of solid electrolyte, fuel cell including the same, hydrogen generator, and selective hydrogen permeation device
US11038199B2 (en) 2018-09-06 2021-06-15 Samsung Electronics Co., Ltd. Solid electrolyte, method of preparing the same, and secondary battery including the same
US11949065B2 (en) 2018-09-06 2024-04-02 Samsung Electronics Co., Ltd. Solid electrolyte, method of preparing the same, and secondary battery including the same
JPWO2021020423A1 (en) * 2019-07-29 2021-02-04

Similar Documents

Publication Publication Date Title
Perednis et al. Solid oxide fuel cells with electrolytes prepared via spray pyrolysis
US5942349A (en) Fuel cell interconnect device
JP2695641B2 (en) Method for manufacturing solid electrolyte fuel cell
US20070072046A1 (en) Electrochemcial cell structures and methods of making the same
JPH01189866A (en) Electrode for fuel cell and manufacture thereof
JP2009245897A (en) Solid oxide fuel cell and method of manufacturing the same
JP2001351642A (en) Separator for fuel cell
JP3262408B2 (en) Gas electrode manufacturing method
Kordesch et al. Engineering concepts and technical performance of oxygen-reducing electrodes for batteries and electrochemical processes
US20060234039A1 (en) Metal-coated carbon surfaces for use in fuel cells
JP2001357859A (en) Separator for fuel cell
JPH0689736A (en) Solid electrolyte with porous surface
US7691770B2 (en) Electrode structure and methods of making same
RU2197039C2 (en) Solid-oxide fuel cell and its manufacturing process
RU2000127888A (en) SOLID-OXIDE FUEL ELEMENT AND METHOD FOR ITS MANUFACTURE
JPH0757747A (en) Solid electrolyte with mixed conductivity given to surface of nagative electrode
US11133510B2 (en) Anode for an electrochemical cell and method for producing an electrochemical cell comprising such an anode
JP4342267B2 (en) Solid oxide fuel cell and method for producing the same
JPH1021934A (en) Electrode for fuel cell
JP3297610B2 (en) Manufacturing method of solid oxide fuel cell
US20240141500A1 (en) Production method for a catalyst-coated three-dimensionally structured electrode
JP5211531B2 (en) Solid oxide fuel cell
JP2012174427A (en) Method for manufacturing fuel cell
JP3981718B2 (en) Method for producing a porous substrate having a dense solid oxide film formed on the surface
RU2128385C1 (en) Solid-oxide fuel cell electrode and its manufacturing process

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130