JPH0689403B2 - Method for manufacturing unidirectional silicon steel sheet - Google Patents

Method for manufacturing unidirectional silicon steel sheet

Info

Publication number
JPH0689403B2
JPH0689403B2 JP21838288A JP21838288A JPH0689403B2 JP H0689403 B2 JPH0689403 B2 JP H0689403B2 JP 21838288 A JP21838288 A JP 21838288A JP 21838288 A JP21838288 A JP 21838288A JP H0689403 B2 JPH0689403 B2 JP H0689403B2
Authority
JP
Japan
Prior art keywords
annealing
coil
winding
silicon steel
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21838288A
Other languages
Japanese (ja)
Other versions
JPH0270020A (en
Inventor
勝生 岩本
嘉明 飯田
文二郎 福田
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP21838288A priority Critical patent/JPH0689403B2/en
Publication of JPH0270020A publication Critical patent/JPH0270020A/en
Publication of JPH0689403B2 publication Critical patent/JPH0689403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、主として電力トランスの鉄心に用いられる一
方向性けい素鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for manufacturing a unidirectional silicon steel sheet mainly used for an iron core of a power transformer.

〈従来の技術〉 一方向性けい素鋼板に要求される磁気特性は高い磁束密
度と低い鉄損値であり、一般に磁束密度はB10(T)
で、また鉄損はW17/50(w/kg)の値で評価されることが
多い。
<Prior Art> The magnetic properties required for a unidirectional silicon steel sheet are a high magnetic flux density and a low iron loss value. Generally, the magnetic flux density is B 10 (T).
In addition, iron loss is often evaluated by the value of W17 / 50 (w / kg).

従来、鉄損を低減させる方法として、Si含有量を高める
とか、成品厚を薄くする,成品の不純物を少なくする,2
次再結晶粒方位の(110)〔001〕方位いわゆるゴス方位
への集積度を高める、あるいは2次再結晶粒を小さくす
るなどの方法が知られている。
Conventionally, as a method of reducing iron loss, increase Si content, reduce product thickness, reduce product impurities, 2
It is known to increase the degree of integration of the secondary recrystallized grain orientation in the (110) [001] orientation, the so-called Goss orientation, or to reduce the secondary recrystallized grain orientation.

上記鉄損改善方法のうち、成品の不純物を少なくする方
法として、特開昭61−177320号公報に開示されているよ
うな二次再結晶粒から成るSiを2.5〜4.5%含有するけい
素鋼帯を、水素ガスを主とした雰囲気中で、1100〜1250
℃で3時間以上均熱し、純化ならびにフォルステライト
被膜形成焼鈍を行なう製造方法において、均熱サイクル
の前期において、水素ガス雰囲気中にO2,H2Oガスを単
独あるいは複合混入させ、その雰囲気露点DP(℃)と前
記均熱温度T1(℃)の間に1100T11250かつ を満足させ、さらに前期温度を後期温度より5℃以上高
くすることで鋼中の硫化物,セレン化物,窒化物析出分
散相を溶体化し、鋼板表面に拡散させ、鉄損値と被膜形
成を改善する方法が開示されている。
Among the methods for improving iron loss, as a method for reducing impurities in the product, silicon steel containing 2.5 to 4.5% of Si composed of secondary recrystallized grains as disclosed in JP-A-61-177320. The belt is 1100-1250 in an atmosphere mainly composed of hydrogen gas.
In a manufacturing method in which soaking is performed at ℃ for 3 hours or more, and purification and forsterite film formation annealing are performed, in the first half of the soaking cycle, O 2 and H 2 O gas are mixed individually or in combination in the hydrogen gas atmosphere, and the dew point of the atmosphere is mixed. 1100T 1 1250 between DP (℃) and the soaking temperature T 1 (℃) Is satisfied, and the sulfide, selenide, and nitride precipitation dispersed phases in the steel are solutionized by increasing the initial temperature by 5 ° C or more than the latter temperature, and diffused to the steel sheet surface, improving the iron loss value and film formation. A method of doing so is disclosed.

また、特開昭62−270724号公報には、マグネシアを主体
とした焼鈍分離剤をいったんスラリー状にした後、塗
布,乾燥することによる湿式塗布量(下塗り塗布量)を
鋼板の両面で1〜12g/m2の範囲にし、その上に両面当り
6〜20g/m2のマグネシアを乾式静電塗布する方法が開示
されている。
Further, Japanese Patent Laid-Open No. 62-270724 discloses that an annealing separator mainly composed of magnesia is once made into a slurry and then applied and dried to obtain a wet application amount (undercoat application amount) of 1 to 2 on both sides of a steel sheet. the range of 12 g / m 2, a method of applying a dry electrostatic magnesia sided per 6~20g / m 2 thereon is disclosed.

また特開昭62−70523号公報には、インナーカバー内の
コイル受台上に方向性けい素鋼板コイルを巻軸方向を垂
直に載置し、中央下部より高温雰囲気ガスを供給して焼
鈍する際に、内巻部肉厚の厚みに対する最適な内巻部巻
取張力で内巻部を巻取り、外巻部は内巻部に付与した張
力より低く、かつ5〜10kg/mm2の巻取張力で巻取ってコ
イルを作成した状態で焼鈍する方法が開示されている。
Further, in Japanese Patent Laid-Open No. 62-70523, a grain-oriented silicon steel plate coil is placed vertically on the coil receiving base in the inner cover, and a high temperature atmospheric gas is supplied from the lower center to anneal. At this time, the inner winding part is wound with the optimum inner winding part winding tension for the thickness of the inner winding part, and the outer winding part is lower than the tension applied to the inner winding part and is 5 to 10 kg / mm 2 . It discloses a method of annealing in a state where a coil is formed by winding with a tension.

しかしながら、特開昭61−177320号公報では、複雑な仕
上焼鈍ヒートサイクルやガス雰囲気,露点制御を必要と
し、確かに鋼中の不純物が減少して磁性も改善されては
いるが、鋼中の不純物量がフォルステライト被膜中にト
ラップされておれば、実機組立後800℃×3〜5Hrの歪取
焼鈍によって、フォルステライト被膜から地鉄へ硫化
物,セレン化物,窒化物等不純物成分が容易に析出して
実機特性を大幅に劣化させるために、歪取焼鈍を必要と
しない積鉄芯用にしか使用できないという問題があっ
た。
However, in JP-A-61-177320, complicated finish annealing heat cycle, gas atmosphere and dew point control are required, and although impurities in the steel are certainly reduced and the magnetism is improved, If the amount of impurities is trapped in the forsterite coating, after the assembly of the actual equipment, strain relief annealing at 800 ℃ × 3-5Hr makes it easy for impurities such as sulfides, selenides, nitrides, etc. There is a problem that it can be used only for a laminated iron core that does not require strain relief annealing because it precipitates and significantly deteriorates the characteristics of the actual machine.

また、特開昭62−270724号公報の分離剤塗布方法は、仕
上焼鈍中における二次再結晶を安定化し、成品の磁束密
度を高め、かつ短時間で終了する仕上焼鈍方法を提供す
ることを目的としているが、湿式による下塗り塗布を経
てその上に一定量のMgOを乾式塗布後、コイルに巻取る
際コイル板間の距離を20μ以上とする、もしくはコイル
板間の焼鈍分離剤の充填率を0.9g/cm2以下にする、又は
更にMgO中に窒化フェロマンガンを加える、仕上焼鈍の
雰囲気中の窒素ガス量の規制、仕上焼鈍の昇熱速度を規
制する等複雑な工程を経ねばならず、更に成分組成がス
ラブ低温加熱機に限定されている等、問題点が多い。
Further, the separating agent coating method of JP-A-62-270724 is to provide a finishing annealing method that stabilizes secondary recrystallization during finishing annealing, increases the magnetic flux density of the product, and finishes in a short time. The purpose is to make the distance between coil plates 20 μm or more when winding a coil after dry coating a certain amount of MgO on it after applying a wet base coat, or filling ratio of annealing separator between coil plates. Is 0.9 g / cm 2 or less, or ferromanganese nitride is further added to MgO, the nitrogen gas amount in the atmosphere of the finish annealing is regulated, and the heating rate of the finish annealing is regulated. However, there are many problems such as the fact that the component composition is limited to the slab low temperature heater.

コイルのボックス焼鈍に先立ちコイルの内巻部の張力を
外巻部より強く巻取る特開昭61−177320号公報は、本発
明法と正反対の方法を開示しているが、この発明は方向
性けい素鋼板の磁性改善を目的とするものではなく、仕
上焼鈍におけるコイルのつぶれと耳伸発生を防止するこ
とが主目的であり、逆に磁気特性においては劣化してい
る。
Japanese Unexamined Patent Publication No. 61-177320, in which the tension of the inner winding portion of the coil is wound stronger than that of the outer winding portion prior to box annealing of the coil, discloses a method which is the opposite of the method of the present invention. It is not intended to improve the magnetism of the silicon steel sheet, but the main purpose is to prevent the coil from collapsing and the occurrence of ear extension during finish annealing, and conversely, the magnetic characteristics are deteriorated.

〈発明が解決しようとする課題〉 本発明は以上の事情に鑑みてなされたもので、複雑な工
程を必要とせず効率的に、コイル全長に亘り、すぐれた
磁気特性を均一に有する一方向性けい素鋼板を製造する
方法を提供するものである。
<Problems to be Solved by the Invention> The present invention has been made in view of the above circumstances, and it is a unidirectional one having excellent magnetic characteristics uniformly over the entire length of the coil efficiently without requiring complicated steps. A method for manufacturing a silicon steel sheet is provided.

〈課題を解決するための手段〉 即ち本発明は、重量%で、C:0.020〜0.080%,Si:2.5〜
4.0%,Mn:0.03〜0.15%ならびにS及びSeのいずれか1
種又は2種合計で0.008〜0.080%を含むけい素鋼素材ス
ラブを熱間圧延し、1回又は中間焼鈍を挟む2回の冷間
圧延を最終冷延圧下率40〜80%で施して最終板厚に仕上
げたのち、脱炭焼鈍しついで焼鈍分離剤を塗布乾燥して
コイルに巻取り、最終仕上焼鈍を施す一連の工程よりな
る一方向性けい素鋼板の製造方法において、該焼鈍分離
剤を塗布するに際に、塗布量を鋼板両面合計量で8g/m2
以上とし、かつ鋼帯中央部よりコイル内巻部の塗布量を
外巻部よりその平均値で10%以上多くした一方向性けい
素鋼板の製造方法、若しくはコイルに巻取る際に、鋼帯
中央部より内巻部の巻取り張力を3〜12kg/mm2の範囲
で、かつ外巻部の巻取り張力より10%以上低くして巻取
る一方向性けい素鋼板の製造方法、又は重量%で、C:0.
020〜0.080%,Si:2.5〜4.0%,Mn:0.03〜0.15%,S及びSe
のいずれか1種又は2種合計で0.008〜0.080%,酸可溶
性Al:0.010〜0.070%,N:0.0035〜0.0140%を含むけい素
鋼素材スラブを熱間圧延し、熱延板を焼鈍後、圧下率80
〜95%の冷間圧延を施し、最終板厚に仕上げたのち、脱
炭焼鈍し、ついで焼鈍分離剤を塗布乾燥してコイルに巻
取り、最終仕上焼鈍を施す一連の工程よりなる一方向性
けい素鋼板の製造方法において、該焼鈍分離剤を塗布す
るに際に、塗布量を鋼板両面合計量で8g/m2以上とし、
かつ鋼帯中央部よりコイル内巻部の塗布量を外巻部より
その平均値で10%以上多くした一方向性けい素鋼板の製
造方法、若しくはコイルに巻取る際に、鋼帯中央部より
内巻部の巻取り張力を3〜12kg/mm2の範囲で、かつ外巻
部の巻取り張力より10%以上低くして巻取る一方向性け
い素鋼板の製造方法である。
<Means for Solving the Problems> That is, the present invention, in% by weight, C: 0.020 ~ 0.080%, Si: 2.5 ~
4.0%, Mn: 0.03 to 0.15% and either S or Se 1
Slabs containing 0.008 to 0.080% in total of two or two kinds are hot-rolled, and cold-rolled once or twice with intermediate annealing at the final cold rolling reduction of 40-80%. In the method for producing a unidirectional silicon steel sheet, which comprises a series of steps of applying decarburization annealing, then applying an annealing separating agent after drying to a sheet thickness, winding it into a coil, and performing final finishing annealing, When applying, the application amount is 8 g / m 2 in total on both sides of the steel plate.
Above, and the method of manufacturing a unidirectional silicon steel sheet in which the coating amount of the coil inner winding part from the central part of the steel strip is increased by 10% or more on average from the outer winding part, or when winding the steel strip into the coil A method for producing a unidirectional silicon steel sheet in which the winding tension of the inner winding portion is in the range of 3 to 12 kg / mm 2 from the center portion and is 10% or more lower than the winding tension of the outer winding portion, or the weight. %, C: 0.
020 ~ 0.080%, Si: 2.5 ~ 4.0%, Mn: 0.03 ~ 0.15%, S and Se
1 or 2 in total 0.008-0.080%, acid-soluble Al: 0.010-0.070%, N: 0.0035-0.0140% hot-rolled silicon steel material slab containing 0.0035-0.0140%, after annealing the hot-rolled sheet, Reduction rate 80
~ 95% cold rolling to finish to the final thickness, decarburization annealing, then apply annealing separator and dry, wind on coil, final anneal In the method for producing a silicon steel sheet, when applying the annealing separator, the coating amount is 8 g / m 2 or more in terms of the total amount of both sides of the steel sheet,
And the manufacturing method of the unidirectional silicon steel sheet in which the coating amount of the coil inner winding part is 10% or more larger than that of the outer winding part by the average value from the central part of the steel strip, or from the central part of the steel strip when winding the coil. This is a method for producing a unidirectional silicon steel sheet which is wound with the winding tension of the inner winding portion in the range of 3 to 12 kg / mm 2 and lower than the winding tension of the outer winding portion by 10% or more.

〈作用〉 以下この発明を具体的に説明する。<Operation> The present invention will be specifically described below.

まずこの発明に至った経緯について説明する。First, the background of the invention will be described.

C:0.046wt%(以下%で示す),Si:3.29%,Mn:0.080%,
S:0.021%,Se:0.018%を含み残部実質的にFeよりなるけ
い素鋼スラブを1380℃,1Hr加熱後2.2mm厚に熱延し、950
℃で2min焼鈍後酸洗して0.63mm厚に冷延し、ついで980
℃で1.5minの中間焼鈍後、冷延率65%で0.22mm厚に仕上
げた。次に脱脂後、湿水素中で830℃で3分の脱炭,1次
再結晶焼鈍を施し、MgOにTiO2を1.5%配合した焼鈍分離
剤を、片面3.5g/m2、両面で7g/m2塗布,乾燥した後、全
長に亘り7.5kg/mm2の張力でコイル状に巻取り、最終仕
上焼鈍をドライN2中で840℃で35H保持の2次再結晶焼鈍
後、ドライH2雰囲気中で1200℃で10hの純化焼鈍により
施した。焼鈍分離剤を除去した後張力コーティングを施
し、フラットニング焼鈍後、エプスタイン試験片サイズ
(30×280mm)に剪断後、ドライN2雰囲気中で800℃×3H
の歪取焼鈍を施した。
C: 0.046wt% (shown in% below), Si: 3.29%, Mn: 0.080%,
A silicon steel slab containing S: 0.021%, Se: 0.018% and the balance consisting essentially of Fe was heated at 1380 ° C for 1 hour and hot-rolled to a thickness of 2.2 mm, 950
After annealing at ℃ for 2min, pickling, cold rolling to 0.63mm thickness, then 980
After 1.5 minutes of intermediate annealing at ℃, finished with a cold rolling rate of 65% to a thickness of 0.22 mm. Next, after degreasing, decarburization in wet hydrogen at 830 ° C for 3 minutes and primary recrystallization annealing were carried out, and an annealing separator containing 1.5% of TiO 2 in MgO was used, 3.5 g / m 2 on one side and 7 g on both sides. / m 2 coating, after drying, winding coiled tension of 7.5 kg / mm 2 over the entire length, after the secondary recrystallization annealing 35H holding the final annealing at 840 ° C. in a dry N 2, dry H It was subjected to purification annealing at 1200 ° C for 10 hours in two atmospheres. After removing the annealing separator, tension coating is applied, and after flattening annealing, it is sheared to an Epstein test piece size (30 x 280 mm) and then 800 ° C x 3H in a dry N 2 atmosphere.
Was subjected to strain relief annealing.

第1表に、コイル長さ方向における純化焼鈍後のフォル
ステライト被膜付成品板のS,Se,Tiの分析値と、歪取焼
鈍後の磁気特性B10(T),W17/50(w/kg)を平均して示
した。コイル長さ方向の分析値を内巻部平均と外巻部平
均で比較してみる(この場合の内巻部とはコイル長1/2
の内巻側、外巻部とはコイル長1/2の外巻側を意味す
る)と外巻部のS,Se,Ti量が最も少なく、内巻部では外
巻部の約2.5倍程度に多く、磁性は不純物量の多い内巻
部が外巻,中巻に比べて著しく悪い。
Table 1 shows the analysis values of S, Se, and Ti of the forsterite-coated product sheet after purification annealing in the coil length direction and the magnetic properties B 10 (T), W17 / 50 (w / (kg) is shown as an average. Compare the analysis values in the coil length direction with the average of the inner winding and the average of the outer winding (in this case, the inner winding is 1/2 the coil length).
The inner winding side and the outer winding portion mean the outer winding side with a coil length of 1/2) and the amount of S, Se, and Ti in the outer winding portion is the smallest, and the inner winding portion is about 2.5 times the outer winding portion. In addition, the inner winding part with a large amount of impurities is significantly worse than the outer and middle winding parts.

この結果から、仕上焼鈍において、内巻部の純化が悪く
磁性劣化を招いていることが明白である。この原因は、
コイル状で仕上焼鈍する際、昇熱されると共に板は膨張
するが、内巻は中巻側にかけて巻じまりとなってコイル
層間のガス流通性が著しく低下する。とくに焼鈍分離剤
の主成分のMgO の脱水が400℃近辺で生じて著しく酸化性となり、引続
く昇熱〜2次再結晶低温保定段階で、Mn,S,Seのインヒ
ビター成分の鋼板表面濃化が生じて抑制力が低下するこ
とや、引続く仕上焼鈍後段の高温純化焼鈍における純化
不良が相俟って磁性が低下するのに対し、外巻部は層間
隔が確保されて、ガス流通性がよく、Mn,S,Seのインヒ
ビター成分の表面濃化もなく、純化が促進されて目的と
した磁気特性が得られると考えられる。
From this result, it is clear that in the finish annealing, the inner winding portion was poorly purified, resulting in deterioration of magnetism. The cause is
When the coil is finish-annealed, the plate is expanded and the plate is expanded, but the inner winding is wound toward the middle winding side, and the gas flowability between the coil layers is significantly reduced. Especially MgO, the main component of annealing separator Dehydration occurs at around 400 ℃ and becomes extremely oxidative, and during the subsequent heat-up to secondary recrystallization low-temperature retention stage, the inhibitory power decreases due to thickening of the Mn, S, Se inhibitor components on the steel plate surface. Or, while the magnetic properties are reduced due to the poor purification in the subsequent high-temperature purification annealing of the subsequent finish annealing, the outer winding portion has a layer spacing ensured, the gas flowability is good, and Mn, S, Se It is considered that the purifying process is promoted and the desired magnetic properties are obtained without the surface concentration of the inhibitor component.

本発明者らは、内巻部のガス通気性改善方法として、内
巻部の焼鈍分離剤の塗布量を外巻部より厚く塗布する
か、あるいは巻取り張力を軽減することに着眼した。
As a method for improving gas permeability of the inner winding portion, the present inventors have focused on applying a greater amount of the annealing separating agent to the inner winding portion than the outer winding portion or reducing the winding tension.

第1表に用いた脱炭焼鈍後の切板を用いて、MgO中にTiO
2を1.5%添加した焼鈍分離剤を塗布する際、3〜15g/m2
と20g/m2に塗布し、乾燥後、コイルの内巻部と外巻部に
巻込んだ。
Using the cut plate after decarburization annealing used in Table 1, TiO was added to MgO.
When applying the annealing separator with 1.5% of 2 added, 3 ~ 15g / m 2
And 20 g / m 2 and dried, and then wound on the inner and outer winding parts of the coil.

コイルをドライN2で850℃×30h保定後、ドライH2中で12
00℃×10hの純化焼鈍を行なった後、焼鈍分離剤を除去
してフォルステライト被膜付成分の分析と、張力コーテ
ィング,フラットニング処理した板をエプスタインサイ
ズに剪断し、ドライN2中で800℃×3hの歪取焼鈍を施し
0.5kgの試料で磁気特性W17/50(w/kg)値を測定した。
Hold the coil in dry N 2 at 850 ℃ for 30h, then in dry H 2 for 12 hours.
After carrying out purification annealing at 00 ℃ × 10h, remove the annealing separator and analyze the components with forsterite coating, and shear the plate subjected to tension coating and flattening to Epstein size, and dry in N 2 at 800 ℃. X3h stress relief annealing
The magnetic property W17 / 50 (w / kg) value was measured with a 0.5 kg sample.

第1図の上段に、S,Se,Tiの膜付成分のトータル分析値
と、下段にW17/50(w/kg)値について、塗布量変化に伴
う変化を○印外巻部,●印内巻部で示した。第1図から
明らかなように、コイルの内巻部は塗布量が8g/m2以に
なると不純物量が減少し始め、10g/m2では3〜7g/m2
ほぼ1/2に減少している。更に11〜15g/m2に増すととも
に純化が進み、コイルの外と同水準になり鉄損値も純化
に相応して同水準の良好な値を示している。外巻は、7g
/m2以下の塗布量でも純化程度は内巻部より大幅に良い
が、8g/m2以上で純化は更に進み鉄損値も改善されてい
る。なお、塗布量は更に増しても効果は同じであるが、
焼鈍分離剤のコストを考慮するならば、両面合計で15g/
m2までが有利である。またコイル全長に亘り均一な磁気
特性を得るためには内巻側と外巻側の塗布量の差を10%
以上にすることが必要である。例えばコイルの内巻側1/
2を平均で両面合計12g/m2に塗布し、外巻にかけて連続
的に減じて外巻部1/2の平均の塗布量を両面合計で9g/m2
に塗布する方法、或いは、内巻部1/2を平均で両面合計9
g/m2塗布し外巻1/2を平均で10%減の8.1g/m2に段階的に
塗布すれば良い。
The upper part of Fig. 1 shows the total analysis values of the components with S, Se, and Ti films, and the lower part shows the changes with the coating amount for the W17 / 50 (w / kg) value. It is shown in the inner part. As is apparent from Figure 1, the inner winding portion of the coil began impurity amount when the amount of coating is 8 g / m 2 or more is reduced, decreased almost half of 10 g / m 2 in 3 to 7 g / m 2 is doing. With further increase to 11 to 15 g / m 2 , purification progressed to the same level as outside the coil, and the iron loss value also showed a good value at the same level as the purification. The outer volume is 7g
Even if the coating amount is less than / m 2, the degree of purification is much better than that of the inner winding part, but at 8g / m 2 or more, the purification progresses further and the iron loss value is improved. The effect will be the same even if the coating amount is increased,
If the cost of the annealing separator is taken into consideration, 15g /
Up to m 2 is advantageous. Also, in order to obtain uniform magnetic properties over the entire length of the coil, the difference in the applied amount between the inner winding side and the outer winding side is 10%.
It is necessary to do above. For example, the inner winding side of the coil 1 /
2 is applied to the total of 12g / m 2 on both sides on average, and continuously reduced over the outer winding to reduce the average coating amount of the outer winding part 1/2 to 9g / m 2 on both sides.
Or the inner part 1/2 is averaged on both sides for a total of 9
It is sufficient to apply g / m 2 and then apply 1/2 of the outer volume stepwise to an average of 10% reduction to 8.1 g / m 2 .

次にまた本発明者らは、前記成分の脱炭焼鈍板を用い
て、焼鈍分離剤としてMgOに1.5%のTiO2を配合して塗布
し、コイルに巻取る際の張力を7.5kg/mm2に設定し、コ
イルの外巻部1/2の平均の張力に対してコイルの内巻側1
/2の平均の張力を0〜50%減少させて巻取り、ドライN2
雰囲気で840℃,40hrの2次再結晶保定後ドライH2雰囲気
にて1200℃,10hrの仕上焼鈍を実施した。焼鈍分離剤を
除去して、張力コーティングを施し、フラットニング処
理を実施後、エプスタインサイズに剪断して800℃,3hr
の歪取焼鈍後0.5kgの重さで内巻部1/2平均(○印),外
巻部1/2平均(●印)の磁気特性W17/50(w/kg)を測定
した。また、仕上焼鈍後に焼鈍分離剤を除去した内巻部
(○印),外巻部(●印)のフォルステライト被膜付の
S,Se,Ti分のトータル分析値を併せて第2図に示した。
Next, the present inventors also used a decarburization annealed plate of the above-mentioned component, mixed and applied 1.5% TiO 2 to MgO as an annealing separator, and applied a tension of 7.5 kg / mm when wound on a coil. Set to 2 and the inner winding side of the coil 1 against the average tension of the outer winding 1/2 of the coil.
Winding with an average tension of 1/2 reduced by 0-50%, dry N 2
After the secondary recrystallization was maintained at 840 ° C for 40 hours in the atmosphere, finish annealing was performed at 1200 ° C for 10 hours in the dry H 2 atmosphere. After removing the annealing separator, applying tension coating and performing flattening treatment, shearing to Epstein size and 800 ℃ for 3hr
After strain relief annealing, the magnetic properties W17 / 50 (w / kg) of the inner part 1/2 average (○ mark) and the outer part 1/2 average (● mark) were measured at a weight of 0.5 kg. In addition, the inner winding part (○ mark) and the outer winding part (● mark) with the forsterite coating on which the annealing separator was removed after the finish annealing
The total analysis values for S, Se and Ti are also shown in FIG.

第2図の結果から明らかなように、コイル内巻部の膜付
S,Se,Ti成分の合計量は外巻部に対する内巻部の巻取張
力軽減率が10%未満では著しく高く、軽減率が10%以上
に増えると膜付成分の合計量が減少して外巻部の合計量
とほぼ同水準になるとともに、磁気特性W17/50値も、膜
付分析合計量の減少にともなって低減し著しく磁性が改
善され、コイル外巻部と同水準になり、コイル全長に亘
り均一な磁性が安定して得られていることが分る。
As is clear from the results shown in FIG.
The total amount of S, Se and Ti components is remarkably high when the winding tension reduction ratio of the inner winding part with respect to the outer winding part is less than 10%, and when the reduction ratio increases to 10% or more, the total amount of the film-coated component decreases. While it is almost the same level as the total amount of the outer winding part, the magnetic property W17 / 50 value is also reduced with the decrease of the total amount of film attached analysis, and the magnetism is remarkably improved, becoming the same level as the coil outer winding part. It can be seen that uniform magnetism is stably obtained over the entire length of the coil.

内巻部の巻取張力を軽減すると、前述した特開昭62−70
523号公報によれば、コイルのつぶれが発生するとの指
摘があったが、この防止策としては、最内巻部を最終冷
延の際に製品厚よりも過厚に仕上げておく方法とか、ス
リーブを装着する等の方法をとれば防止し得る。
If the winding tension of the inner winding portion is reduced, the above-mentioned JP-A-62-70
According to Japanese Patent No. 523, it was pointed out that coil collapse occurs, but as a preventive measure, a method of finishing the innermost winding portion to be thicker than the product thickness during final cold rolling, This can be prevented by using a method such as mounting a sleeve.

コイル内巻部から外巻部にかけての巻取張力の変更は連
続的および/または段階的に実施すればよい。つまり、
連続的な張力変更はコイル長さに応じてコイル内巻〜コ
イル外巻に応じて設定すればよく、段階的には例えばコ
イル内巻1/2,コイル外巻1/2にそれぞれの段階に達した
ときに張力を変動させればよく、また、連続的〜段階的
な方法としては、例えばコイル内巻部1/2の先端〜コイ
ル内巻部1/2の後端つまりコイル中央部にかけて連続的
に変更し、残る外巻部1/2は同一の張力で実施する方
法、或いは段階的〜連続的な張力変動調整法としては、
コイル内巻1/2を外巻より10%以上張力を軽減したの
ち、コイル中央部〜外巻部にかけては連続的に内巻部の
設定に応じて巻取張力を変動調整すればよく、その都度
有利な調整法を採用すればよい。
The winding tension from the inner winding portion to the outer winding portion of the coil may be changed continuously and / or stepwise. That is,
The continuous tension change may be set according to the coil length depending on the coil length, from the coil inner winding to the coil outer winding. When the tension is reached, the tension may be varied.As a continuous to stepwise method, for example, from the tip of the coil inner winding portion 1/2 to the rear end of the coil inner winding portion 1/2, that is, the center portion of the coil. Continuously changing the remaining outer winding part 1/2 with the same tension, or as a stepwise-continuous tension fluctuation adjustment method,
After reducing the tension of the inner coil 1/2 by 10% or more than that of the outer coil, the winding tension may be adjusted continuously according to the setting of the inner coil from the center of the coil to the outer coil. An advantageous adjustment method may be adopted each time.

また巻取張力の設定は、板厚,板幅によって制御するこ
とが肝要であり、板厚が厚く、板幅が広いほど巻取張力
を強くすることができる。
Further, it is important to control the winding tension by controlling the plate thickness and the plate width. The thicker the plate width and the wider the plate width, the stronger the winding tension can be.

次にこの発明において、鋼板の成分組成を限定した理由
について説明する。
Next, the reason why the composition of the steel sheet is limited in the present invention will be described.

C:0.020〜0.080% Cが0.020%に満たないと脱炭焼鈍後における集合組織
を損なって磁気特性の劣化を招き、一方0.080%を超え
て多量に含まれると連続焼鈍による脱炭が困難となり、
やはり最終製品の磁気特性を劣化させるので、C含有量
は0.020〜0.080%の範囲に限定した。
C: 0.020 to 0.080% When C is less than 0.020%, the texture after decarburization annealing is damaged and the magnetic properties are deteriorated, while when it exceeds 0.080% in a large amount, decarburization by continuous annealing becomes difficult. ,
The C content is limited to the range of 0.020 to 0.080% because it also deteriorates the magnetic properties of the final product.

Si:2.5〜4.0% Siが2.5%に満たないとこの発明で所期したほどの低い
鉄損値を得ることが難しく、一方4.0%を越えると脆く
なって冷間加工性の劣化を招き通常の工業的圧延が困難
になるので、Si量は2.5〜4.0%の範囲に限定した。
Si: 2.5-4.0% If Si is less than 2.5%, it is difficult to obtain the low iron loss value expected in this invention. On the other hand, if it exceeds 4.0%, it becomes brittle and cold workability deteriorates. However, the amount of Si was limited to the range of 2.5-4.0% because it becomes difficult to industrially roll the steel.

Mn:0.03〜0.15% Mnは、後述のS及びSeとそれぞれMnS,MnSeを形成してイ
ンヒビターとして仕上焼鈍において1次再結晶粒の成長
を抑制して(110)〔001〕方位の2次再結晶粒を先鋭に
発達させるのに有用な元素であるが、0.03%に満たない
とその添加効果に乏しく、一方0.15%を超えると、2次
再結晶が生じなくなるので0.03〜0.15%の範囲に限定し
た。
Mn: 0.03 to 0.15% Mn forms MnS and MnSe with S and Se, which will be described later, and suppresses the growth of primary recrystallized grains in the finish annealing as an inhibitor to suppress the secondary recrystallization of the (110) [001] orientation. It is a useful element for sharply developing crystal grains, but if it is less than 0.03%, its addition effect is poor, while if it exceeds 0.15%, secondary recrystallization does not occur, so in the range of 0.03 to 0.15%. Limited

Sおよび/またはSe:0.008〜0.080% SおよびSeは、上述した如くMnと結合してMnS,MnSeを形
成させるために添加されるもので、少くともS,Seのいず
れか1種または2種合計で0.008%が必要である。しか
しながらあまり多量に添加されるとSの場合は熱間割れ
を生じ、またSeの場合は高価な元素であるためコストの
上昇を招く不利があるので、それぞれ単独添加の場合な
らびに併用の場合いずれにおいても0.080%を上限とし
た。
S and / or Se: 0.008 to 0.080% S and Se are added in order to combine with Mn to form MnS and MnSe as described above, and at least one or two of S and Se. A total of 0.008% is required. However, if added in a too large amount, hot cracking occurs in the case of S, and since Se is an expensive element, it has the disadvantage of increasing the cost. The upper limit was 0.080%.

他にインヒビターとしてSb,Mo,Sn,Cu等を単独または複
合で0.010〜0.20%程度添加することは本発明の効果を
何ら阻害しない。これらインヒビター効果の助勢成分は
単独または複合で0.010未満ではインヒビターとしての
役割を果せず、一方0.20%を超えて含有されるとインヒ
ビターの役割を逸脱してむしろ磁気特性を劣化させるこ
とや、冷延性を著しく阻害することから、上記各成分の
含有量は単独および複合のいずれの場合においても0.01
0〜0.20%の範囲とすることが望ましい。
In addition, addition of Sb, Mo, Sn, Cu or the like as an inhibitor alone or in a combined amount of about 0.010 to 0.20% does not inhibit the effect of the present invention. These assisting components for the inhibitory effect alone or in combination do not function as an inhibitor when the content is less than 0.010, while when they are contained in an amount exceeding 0.20%, they deviate from the role of the inhibitor and rather deteriorate the magnetic properties, or cool down. Since it significantly inhibits ductility, the content of each of the above components is 0.01
It is desirable to set it in the range of 0 to 0.20%.

酸可溶性Al:0.010〜0.070% 2次再結晶に必要なAlNを用いる場合2次再結晶を行な
わせるに必要な最低量のAlNを確保するために酸可溶性A
lとして0.010%以上必要で、酸可溶性Alとして0.070%
を超えると熱延板内のAlNの分散状態が不適切となり、
2次再結晶が不安定となるので0.070%以下とした。
Acid-soluble Al: 0.010 to 0.070% When using AlN necessary for secondary recrystallization To ensure the minimum amount of AlN required for secondary recrystallization, acid-soluble A
0.010% or more is required as l and 0.070% as acid-soluble Al
If it exceeds, the dispersion state of AlN in the hot rolled sheet becomes inappropriate,
The secondary recrystallization becomes unstable, so the content was made 0.070% or less.

N:0.0035〜0.0140% 上述したように2次再結晶を行なわせるに必要な最低量
のAlNを確保するためにNとして0.0035%以上が必要
で、Nが0.0140%以上多く含有するとAlNの分散が不適
切となるために0.0140%以下とした。
N: 0.0035-0.0140% As mentioned above, 0.0035% or more is required as N in order to secure the minimum amount of AlN necessary for secondary recrystallization, and if N is contained in an amount of 0.0140% or more, AlN is dispersed. Since it is inappropriate, it was set to 0.0140% or less.

次にこの発明に従う製造方法を工程順に具体的に説明す
る。
Next, the manufacturing method according to the present invention will be specifically described in the order of steps.

上記の好適成分組成に調整したけい素鋼素材スラブを通
常1250℃以上の高温に加熱したのち、公知の方法によっ
て板厚1.2〜3.3mm程度の熱延板とする。ついで必要に応
じてこの熱延板を850〜1150℃の範囲で短時間の焼鈍を
行ないこの熱延板を、MnS,MnSeをインヒビターとするも
のは、1回の冷間圧延又は750〜1100℃程度の中間焼鈍
をはさむ2回の冷間圧延によって最終板厚0.35mm〜0.10
mmの冷延板に仕上げるが、かかる冷間圧延においては最
終冷延圧下率を40〜80%とすることが必要である。最終
冷延における圧下率が40%に満たなかったり、80%を超
えた場合には、脱炭焼鈍後に十分満足のいく程度に(11
0)〔001〕方位の集積度が高い1次再結晶集合組織が得
難く、所期した程のすぐれた磁気特性が得られないから
である。
The silicon steel raw material slab adjusted to the above preferable composition is usually heated to a high temperature of 1250 ° C. or higher, and then a hot rolled plate having a plate thickness of 1.2 to 3.3 mm is prepared by a known method. Then, if necessary, this hot-rolled sheet is annealed in the range of 850 to 1150 ° C for a short time, and this hot-rolled sheet uses MnS, MnSe as an inhibitor for one cold rolling or 750 to 1100 ° C. Final strip thickness 0.35mm ~ 0.10 by two cold rolling with intermediate annealing
Although it is finished into a cold-rolled sheet of mm, it is necessary to set the final cold-rolling reduction rate to 40 to 80% in such cold rolling. If the reduction ratio in the final cold rolling is less than 40% or exceeds 80%, it is sufficiently satisfactory after decarburization annealing (11
0) It is difficult to obtain a primary recrystallized texture having a high degree of integration of the [001] orientation, and it is not possible to obtain desired magnetic characteristics.

また、AlNをインヒビターとするものは、通常1回の冷
間圧延で、その圧下率を80%以上,95%以下の範囲とし
て、冷延することが必要である。ここで冷延圧下率が80
%に満たなかった場合、脱炭焼鈍後に好適な(111)〔1
1〕方位の1次再結晶集合組織が得られず、十分に高
い磁束密度と低い鉄損値が達成できない。また、95%を
超えて高くしても磁性はそれ以上には改善されず、反
面、熱延板の板厚が厚くなり圧延能率が低下する等の不
利を生じるために圧下率は80%〜95%に限定される。
Further, a material using AlN as an inhibitor is usually required to be cold-rolled by one time of cold rolling with a reduction ratio of 80% or more and 95% or less. Here, the cold rolling reduction is 80
%, It is suitable after decarburization annealing (111) [1
1) A primary recrystallization texture in the orientation cannot be obtained, and a sufficiently high magnetic flux density and low iron loss value cannot be achieved. Further, even if it is increased to more than 95%, the magnetism is not further improved, but on the other hand, the reduction rate of 80% to Limited to 95%.

次に最終冷延板は湿水素雰囲気において750〜900℃の温
度範囲で脱炭焼鈍し、C量を0.003%以下程度までに十
分に脱炭する。その後、MgOを主成分とする焼鈍分離剤
を塗布する際に、被膜の密着性や繰返し曲げ性改善のた
めにTiO2を1〜2%程度添加することは望ましい。
Next, the final cold-rolled sheet is decarburized and annealed in a temperature range of 750 to 900 ° C in a wet hydrogen atmosphere to sufficiently decarburize the carbon content to about 0.003% or less. After that, when applying an annealing separator containing MgO as a main component, it is desirable to add about 1 to 2% of TiO 2 in order to improve the adhesion of the film and the repetitive bendability.

焼鈍分離剤の塗布は、前述したように塗布量を両面合計
量で8g/m2以上とし、さらに内巻部1/2の平均の塗布量は
外巻部1/2の平均より連続的および/又は段階的に10%
以上増量して塗布するか、或は焼鈍分離剤を塗布後、コ
イル状に巻取って仕上焼鈍する際に前述したように内巻
部の張力を3〜12kg/mm2とし、連続的および/または段
階的に内巻部の張力を外巻部より10%以上低くして巻取
り、コイル状にして最終焼鈍を施すことが必要である。
As described above, the coating amount of the annealing separator is 8 g / m 2 or more as the total coating amount on both sides, and the average coating amount of the inner winding part 1/2 is continuous and more than that of the outer winding part 1/2. / Or 10% in stages
When the amount of coating is increased or the annealing separator is applied and then wound into a coil and finish-annealed, the tension of the inner winding portion is set to 3 to 12 kg / mm 2, and continuously and / or Alternatively, it is necessary to gradually lower the tension of the inner winding portion by 10% or more than that of the outer winding portion, wind the coil into a coil, and perform final annealing.

この最終仕上焼鈍の目的は、(110)〔001〕方位の2次
再結晶粒を十分に成長発達させると同時に鋼板中にイン
ヒビターとして添加したS,Seその他N等の不純物元素を
純化除去する目的で施すもので、通常箱焼鈍によって行
なわれるが、MnS,MnSeをインヒビターとするものは、高
い磁束密度と低い鉄損値を得る場合には、820〜920℃程
度の温度範囲に約10hr以上保持して、2次再結晶粒を十
分成長させる2次再結晶焼鈍を施し、次に1050℃以上の
高温に5hr以上保持して純化させる純化焼鈍を施すこと
が望ましく、AlNをインヒビターとするものは、直上げ
タイプの仕上焼鈍であるが、1050℃以上の高温に5hr以
上保持して純化させることが望ましい。
The purpose of this final finish annealing is to purify and remove the secondary recrystallized grains of (110) [001] orientation while at the same time purifying and removing the impurity elements such as S, Se and N added as inhibitors in the steel sheet. In the case of MnS and MnSe as inhibitors, in order to obtain a high magnetic flux density and a low iron loss value, the temperature is maintained at about 820 to 920 ° C for about 10 hours or more. Then, it is desirable to carry out secondary recrystallization annealing to sufficiently grow secondary recrystallized grains, and then to carry out purification annealing to purify by holding at a high temperature of 1050 ° C or higher for 5 hours or longer. Although it is a straight-up type finish annealing, it is desirable to maintain it at a high temperature of 1050 ° C or higher for 5 hours or longer for purification.

仕上焼鈍が終了した後、絶縁張力コーティングを施し、
フラットニング焼鈍して製品に仕上げるが、通常積鉄芯
に用いる場合は所定寸法に剪断後に歪取焼鈍は不用であ
るが、巻鉄芯機の場合は歪取焼鈍を施して評価されるの
で、発明者らは仕上焼鈍後のフォルステライト付のまま
板厚貫通分析を実施して純化程度を評価している。何故
ならこれまでの公知文献は例えば特開昭61−177320号公
報では鋼中のS,N含有量で評価しているが、S,Se,N成分
はフォルステライト中にほとんどがトラップされてお
り、800℃前後のフラットニング処理や巻鉄芯後の800℃
×3Hr程度の歪取焼鈍で容易にフォルステライト中から
鋼中に拡散浸入して実機特性を著しく劣化させるからで
ある。
After finishing annealing, apply insulation tension coating,
Although finished into products by flattening annealing, strain relief annealing is unnecessary after shearing to a predetermined dimension when used for a normally laminated iron core, but in the case of a wound iron core machine, it is evaluated by performing strain relief annealing. The inventors have carried out plate thickness penetration analysis with the forsterite after finish annealing to evaluate the degree of purification. This is because the publicly known documents up to now are evaluated by the S, N content in steel in, for example, JP-A-61-177320, but the S, Se, N components are mostly trapped in forsterite. , 800 ° C after flattening process around 800 ° C and after winding iron core
This is because the strain relief annealing of about × 3 Hr easily diffuses and penetrates from forsterite into the steel and significantly deteriorates the actual machine properties.

かかる処理工程によってコイル全長に亘って均一な優れ
た磁気特性を有する一方向性けい素鋼板を安定して得る
ことができる。
By such a treatment step, it is possible to stably obtain a unidirectional silicon steel sheet having excellent magnetic characteristics that is uniform over the entire length of the coil.

〈実施例〉 実施例1 C:0.048%,Si:3.25%,Mn:0.081%,S:0.025%,Se:0.018
%,Sb:0.025%,Mo:0.019%を含み残部実質的にFeより成
る200mm厚の連鋳スラブをいずれも1380℃に1Hr加熱後、
2.2mm厚に熱延し、930℃,2minの焼鈍後酸洗して0.65mm
厚に中間冷延し、980℃,1.5minの中間焼鈍後、圧下率66
%で最終冷延し0.22mm厚に仕上げた。次いで、脱脂後、
湿水素中で840℃,3min間の脱炭焼鈍を施したのち、MgO
にTiO2を1.5%添加した焼鈍分離剤を、うち1コイルは
コイルの内巻側から外巻にかけて両面合計で均一に6g/m
2を塗布した従来の比較例と、うち1コイルはコイルの
内巻側(全長の1/2)を両面合計で平均で12g/m2とし、
外巻になるに従って連続的に塗布量を減少させ外巻部
(全長の1/2)の塗布量を両面合計で平均で9.5g/m2にし
て塗布乾燥した後、コイルに巻取り、ドライN2中で845
℃,35Hrの保定後、ドライH2中で1200℃,10Hrの仕上焼鈍
を実施した。分離剤を除去後、張力コーティングを施し
フラットニング焼鈍し、成品板をエプスタインサイズの
試片に剪断後、800℃,3Hrの歪取焼鈍を施した後、0.5kg
重さで磁気特性B10(T),W17/50(w/kg)を測定した。
また、仕上焼鈍後MgOを除去した成品板のフォルステラ
イト被膜付のS,Se,Ti成分の分析を行った。
<Example> Example 1 C: 0.048%, Si: 3.25%, Mn: 0.081%, S: 0.025%, Se: 0.018
%, Sb: 0.025%, Mo: 0.019% and the rest of the 200 mm thick continuous cast slab consisting essentially of Fe after heating at 1380 ° C. for 1 hour,
0.65mm hot-rolled to a thickness of 2.2mm, annealed at 930 ℃ for 2min, and pickled
Intermediate cold-rolled to a thickness of 980 ° C, after 1.5 minutes of intermediate annealing, the reduction rate is 66
% Final cold-rolled to 0.22 mm thickness. Then, after degreasing,
After performing decarburization annealing in wet hydrogen at 840 ℃ for 3 min, MgO
Annealing agent with 1.5% TiO 2 added, of which 1 coil is 6g / m evenly on both sides from the inner winding side to the outer winding side of the coil.
In comparison with the conventional comparative example in which 2 is applied, 1 coil has an inner winding side (1/2 of the total length) of the coil of 12 g / m 2 on average on both sides,
The coating amount is continuously reduced as it becomes the outer winding, and the coating amount of the outer winding part (1/2 of the total length) is averaged to 9.5 g / m 2 on both sides in total and dried, then wound on a coil and dried. 845 in N 2
After holding at 35 ° C. for 35 hours, finish annealing was performed at 1200 ° C. for 10 hours in dry H 2 . After removing the separating agent, applying tension coating and flattening annealing, shearing the product plate into an Epstein-sized specimen, and performing stress relief annealing at 800 ° C, 3Hr for 0.5 kg.
The magnetic properties B 10 (T) and W17 / 50 (w / kg) were measured by weight.
In addition, the S, Se, and Ti components with forsterite coatings on the product sheets from which MgO was removed after finish annealing were analyzed.

第2表に膜付S,Se,Tiのトータル分析値と磁気特性を示
す。
Table 2 shows the total analysis values and magnetic properties of S, Se and Ti with film.

同表から明らかなように、従来材に比べて本発明適正範
囲を満たしているものは、仕上焼鈍後の純化がコイルの
内巻部で著しく改善されて、所期した磁気特性が得られ
ている。
As is clear from the table, those satisfying the proper range of the present invention as compared with the conventional material, the purification after finish annealing is significantly improved in the inner winding part of the coil, and the desired magnetic characteristics are obtained. There is.

実施例2 C:0.048%,Si:3.25%,Mn:0.081%,S:0.024%,Se:0.025
%を含み残部実質的にFeよりなる200mm厚連鋳スラブを
いずれも1380℃に1Hr加熱後、2.0mm厚に熱延し、950℃,
1minの焼鈍後酸洗して0.58mm厚に中間冷延し、975℃,1.
5minの中間焼鈍後圧下率65.5%で最終冷延し0.20mm厚に
仕上げた。次いで脱脂後、湿水素中で835℃,3minの脱炭
焼鈍を施したのち、MgOにTiO2を1.2%添加した焼鈍分離
剤をうち1コイルはコイル全長に亘り、両面合計で7.2g
/m2塗布乾燥した従来工程材と、うち1コイルはコイル
の内巻(全長の1/2)を14g/m2,外巻(同1/2)を8.5g/m
2の割合で段階的に塗布乾燥した実験例のコイルをそれ
ぞれ巻取り、ドライN2中で850℃,30Hrの保定後、ドライ
H2中で1200℃,10Hrの仕上焼鈍を実施した。分離剤を除
去後、張力コーティングを施し、フラットニング焼鈍後
の成品板をエプスタインサイズの試片に剪断後、800℃,
3Hrの歪取焼鈍を施した後、0.5kg重さで磁気特性B
10(T),W17/50(w/kg)を測定した。また、仕上焼鈍
後MgOを除去した成品板のフォルステライト被膜付の分
析をS,Se,Ti成分について行った。第3表に膜付分析値
と磁気特性を示す。
Example 2 C: 0.048%, Si: 3.25%, Mn: 0.081%, S: 0.024%, Se: 0.025
%, All of the 200 mm thick continuous cast slabs consisting essentially of Fe were heated to 1380 ° C. for 1 hour and then hot rolled to a thickness of 2.0 mm at 950 ° C.
After annealing for 1 min, pickling, intermediate cold rolling to 0.58 mm thickness, 975 ℃, 1.
After 5 minutes of intermediate annealing, final cold rolling was performed at a reduction rate of 65.5% to a 0.20 mm thickness. Then, after degreasing, decarburization annealing was performed in wet hydrogen at 835 ° C for 3 minutes, and then an annealing separator made by adding 1.2% of TiO 2 to MgO, one coil of which was 7.2g in total over the entire length of the coil.
/ m 2 Coating and drying conventional process material, 1 coil of which is 14g / m 2 for inner winding (1/2 of total length) and 8.5g / m for outer winding (1/2)
Each coil of the experimental example, which was applied and dried stepwise at a ratio of 2 , was wound up, held in dry N 2 at 850 ° C for 30 hours, and then dried.
Finish annealing was carried out in H 2 at 1200 ° C for 10 hours. After removing the separating agent, tension coating is applied, and the product plate after flattening annealing is sheared into an Epstein-sized specimen, and then 800 ° C,
After 3 Hr strain relief annealing, the magnetic property B was weighed at 0.5 kg.
10 (T) and W17 / 50 (w / kg) were measured. In addition, the product sheet with MgO removed after finish annealing was analyzed for the forsterite coating with respect to S, Se, and Ti components. Table 3 shows the analytical values with the film and the magnetic properties.

同表から明らかなように従来材に比べて本発明の適正範
囲を満たしているものは、仕上焼鈍後の純化がコイルの
内巻部で著しく改善されており、所期した磁気特性が得
られている。
As is clear from the same table, those satisfying the proper range of the present invention as compared with the conventional material, the purification after finish annealing is significantly improved in the inner winding part of the coil, and the desired magnetic characteristics are obtained. ing.

実施例3 C:0.043%,Si:3.15%,Mn:0.087%,S:0.024%を含み残部
実質的にFeよりなる240mm厚の連鋳スラブをいずれも139
0℃,1Hr加熱後、2.7mm厚に熱延し、酸洗後0.88mm厚に中
間冷延し、950℃,2.5min間の中間焼鈍後、冷延率66%で
0.30mm厚に仕上げた。次いで脱脂後、湿水素中で825℃,
3minの脱炭焼鈍後、MgOにTiO2を1.75%添加した焼鈍分
離剤を、うち1コイルはコイル全長に亘り均一に両面合
計で5.5g/m2塗布,乾燥した従来工程材と、うち1コイ
ルはコイルの内巻側(コイル全長の1/2)を平均13g/m2
に塗布し、内巻部から外巻部にかけて連続的に塗布量を
減少させ、外巻部(同1/2)の平均塗布量を10g/m2に塗
布,乾燥した実験例のコイルをそれぞれ巻取り、ドライ
N2中で40℃/Hrの昇温速度で昇熱し、ドライH2で1200℃,
10Hrの仕上焼鈍を実施した。分離剤を除去後、張力コー
ティングを塗布し、フラットニング焼鈍を経た成品板を
エプスタインサイズに剪断して800℃,3Hrの歪取焼鈍を
行ない、0.5kg重さで磁気特性B10(T),W17/50(w/k
g)を測定した。また仕上焼鈍後分離剤除去したフォル
ステライト被膜付のS,Ti成分の分析を行った。第4表に
磁気特性とともに3成分の膜付分析値の合計量を示す。
Example 3 A continuous cast slab having a thickness of 240 mm and containing C: 0.043%, Si: 3.15%, Mn: 0.087%, S: 0.024% and the balance being substantially Fe was 139.
After heating at 0 ℃ for 1Hr, hot rolling to 2.7mm thickness, pickling and intermediate cold rolling to 0.88mm thickness, after intermediate annealing for 950 ℃ and 2.5min, cold rolling rate 66%.
Finished to a thickness of 0.30 mm. Then, after degreasing, in wet hydrogen at 825 ° C,
After decarburization annealing for 3 min, an annealing separator made by adding 1.75% of TiO 2 to MgO, of which 1 coil was applied uniformly over the entire length of the coil at 5.5 g / m 2 in total on both sides, and the conventional process material was dried. The average inner coil side (1/2 of the total coil length) is 13g / m 2
The coating amount was continuously reduced from the inner winding part to the outer winding part, the average coating amount of the outer winding part (same 1/2) was applied to 10 g / m 2, and the coil of the experimental example was dried. Winding, dry
Heat in N 2 at a heating rate of 40 ° C / Hr and dry H 2 at 1200 ° C,
Finish annealing was carried out for 10 hours. After removing the separating agent, a tension coating is applied, and the product plate that has been subjected to flattening annealing is sheared to an Epstein size and subjected to strain relief annealing at 800 ° C for 3 hours, and the magnetic characteristics B 10 (T) at 0.5 kg weight, W17 / 50 (w / k
g) was measured. In addition, the S and Ti components with the forsterite coating after removal of the separating agent after finish annealing were analyzed. Table 4 shows the magnetic properties and the total amount of the three-component film-attached analysis values.

同表から明らかなように、従来材に比べて本発明適正範
囲を満たしているものは、仕上焼鈍後の純化がコイルの
内巻部で著しく改善されており、所期した磁気特性が得
られている。
As is clear from the table, those satisfying the proper range of the present invention as compared with the conventional material, the purification after finish annealing is significantly improved in the inner winding part of the coil, and the desired magnetic characteristics are obtained. ing.

実施例4 C:0.049%,Si:3.39%,Mn:0.087%,Se:0.027%を含み残
部実質的にFeより成る180mm厚の連鋳スラブをいずれも1
360℃に1時間加熱後1.8mm厚に熱延し、920℃,2minの焼
鈍後酸洗して0.46mm厚に中間冷延し、950℃,2minの中間
焼鈍後圧下率61%で最終冷延し0.18mm厚に仕上げた。次
いで脱脂後、湿水素中で825℃,3minの脱炭焼鈍を施した
のち、MgOにTiO2を1.8%添加した焼鈍分離剤を、うち1
コイルはコイル全長に亘り均一に両面で6.5g/m2塗布,
乾燥した従来材と、コイル内巻部(コイル全長の1/2)
を13g/m2,コイル外巻部(同1/2)を9g/m2に段階的に塗
布,乾燥した実験例のコイルをドライN2中で835℃で40H
r保定し、ドライH2で1200℃,10Hrの仕上焼鈍を実施し
た。仕上焼鈍後に焼鈍分離剤を除去した後、張力コーテ
ィングを塗布した後、フラットニング焼鈍を経た成品板
をエプスタインサイズに剪断して800℃,3Hrの歪取焼鈍
を行い、0.5kg重さで磁気特性B10(T),W17/50(w/k
g)を測定した。また仕上焼鈍後分離剤除去したフォル
ステライト被膜付のSe,Ti成分の分析値の合計量を第5
表に磁気特性とともに示す。
Example 4 A continuous cast slab having a thickness of 180 mm and containing C: 0.049%, Si: 3.39%, Mn: 0.087%, Se: 0.027% and the balance being substantially Fe was 1
After heating at 360 ° C for 1 hour, hot rolling to 1.8mm thickness, annealing at 920 ° C for 2min, pickling, intermediate cold rolling to 0.46mm thickness, and final cooling at 61% reduction after intermediate annealing at 950 ° C for 2min. Rolled up to a thickness of 0.18 mm. Next, after degreasing, decarburization annealing was performed in wet hydrogen at 825 ° C for 3 min, and then 1% of the annealing separator made by adding 1.8% of TiO 2 to MgO was used.
Coated 6.5 g / m 2 on both sides of the coil uniformly over the entire length of the coil,
Dry conventional material and coil inner winding part (1/2 of coil total length)
13g / m 2 and the coil outer winding part (same 1/2) were applied stepwise to 9g / m 2 , and the dried coil of the experimental example was dried in dry N 2 at 835 ° C for 40H.
After retaining the r, finish annealing was performed at 1200 ° C for 10 hours with dry H 2 . After finishing annealing, after removing the annealing separator, applying tension coating, the flattening annealed product sheet was sheared to Epstein size, 800 ° C, 3Hr strain relief annealing was performed, and the magnetic properties of 0.5kg weight were applied. B 10 (T), W17 / 50 (w / k
g) was measured. In addition, the total amount of the analysis values of the Se and Ti components with the forsterite coating, which had the separating agent removed after finishing annealing, was
The magnetic properties are shown in the table.

同表から明らかなように、従来工程材に比べて本発明適
正範囲を満たしているものは仕上焼鈍後の純化が、コイ
ルの内巻部で著しく改善されて所期した磁気特性が得ら
れている。
As is clear from the table, those satisfying the proper range of the present invention as compared with the conventional process material are not improved in purification after finish annealing, and the desired magnetic characteristics are significantly improved in the inner winding portion of the coil. There is.

実施例5 C:0.055%,Si:3.20%,Mn:0.088%,S:0.025%,酸可溶性
Al:0.028%,N:0.0091%を含み残部実質的にFeよりなる2
40mm厚の連鋳スラブをいずれも1400℃に1時間加熱後、
3.0mm厚に熱延し、1050℃,1min間の熱延板焼鈍を行な
い、酸洗後88%の冷延率で0.35mm厚に仕上げ、脱脂後湿
水素中で845℃,2.5minの脱炭焼鈍後、MgOに1.75%のTiO
2を添加した焼鈍分離剤を塗布する際、うち1コイルは
両面合計で5g/m2をコイル全長に亘り均一に塗布した従
来材と、うち1コイルは、コイルの内巻部(コイル全長
の1/2)を両面合計平均で15g/m2塗布し、コイル外巻側
になる程連続的に塗布量を減じ、外巻部(同1/2)で両
面合計平均で10g/m2塗布,乾燥した実験例のコイルを、
ドライN2中で40℃/hの昇温速度で昇熱し、ドライH2中で
1200℃,10Hrの仕上焼鈍を行い、分離剤を除去後、張力
コーティングを施しフラットニング処理をして成品とし
た。エプスタインサイズに剪断して800℃,3Hrの歪取焼
鈍後、0.5kg重さの試料で磁気特性B10(T),W17/50(w
/kg)を測定するとともに、仕上焼鈍後に焼鈍分離剤を
除去したフォルステライト被膜付の分析をS,Ti,N成分に
ついて実施し、その合計量を、磁気特性とともに第6表
に示した。
Example 5 C: 0.055%, Si: 3.20%, Mn: 0.088%, S: 0.025%, acid soluble
Al: 0.028%, N: 0.0091% and the balance essentially Fe 2
After heating all 40mm continuous cast slabs to 1400 ℃ for 1 hour,
Hot-rolled to 3.0mm thickness, annealed at 1050 ℃ for 1min, pickled and finished to 0.35mm thickness at 88% cold rolling rate after depicking, and degreased in wet hydrogen at 845 ℃ for 2.5min. 1.75% TiO in MgO after charcoal annealing
When applying the annealing separator with 2 added, 1 coil is a conventional material in which 5 g / m 2 on both sides is applied uniformly over the entire length of the coil, and 1 coil is the inner winding part of the coil (of the total coil length) 1/2) is applied on both sides in an average of 15 g / m 2 and the coating amount is continuously reduced toward the outer winding side of the coil, and 10 g / m 2 on both sides is applied on the outer winding part (1/2). , Dry the experimental coil,
Heat the sample in dry N 2 at a heating rate of 40 ° C / h, and in dry H 2 .
Finishing annealing was performed at 1200 ° C for 10 hours to remove the separating agent, and then tension coating was applied and flattening was performed to obtain a product. After shear relief annealing at 800 ℃ for 3 hours and shearing to Epstein size, the magnetic properties B 10 (T), W17 / 50 (w
/ kg) and the forsterite coating with the annealing separator removed after the finish annealing was carried out for the S, Ti, and N components, and the total amount is shown in Table 6 together with the magnetic properties.

同表から明らかなように、従来工程材に比べて本発明適
正範囲を満たしているものは、仕上焼鈍後の純化がコイ
ルの内巻部で著しく改善されて所期した磁気特性が得ら
れている。
As is clear from the table, those satisfying the proper range of the present invention as compared with the conventional process material, the purification after finish annealing is significantly improved in the inner winding part of the coil, and the desired magnetic characteristics are obtained. There is.

実施例6 C:0.055%,Si:3.20%,Mn:0.088%,S:0.028%,Se:0.018
%,酸可溶性Al:0.030%,N:0.0095%を含み残部実質的
にFeよりなる180mm厚連鋳スラブをいずれも1400℃に1
時間加熱後、2.0mm厚に熱延し、1025℃で1min焼鈍後、
酸洗して88.5%の冷延率で0.23mm厚に仕上げ、脱脂後湿
水素中で845℃,2minの脱炭焼鈍後、MgOにTiO2を1.5%添
加した焼鈍分離剤を塗布する際、うち1コイルはコイル
全長に亘り両面合計で6g/m2を均一に塗布した従来材
と、うち1コイルはコイルの内巻部(全長の1/2)を両
面合計で12g/m2,コイル外巻部(同1/2)を両面合計で
8.5g/m2と段階的に塗布,乾燥し、引続きドライN2中で4
5℃/Hrの昇温速度で昇熱し、ドライH2で1200℃,10hrの
仕上焼鈍を行い、焼鈍分離剤を除去後張力コーティング
を施し、フラットニング処理して成品にした。成品をエ
プスタインサイズに剪断して、800℃,3Hrの歪取焼鈍後
0.5kg重さの試料で磁気特性B10(T),W17/50(w/kg)
を測定するとともに、仕上焼鈍後に焼鈍分離剤を除去し
たフォルステライト被膜付の分析をS,Se,Ti,N成分につ
いて実施し、その合計量を磁気特性とともに第7表に示
した。
Example 6 C: 0.055%, Si: 3.20%, Mn: 0.088%, S: 0.028%, Se: 0.018
%, Acid-soluble Al: 0.030%, N: 0.0095% and the balance is a 180 mm continuous cast slab consisting essentially of Fe at 1400 ° C.
After heating for 2 hours, hot-roll to a thickness of 2.0 mm and anneal at 1025 ° C for 1 min.
After pickling and finishing at a cold rolling rate of 88.5% to a thickness of 0.23 mm, after degreasing, after decarburization annealing in wet hydrogen at 845 ° C for 2 minutes, when applying an annealing separator containing 1.5% TiO 2 to MgO, One of them is a conventional material that is uniformly coated with 6g / m 2 on both sides over the entire length of the coil, and 1 coil is 12g / m 2 on both sides of the inner winding part (1/2 of the total length) of the coil. Outer winding part (1/2)
Apply 8.5g / m 2 stepwise, dry, then continue in dry N 2 4
The product was heated at a heating rate of 5 ° C./Hr and finish annealed at 1200 ° C. for 10 hours with dry H 2 , and after removing the annealing separator, tension coating was applied and flattening was performed to obtain a finished product. After shearing the product to Epstein size and annealing at 800 ℃ for 3 hours
Magnetic properties B 10 (T), W17 / 50 (w / kg) for a sample weighing 0.5 kg
In addition to the measurement, the analysis with the forsterite coating from which the annealing separator was removed after the finish annealing was carried out for the S, Se, Ti and N components, and the total amount thereof is shown in Table 7 together with the magnetic properties.

同表から明らかなように、従来材に比べて本発明適正範
囲を満たしているものは、仕上焼鈍の純化がコイルの内
巻部で著しく改善されて、所期した磁気特性が得られ
た。
As is clear from the table, those satisfying the proper range of the present invention, compared with the conventional material, were significantly improved in the purification of finish annealing in the inner winding portion of the coil, and the desired magnetic characteristics were obtained.

実施例7 C:0.055%,Si:3.25%,Mn:0.091%,Se:0.027%,酸可溶
性Al:0.032%,N:0.0100%を含み残部実質的にFeよりな
る220mm厚連鋳スラブをいずれも1390℃に1Hr加熱し、2.
7mm厚に熱延し、1030℃で1min焼鈍後酸洗し、冷延率89
%で0.30mm厚に仕上げて、脱脂後湿水素中で835℃,2.5m
inの脱炭焼鈍を実施し、MgOにTiO2を1.75%添加した焼
鈍分離剤を塗布する際、うち1コイルはコイル全長を両
面で7.2g/m2均一に塗布した従来材と、うち1コイルは
コイル内巻部(全長の1/2)を両面で平均14g/m2塗布
し、内巻部から外巻部にかけて連続的に塗布量を減じ
て、外巻部(全長の1/2)を両面平均で9g/m2塗布乾燥し
た実験コイルを、ドライN2中で40℃/Hrの昇温速度で昇
熱し、ドライH2中で1200℃,10Hrの仕上焼鈍を行なっ
た。焼鈍分離剤を除去後、張力コーティングを施し、フ
ラットニング処理をして成品とし、エプスタインサイズ
に剪断後、800℃,3Hrの歪取焼鈍後0.5kg重さの試料で磁
気特性B10(T),W17/50(w/kg)を測定するとともに、
仕上焼鈍後に焼鈍分離剤を除去したフォルステライト被
膜付の分析をS,Se,Ti,N成分について実施し、その合計
量を磁気特性とともに第8表に示した。
Example 7 C: 0.055%, Si: 3.25%, Mn: 0.091%, Se: 0.027%, acid-soluble Al: 0.032%, N: 0.0100% and the balance is a 220 mm thick continuously cast slab consisting essentially of Fe. Also heated to 1390 ℃ for 1 hour, 2.
Hot rolled to a thickness of 7 mm, annealed at 1030 ° C for 1 min, then pickled and cold rolled to 89
% To 0.30mm thickness and after degreasing in wet hydrogen at 835 ℃, 2.5m
When decarburization annealing of in was carried out and the annealing separator containing 1.75% of TiO 2 added to MgO was applied, one of the coils had a total length of 7.2 g / m 2 on both sides, The coil is coated with an average of 14 g / m 2 on both sides of the coil inner winding part (1/2 of the total length) and the coating amount is continuously reduced from the inner winding part to the outer winding part. ) Was coated and dried on both sides in an average of 9 g / m 2 and the experimental coil was heated in dry N 2 at a temperature rising rate of 40 ° C./Hr and finish-annealed in dry H 2 at 1200 ° C. for 10 hr. After removing the annealing separator, tension coating is applied, and flattening is performed to obtain a product. After shearing to Epstein size, 800 ° C, 3Hr strain relief annealing, 0.5kg weight of the sample has magnetic properties B 10 (T) , W17 / 50 (w / kg) is measured,
After the finish annealing, the forsterite coating with the annealing separator removed was analyzed for S, Se, Ti and N components, and the total amount is shown in Table 8 together with the magnetic properties.

同表から明らかなように、従来材に比べて本発明適正範
囲を満たしているものは仕上焼鈍の純化がコイルの内巻
部で著しく改善されて、所期した磁気特性が得られた。
As is clear from the table, the one satisfying the proper range of the present invention, compared with the conventional material, was significantly improved in the purification of the finish annealing, and the desired magnetic characteristics were obtained.

実施例8 C:0.053%,Si:3.30%,Mn:0.092%,S:0.021%,Se:0.019
%,Sn:0.085%,Cu:0.095%,酸可溶性Al:0.028%,N:0.0
095%を含み残部実質的にFeよりなる220mm厚の連鋳スラ
ブをいずれも1420℃に1Hr加熱後、2.7mm厚に熱延し、10
25℃に1.5min焼鈍後酸洗して90%の冷延率で0.27mm厚に
仕上げて脱脂後、湿水素中で850℃,3minの脱炭焼鈍を行
ない、MgOにTiO2を1.5%添加した焼鈍分離剤を塗布する
際に、うち1コイルは両面合計で6.6g/m2をコイル全長
に亘り均一に塗布した通常材と、うち1コイルはコイル
の内巻部(全長の1/2)を両面合計で14g/m2、引続き、
内巻部1/2の後端つまり、コイル中央部から外巻部にか
けては連続的に塗布量を減じ、外巻部(全長の1/2)の
塗布量を両面合計で平均10g/m2に塗布,乾燥した実験例
をそれぞれドライN2中で常温から950℃までを50℃/hrの
昇熱速度で、950℃〜1200℃間を25℃/hの昇熱速度で昇
温し、ドライH2中で1200℃,10Hr保持して仕上焼鈍を施
した。焼鈍分離剤を除去後、張力コーティングを施し、
フラットニング処理をして成品とし、エプスタインサイ
ズに剪断後、800℃,3Hrの歪取焼鈍後0.5kg重さの試料で
磁気特性B10(T),W17/50(w/kg)を測定するととも
に、仕上焼鈍後に焼鈍分離剤を除去したフォルステライ
ト被膜付の分析を、S,Se,Ti,N成分について実施し、そ
の合計量を磁気特性とともに第9表に示した。
Example 8 C: 0.053%, Si: 3.30%, Mn: 0.092%, S: 0.021%, Se: 0.019
%, Sn: 0.085%, Cu: 0.095%, Acid-soluble Al: 0.028%, N: 0.0
All 220 mm thick continuous cast slabs containing 095% and the remainder consisting essentially of Fe were heated to 1420 ° C for 1 hour and then hot rolled to a thickness of 2.7 mm.
Annealed at 25 ℃ for 1.5min, pickled to finish 0.27mm thickness at 90% cold rolling rate, degreased, decarburized and annealed at 850 ℃ for 3min in wet hydrogen, and added 1.5% of TiO 2 to MgO. When applying the annealing separator, 1 coil of the normal material was 6.6g / m 2 uniformly applied on both sides over the entire length of the coil, and 1 coil was the inner winding part of the coil (1/2 of the total length). ) Total of 14g / m 2 on both sides, continued,
The coating amount is continuously reduced from the rear end of the inner winding part 1/2, that is, from the central part of the coil to the outer winding part, and the coating amount of the outer winding part (1/2 of the total length) is 10 g / m 2 on average for both sides. Each of the experimental examples applied and dried on dry N 2 was heated from room temperature to 950 ° C at a heating rate of 50 ° C / hr and between 950 ° C and 1200 ° C at a heating rate of 25 ° C / h. Finish annealing was carried out by keeping the temperature at 1200 ° C for 10 hours in dry H 2 . After removing the annealing separator, apply tension coating,
After flattening into a finished product, shearing to Epstein size, then 800 ° C, 3Hr strain relief annealing, and measure magnetic properties B 10 (T), W17 / 50 (w / kg) with a sample weighing 0.5 kg. At the same time, the analysis with the forsterite coating from which the annealing separating agent was removed after the finish annealing was carried out for the S, Se, Ti and N components, and the total amount thereof is shown in Table 9 together with the magnetic properties.

同表から明らかなように、従来材に比べて本発明適正範
囲を満たしているものは、仕上焼鈍の純化がコイルの内
巻〜外巻にかけて著しく改善されて、所期した磁気特性
が得られた。
As is clear from the table, those satisfying the proper range of the present invention as compared with the conventional material, the purification of finish annealing was significantly improved from the inner winding to the outer winding of the coil, and the desired magnetic characteristics were obtained. It was

実施例9 C:0.048%,Si:3.25%,Mn:0.081%,S:0.025%,Se:0.018
%,Sb:0.025%,Mo:0.019%を含み残部実質的にFeよりな
る200mm厚の連鋳スラブをいずれも1hr加熱後、2.2mm厚,
1000mm巾に熱延し、930℃,2minの焼鈍後酸洗して、0.65
mm厚に中間冷延し、980℃,1.5minの中間焼鈍後、圧下率
66%で最終冷延して0.22mm厚に仕上げた。次いで脱脂後
湿水素中で840℃,3min間の脱炭焼鈍を施したのち、MgO
にTiO2を1.5%添加した焼鈍分離剤を10g/m2塗布,乾燥
して巻取る際、1コイルは従来工程のコイルの全長に亘
り均一に巻取張力を8kg/mm2とし、他の1コイルはコイ
ルの内巻側1/2の平均を外巻側1/2の平均張力8kg/mm2の2
5%減少の6kg/mm2に設定し、コイル内巻側から外巻側に
かけて巻取張力を6kg/mm2から8kg/mm2に連続して張力を
制御してコイルに巻取り本発明例のコイルとし、両コイ
ルを引続きドライN2中で840℃,40hrの2次再結晶保定処
理後、ドライH2中で1200℃,10hrの仕上焼鈍を実施後、
張力コーティングを施しフラットニング処理後、コイル
内巻,外巻位置相当の成品板をエプスタインサイズに剪
断後、800℃,3hrの歪取焼鈍後に、0.5kg重さの試料で磁
気測定B10(T),W17/50(w/kg)と、仕上焼鈍後に焼鈍
分離剤を除去したフォルステライト被膜付のS,Se,Ti成
分の分析を実施し、第10表に分析成分の合計量と磁気特
性を示した。
Example 9 C: 0.048%, Si: 3.25%, Mn: 0.081%, S: 0.025%, Se: 0.018
%, Sb: 0.025%, Mo: 0.019%, and the rest of the 200 mm thick continuous cast slab consisting essentially of Fe was heated for 1 hr and then 2.2 mm thick,
Hot rolled to a width of 1000 mm, annealed at 930 ° C for 2 min, then pickled and then 0.65
mm cold-rolled, 980 ℃, 1.5 min after intermediate annealing, reduction ratio
Final cold rolling was done at 66% to a thickness of 0.22 mm. Then, after degreasing, decarburization annealing was performed in wet hydrogen at 840 ° C for 3 minutes, and then MgO was added.
When applying 10g / m 2 of annealing separator with 1.5% of TiO 2 on, drying and winding, one coil has a winding tension of 8kg / mm 2 evenly over the entire length of the conventional process, 1 coil 2 of the average mean of the inner winding side half of the coils of the outer winding side 1/2 tension 8 kg / mm 2
Set 5% reduction in 6 kg / mm 2, the winding invention embodiment to the coil continuously winding tension from 6 kg / mm 2 from the coil in the winding side to the outer winding side 8 kg / mm 2 to control the tension And both coils after secondary recrystallization retention treatment in dry N 2 at 840 ℃ for 40hr, and after finish annealing at 1200 ℃, 10hr in dry H 2 .
After tension coating and flattening, the product plate corresponding to the inner coil and outer coil positions was sheared to Epstein size, and after stress relief annealing at 800 ° C for 3hr, magnetic measurement was performed on a sample weighing 0.5kg B 10 (T ), W17 / 50 (w / kg), and the S, Se, and Ti components with the forsterite coating from which the annealing separator was removed after the finish annealing, and the total amount of the analysis components and the magnetic properties are shown in Table 10. showed that.

同表から明らかなように、従来材に比べて本発明適正範
囲を満たしているものは、仕上焼鈍においてコイル内巻
部の純化が著しく改善されて、所期したところの磁気特
性が得られた。
As is apparent from the table, those satisfying the proper range of the present invention as compared with the conventional material were significantly improved in the purification of the coil inner winding portion in the finish annealing, and the desired magnetic characteristics were obtained. .

実施例10 C:0.048%,Si:3.25%,Mn:0.081%,S:0.024%,Se:0.025
%を含み残部実質的にFeよりなる200mm厚連鋳スラブを
いずれも1380℃に1hr加熱後、2.0mm厚,1000mm幅に熱延
し、950℃,1minの焼鈍後酸洗して、0.58mmに中間冷延
し、975℃,1.5minの中間焼鈍後圧下率65.5%で最終冷延
し、0.20mm厚に仕上げた。次いで脱脂後、湿水素中で83
5℃,3minの脱炭焼鈍を施したのち、MgOにTiO2を1.2%添
加した焼鈍分離剤を均一に11g/m2塗布した後、コイルに
巻取る際、1コイルはコイルの巻取張力を従来工程同様
にコイルの内巻から外巻にかけて均一に7kg/mm2で巻取
り他1コイルは、コイルの外巻側1/2を平均で7kg/mm2
設定し、残る内巻1/2を平均で外巻より30%減の4.9kg/m
m2の3段階に巻取張力を変更したコイルを本発明例と
し、両コイルをドライN2中で850℃,30hrの保定後ドライ
H2中で1200℃,10hrの仕上焼鈍を実施した。仕上焼鈍後
のコイルの焼鈍分離剤を除去、張力コーティングを施
し、フラットニング焼鈍後にコイルの内巻,外巻側相当
の成品をエプスタインサイズの試片に剪断後、800℃,3h
rの歪取焼鈍を施し、0.5kg重さで磁気特性B10(T),W1
7/50(w/kg)を測定するとともに、仕上焼鈍後焼鈍分離
剤除去後のフォルステライト被膜付のS,Se,Ti成分の分
析を実施し、その合計量と磁気特性を第11表に示した。
Example 10 C: 0.048%, Si: 3.25%, Mn: 0.081%, S: 0.024%, Se: 0.025
%, The rest of the 200 mm thick continuous cast slab consisting essentially of Fe was heated to 1380 ° C. for 1 hr, then hot rolled to a thickness of 2.0 mm and a width of 1000 mm, annealed at 950 ° C. for 1 min, pickled, and then 0.58 mm Intermediate cold-rolling was carried out, and finally cold-rolled at a reduction rate of 65.5% after intermediate annealing at 975 ° C for 1.5 minutes, and finished to a thickness of 0.20 mm. Then, after degreasing, 83 in wet hydrogen
After performing decarburization annealing at 5 ℃ for 3 min, apply an annealing separator with 1.2% TiO 2 added to MgO uniformly at 11 g / m 2 and then wind it into a coil. In the same way as in the conventional process, the coil is wound uniformly from the inner winding to the outer winding at 7 kg / mm 2 , and for the other 1 coil, the outer winding side 1/2 of the coil is set to 7 kg / mm 2 on average, and the remaining inner winding 1 / 2 is 4.9kg / m, which is 30% less than the outer volume on average
A coil in which the winding tension was changed in 3 steps of m 2 was used as an example of the present invention, and both coils were dried in N 2 at 850 ° C. for 30 hours and then dried.
Finish annealing was carried out in H 2 at 1200 ° C for 10 hours. After finishing annealing, remove the annealing separator of the coil, apply tension coating, and after flattening annealing, shear the product corresponding to the inner and outer windings of the coil into a specimen of Epstein size, 800 ℃, 3h
Strain relief annealing of r was performed, and the magnetic characteristics B 10 (T), W1 at a weight of 0.5 kg
In addition to measuring 7/50 (w / kg), analysis of S, Se and Ti components with forsterite coating after finishing annealing after removal of annealing separator was carried out, and the total amount and magnetic properties are shown in Table 11. Indicated.

同表から明らかなように、従来材に比べて本発明適正範
囲を満たしているものは、仕上焼鈍においてコイルの内
巻の純化が著しく改善されており、所期したところの磁
気特性が得られている。
As is clear from the table, those satisfying the proper range of the present invention as compared with the conventional material have significantly improved the purification of the inner winding of the coil in the finish annealing, and the desired magnetic characteristics can be obtained. ing.

実施例11 C:0.043%,Si:3.15%,Mn:0.087%,S:0.024%を含み残部
実質的にFeより成る240mm厚の連鋳スラブをいずれも139
0℃,1hr加熱後、2.7mm厚,1000mm幅に熱延し、酸洗後、
0.88mm厚に中間冷延し、950℃,2.5mm間の中間焼鈍後、
圧延率66%で0.30mm厚に仕上げた。次いで脱脂後、湿水
素中で825℃,3minの脱炭焼鈍後にMgOにTiO2を1.75%添
加した焼鈍分離剤を均一に9g/m2塗布,乾燥してコイル
に巻取る際、1コイルはコイルの内巻〜外巻にかけて均
一に10g/mm2の巻取張力で巻取った従来材と、他1コイ
ルはコイルの内巻側1/2平均の巻取張力を外巻側1/2平均
の10kg/mm2の巻取張力より25%減の7.5kg/mm2に変更し
て内巻の7.5kg/mm2〜外巻の10kg/mm2連続的に巻取張力
を変更して巻取り本発明例のコイルとしたのち、両コイ
ルをドライN2中で、40℃/hrの昇温速度で昇熱しドライH
2に切替て1200℃,10hrの仕上焼鈍を実施した。その後、
焼鈍分離剤を除去して張力コーティングを施しフラット
ニング焼鈍した成品の、コイルの内巻,外巻部相当位置
をエプスタイン試機に剪断後、800℃,3hrの歪取焼鈍を
施し、0.5kg重さで磁気特性B10(T),W17/50(w/kg)
を測定するとともに、仕上焼鈍後、焼鈍分離剤を除去し
たフォルステライト被膜付のS,Ti成分の分析値の合計量
と、磁気特性を第12表に示した。
Example 11 A continuous cast slab having a thickness of 240 mm and containing C: 0.043%, Si: 3.15%, Mn: 0.087%, S: 0.024% and the balance being substantially Fe was 139.
After heating at 0 ℃ for 1 hour, hot rolled to 2.7mm thickness and 1000mm width, after pickling,
Intermediate cold-rolled to 0.88mm thickness, after 950 ℃, 2.5mm intermediate annealing,
Finished to a thickness of 0.30 mm at a rolling rate of 66%. Then, after degreasing, decarburization annealing in wet hydrogen at 825 ° C for 3 min, an annealing separator with 1.75% TiO 2 added to MgO was evenly applied at 9 g / m 2 and dried. A conventional material that is wound with a winding tension of 10 g / mm 2 uniformly from the inner winding to the outer winding of the coil, and the other 1 coil is the inner winding side of the coil 1/2, and the average winding tension is 1/2 the outer winding side. change the 10 kg / mm 2 continuously winding tension of 7.5 kg / mm 2 ~ out winding of the inner winding is changed to 7.5 kg / mm 2 at 25% lower than the winding tension of the average of 10 kg / mm 2 Winding After forming the coil of the present invention example, both coils were heated in dry N 2 at a heating rate of 40 ° C / hr to dry H
After switching to 2 , the final annealing was carried out at 1200 ° C for 10 hours. afterwards,
After removing the annealing separator and applying tension coating and flattening annealing, the coil inner and outer coil equivalent positions were sheared by the Epstein tester, strain-annealed at 800 ° C for 3 hours, and then subjected to 0.5 kg weight. Magnetic properties B 10 (T), W17 / 50 (w / kg)
In addition to the measurement, the total amount of the analysis values of the S and Ti components with the forsterite coating from which the annealing separator was removed after the finish annealing and the magnetic properties are shown in Table 12.

同表から明らかなように、従来材に比べて本発明の適正
範囲を満しているものは、仕上焼鈍においてコイル内巻
部の純化が著しく改善され、所期したところの磁気特性
が得られている。
As is clear from the table, those satisfying the proper range of the present invention as compared with the conventional material are significantly improved in the purification of the coil inner winding portion in the finish annealing, and the desired magnetic characteristics are obtained. ing.

実施例12 C:0.049%,Si:3.39%,Mn:0.087%,Se:0.027%を含み残
部実質的にFeよりなる180mm厚の連鋳スラブを、いずれ
も1360℃に1時間加熱後、1.8mm厚,1000mm幅に熱延し、
920℃,2minの焼鈍後酸洗して0.46mm厚に中間冷延し、95
0℃,2minの中間焼鈍後圧下率61%で最終冷延し0.18mm厚
に仕上げた。次いで脱脂後、湿水素中で825℃,3minの脱
炭焼鈍を施したのち、MgOにTiO2を1.8%添加した焼鈍分
離剤を均一に12g/m2塗布,乾燥して巻取る際、1コイル
はコイルの内巻〜外巻部まで均等に6kg/mm2で巻取った
従来材と、他1コイルは外巻部1/2平均の6kg/mm2の巻取
張力に対して内巻部1/2は外巻部より35%減の3.9kg/mm2
で巻取り、残る外巻部1/2の先端から外巻部後端にかけ
ては3.9kg/mm2から6kg/mm2に連続して巻取り張力を変化
させてコイルに巻取り本発明コイルとした。両コイルを
ドライN2で835℃,40hrの2次再結晶保定焼鈍を施し、ド
ライH2に切替えて1200℃,10hrの仕上焼鈍を施した。焼
鈍分離剤を除去後、張力コーティングを施しフラットニ
ング焼鈍後、コイルの内巻,中巻,外巻部の位置からを
エプスタイン試片を採取後800℃,3hrの歪取焼鈍を施し
た後、0.5kg重さの試料で磁気測定B10(T),W17/50(w
/kg)を測定するとともに、仕上焼鈍後、焼鈍分離剤を
除去したフォルステライト被膜付のSe,Ti成分の分析値
の合計量と磁気特性値を第13表に示す。
Example 12 C: 0.049%, Si: 3.39%, Mn: 0.087%, Se: 0.027%, the balance of 180mm continuous cast slab consisting essentially of Fe, after heating to 1360 ℃ for 1 hour, 1.8 mm thickness, 1000mm width hot rolled,
After annealing at 920 ℃ for 2min, pickling, intermediate cold rolling to 0.46mm thickness, 95
After intermediate annealing at 0 ° C for 2 min, final cold rolling was performed at a reduction rate of 61% to a thickness of 0.18 mm. Then, after degreasing, decarburization annealing was performed in wet hydrogen at 825 ° C for 3 minutes, and then an annealing separator containing 1.8% TiO 2 added to MgO was uniformly applied at 12 g / m 2 and dried and wound. The coil is a conventional material that is uniformly wound from the inner winding to the outer winding of the coil at 6 kg / mm 2 , and the other 1 coil is the inner winding against the average winding tension of 6 kg / mm 2 of the outer winding. Part 1/2 is 35% less than the outer winding part, 3.9 kg / mm 2
Winding, and remains outside winding portion 1/2 of the tip from the outer winding portion rear winding invention coils the coil by varying the winding tension continuously from 3.9 kg / mm 2 to 6 kg / mm 2 subjected in did. Both coils were subjected to secondary recrystallization retention annealing at 835 ° C. for 40 hours in dry N 2 , switched to dry H 2 and subjected to finish annealing at 1200 ° C. for 10 hours. After removing the annealing separator, tension coating is applied and flattening annealing is performed. Epstein test pieces are sampled from the positions of the inner winding, middle winding and outer winding of the coil, and stress relief annealing is performed at 800 ° C for 3 hours, Magnetic measurement of a sample weighing 0.5 kg B 10 (T), W17 / 50 (w
/ kg), and after the final annealing, the total amount of the analysis values of the Se and Ti components with the forsterite coating with the annealing separator removed and the magnetic property values are shown in Table 13.

同表から明らかなように、従来工程材に比べて本発明の
適正範囲を満たしているものは仕上焼鈍においてコイル
の内巻部の純化が著しく改善されて、所期したところの
磁気特性が得られている。
As is clear from the table, those satisfying the proper range of the present invention as compared with the conventional process material have significantly improved the purification of the inner winding portion of the coil in the finish annealing, and the desired magnetic properties can be obtained. Has been.

実施例13 C:0.055%,Si:3.20%,Mn:0.088%,S:0.025%,酸可溶性
Al:0.028%,N:0.0091%を含み残部実質的にFeよりなる2
40mm厚の連鋳スラブをいずれも1400℃に1時間加熱後、
3.0mm厚,1000mm幅に熱延し、1050℃,1min間の熱延板焼
鈍を行ない、酸洗後88%の冷延率で0.35mm厚に仕上げ、
脱脂後湿水素中で845℃,2.5minの脱炭焼鈍後、MgOに1.7
5%のTiO2を添加した焼鈍分離剤を均一に8g/m2塗布,乾
燥してコイルに巻取る際、1コイルはコイル全長に亘り
11.5kg/mm2の巻取張力にてコイルに巻取った従来材と
し、他の1コイルは、コイルの内巻側1/2平均の張力を
外巻側1/2平均の張力11.5kg/mm2の39%減の7kg/mm2に設
定し、コイル内巻から外巻にかけての巻取張力を7kg/mm
2〜11.5kg/mm2に連続して張力を制御しコイルに巻取り
本発明例のコイルとし、両コイルを引続きドライN2中で
40℃/hの昇温速度で昇熱し、更にドライH2中で1200℃,1
0Hrの仕上焼鈍を行ない、分離剤を除去後、張力コーテ
ィングを施しフラットニング処理して成品とした。コイ
ルの内巻,外巻部に位置するところをエプスタインサイ
ズに剪断して、800℃,3hrの歪取焼鈍後、0.5kg重さの試
料で磁気特性B10(T),W17/50(w/kg)を測定するとと
もに、仕上焼鈍後に焼鈍分離剤を除去したフォルステラ
イト被膜付の分析をS,Ti,Nについて実施しその合計量を
磁気特性とともに第14表に示した。
Example 13 C: 0.055%, Si: 3.20%, Mn: 0.088%, S: 0.025%, acid soluble
Al: 0.028%, N: 0.0091% and the balance essentially Fe 2
After heating all 40mm continuous cast slabs to 1400 ℃ for 1 hour,
Hot rolled to 3.0 mm thickness and 1000 mm width, hot rolled sheet annealed at 1050 ° C for 1 min, finished with pickling to 88% cold rolling rate to 0.35 mm thickness,
After degreasing, decarburization annealing at 845 ° C for 2.5 min in wet hydrogen, and then adding 1.7 to MgO.
When an annealing separator containing 5% TiO 2 is uniformly applied at 8 g / m 2 and dried and wound on a coil, one coil is spread over the entire length of the coil.
The conventional material is wound into a coil with a winding tension of 11.5 kg / mm 2 , and for the other 1 coil, the average tension on the inner winding side of the coil is 1/2, and the average tension on the outer winding side is 1/2 average 11.5 kg / set 7 kg / mm 2 in down 39% mm 2, the winding tension of toward the outer winding of the coil in winding 7 kg / mm
2 ~ 11.5 kg / mm 2 tension is continuously controlled and wound on a coil to form a coil of the present invention example, and both coils are continuously dried in N 2 .
The temperature is raised at a heating rate of 40 ° C / h, and then in dry H 2 at 1200 ° C, 1
After finishing annealing at 0 Hr to remove the separating agent, tension coating was applied and flattening was performed to obtain a product. The inner and outer windings of the coil are sheared to Epstein size, and after stress relief annealing at 800 ℃ for 3hrs, the magnetic characteristics B 10 (T), W17 / 50 (w17 / 50 (w / kg) and forsterite coating with the annealing separator removed after finish annealing were carried out for S, Ti and N, and the total amount is shown in Table 14 together with the magnetic properties.

同表から明らかなように、従来工程に比べて本発明適正
範囲を満たしているものは、仕上焼鈍においてコイル内
巻部の純化が著しく改善されて所期した磁気特性が得ら
れている。
As is clear from the table, those satisfying the proper range of the present invention as compared with the conventional process have remarkably improved the purification of the coil inner winding portion in the finish annealing, and the desired magnetic characteristics are obtained.

実施例14 C:0.055%,Si:3.20%,Mn:0.088%,S:0.028%,Se:0.018
%,酸可溶性Al:0.030%,N:0.0095%を含み残部実質的
にFeよりなる180mm厚連鋳スラブをいずれも1400℃に1
時間加熱後2.0mm厚,1000mm幅に熱延し、1025℃で1min焼
鈍後酸洗して88.5%の冷延率で0.23mm厚に仕上げ、脱脂
後湿水素中で845℃,2minの脱炭焼鈍後MgOにTiO2を1.5%
添加した焼鈍分離剤を均一に10.5g/m2塗布,乾燥してコ
イルに巻取る際、1コイルはコイル全長に亘り均一に8.
5kg/mm2の張力で巻取った従来材とし、他1コイルは、
外巻1/2を8.5kg/mm2,内巻1/2は外巻の35%減の5.5kg/m
m2の巻取張力として段階的に変化させて巻取り本発明例
のコイルとし、両コイルをその後、ドライN2中で昇熱速
度40℃/hで昇温し、ドライH2中で、1200℃,10hrの仕上
焼鈍を実施した。分離剤を除去後、張力コーティングを
施し、フラットニング処理して成品として、コイルの内
巻,外巻部に位置するところをエプスタイン試片サイズ
に剪断して、800℃×3hrの歪取焼鈍後、0.5kg重さの試
料で磁気特性B10(T),W17/50(w/kg)を測定するとと
もに、仕上焼鈍後に焼鈍分離剤を除去したフォルステラ
イト被膜付の分析をS,Se,Ti,N成分について実施し、そ
の合計量を磁気特性とともに第15表に示した。
Example 14 C: 0.055%, Si: 3.20%, Mn: 0.088%, S: 0.028%, Se: 0.018
%, Acid-soluble Al: 0.030%, N: 0.0095% and the balance is a 180 mm continuous cast slab consisting essentially of Fe at 1400 ° C.
After heating for 2 hours, hot rolled to a thickness of 2.0 mm and a width of 1000 mm, annealed at 1025 ° C for 1 min, pickled and finished to a thickness of 0.23 mm at a cold rolling rate of 88.5%, and after degreasing, decarburization in wet hydrogen at 845 ° C for 2 min 1.5% TiO 2 in MgO after annealing
When the added annealing separator is uniformly applied at 10.5 g / m 2 and dried and wound on a coil, one coil is evenly distributed over the entire length of the coil 8.
Conventional material wound with a tension of 5 kg / mm 2 , other 1 coil is
Outer volume 1/2 is 8.5 kg / mm 2 , inner volume 1/2 is 35% less than outer volume, 5.5 kg / m 2.
A coil of the present invention example was obtained by gradually changing the winding tension of m 2 and winding the both coils in dry N 2 at a heating rate of 40 ° C./h, and in dry H 2 . Finish annealing was carried out at 1200 ° C for 10 hours. After removing the separating agent, tension coating is applied and flattening is performed as a product, and the parts located in the inner and outer winding parts of the coil are sheared to the Epstein sample size, and after stress relief annealing at 800 ° C x 3hr. The magnetic properties B 10 (T) and W17 / 50 (w / kg) of a sample weighing 0.5 kg were measured, and the analysis with the forsterite coating from which the annealing separator was removed after finish annealing was performed on S, Se, Ti. , N component was carried out, and the total amount is shown in Table 15 together with the magnetic properties.

同表から明らかなように、従来工程に比べて本発明適正
範囲を満たしているものは、仕上焼鈍においてコイル内
巻部の純化が著しく改善されて所期した磁気特性が得ら
れた。
As is clear from the table, those satisfying the proper range of the present invention as compared with the conventional process were significantly improved in the purification of the coil inner winding portion in the finish annealing, and the desired magnetic characteristics were obtained.

実施例15 C:0.055%,Si:3.25%,Mn:0.091%,Se:0.027%,酸可溶
性Al:0.032%,N:0.0100%を含み残部実質的にFeよりな
る220mm厚連鋳スラブをいずれも1390℃に1hr加熱し、2.
7mm厚,1025mm幅に熱延後、1030℃で1min間焼鈍後酸洗
し、冷延率89%で0.30mm厚に仕上げて、脱脂した後湿水
素中で835℃,2.5minの脱炭焼鈍を行ない、MgOにTiO2
1.75%添加した焼鈍分離剤を均一に10g/m2塗布,乾燥
し、コイルに巻取る際1コイルはコイル内巻から外巻に
かて巻取張力を均一に11.5kg/mm2として従来工程と、う
ち1コイルはコイルの外巻部1/2の平均を従来材と同じ1
1.5kg/mm2とし、内巻部1/2の平均を外巻より28%減少の
8.3kg/mm2とし、内巻最先端から内巻最後端にかけて
は、8.3kg/mm2から10kg/mm2に連続的に低減し、外巻部1
/2は11.5kg/mm2に段階的に巻取張力を変更してコイルを
巻取り本発明のコイルとし、いずれのコイルもドライN2
中で38℃/hrの昇熱速度で昇温し、ドライH2中で1200℃,
10hrの仕上焼鈍を行なった。焼鈍分離剤を除去後、張力
コーティングを施し、フラットニング処理を実施して成
品とした。コイルの内巻,外巻に相当する位置よりエプ
スタインサイズの試片に剪断後、800℃,3hrの歪取焼鈍
を実施して0.5kg重さの試料で磁気特性B10(T),W17/5
0(w/kg)を測定するとともに、仕上焼鈍後に焼鈍分離
剤を除去したフォルステライト被膜付の分析をSe,Ti,N
成分について実施し、その合計量を磁気特性とともに第
16表に示した。
Example 15 C: 0.055%, Si: 3.25%, Mn: 0.091%, Se: 0.027%, acid-soluble Al: 0.032%, N: 0.0100% and the balance is a 220 mm thick continuous cast slab consisting essentially of Fe Also heated to 1390 ℃ for 1 hr, 2.
After hot rolling to 7mm thickness and 1025mm width, annealing at 1030 ℃ for 1min, pickling, finishing to 0.30mm thickness at 89% cold rolling rate, degreasing, and decarburization annealing at 835 ℃ for 2.5min in wet hydrogen. And add TiO 2 to MgO.
When the annealing separator with 1.75% added is uniformly applied at 10 g / m 2 and dried and wound into a coil, one coil is wound from the inner coil to the outer coil, and the winding tension is uniformly 11.5 kg / mm 2 And, of these, 1 coil is the same as the conventional material with the average of the outer half of the coil being 1
1.5kg / mm 2 and the average of the inner winding 1/2 is 28% less than the outer winding
And 8.3 kg / mm 2, toward the inner winding rearmost end from Uchimaki advanced continuously decreased from 8.3 kg / mm 2 to 10 kg / mm 2, the outer winding part 1
/ 2 is a coil of the present invention with the winding tension changed stepwise to 11.5 kg / mm 2 and all coils are dry N 2
In the dry H 2 at 1200 ℃,
Finish annealing was performed for 10 hours. After removing the annealing separator, tension coating was applied and flattening treatment was performed to obtain a product. Epstein-size specimens were sheared from the positions corresponding to the inner and outer windings of the coil, then strain relief annealing was performed at 800 ° C for 3 hours, and the magnetic properties B 10 (T), W17 / Five
In addition to measuring 0 (w / kg), the analysis with the forsterite coating after removing the annealing separator after finish annealing was performed using Se, Ti, N
For each component, the total amount of the
It is shown in Table 16.

同表から明らかなように、従来工程に比べて本発明適正
範囲を満たしているものは、仕上焼鈍においてコイル内
巻部の純化が著しく改善されて、所期した磁気特性が得
られた。
As is clear from the table, those satisfying the proper range of the present invention as compared with the conventional process were significantly improved in the purification of the coil inner winding portion in the finish annealing, and the desired magnetic characteristics were obtained.

実施例16 C:0.053%,Si:3.30%,Mn:0.092%,S:0.021%,Se:0.019
%,Sn:0.085%,Cu:0.095%,酸可溶性Al:0.028%,N:0.0
095%を含み残部実質的にFeよりなる220mm厚の連鋳スラ
ブをいずれも1420℃に1hr加熱後、2.7mm厚,1050mm幅に
熱延し、1025℃で1.5min焼鈍後、酸洗して、90%の冷延
率で0.27mm厚に仕上げて脱脂後、湿水素中で850℃,3min
の脱炭焼鈍を行ない、MgOにTiO2を1.5%添加した焼鈍分
離剤を均一に9.5g/m2塗布,乾燥してコイルに巻取る際
の巻取張力は、1コイルは、コイルの内巻〜外巻にかけ
て9.7kg/mm2の張力で均等に巻取った従来工程のコイル
と、他の1コイルは外巻部1/2を従来工程と同じの9.7kg
/mm2としたのに対し、内巻1/2はコイル外巻より25%減
少の7.2kg/mm2として段階的に張力を変更して本発明の
コイルとし、両コイルを、ドライN2中で35℃/hrの昇温
速度で昇熱し、ドライH2中で1200℃,10hr保定の仕上焼
鈍を施した。焼鈍分離剤を除去し、張力コーティングを
施し、フラットニング焼鈍を行なって成品とし、コイル
の内巻,外巻に相当する位置よりエプスタインサイズの
試片に剪断、800℃,3hrの歪取を実施して0.5kg重さの試
料で磁気特性B10(T),W17/50(w/kg)を測定するとと
もに、仕上焼鈍後に焼鈍分離剤を除去したフォルステラ
イト被膜付の分析をS,Se,Ti,N成分について実施し、そ
の合計量を磁気特性とともに第17表に示した。
Example 16 C: 0.053%, Si: 3.30%, Mn: 0.092%, S: 0.021%, Se: 0.019
%, Sn: 0.085%, Cu: 0.095%, Acid-soluble Al: 0.028%, N: 0.0
All 220 mm thick continuous cast slabs containing 095% and the balance consisting essentially of Fe were heated to 1420 ° C for 1 hr, then hot rolled to 2.7 mm thickness and 1050 mm width, annealed at 1025 ° C for 1.5 min, and pickled. Finished to 0.27mm thickness with 90% cold rolling rate and degreased, then in wet hydrogen at 850 ℃ for 3min
Decarburization annealing was performed, and an annealing separator with 1.5% TiO 2 added to MgO was uniformly applied and dried at a coiling tension of 9.5 g / m 2 per coil. The coil of the conventional process wound evenly with a tension of 9.7 kg / mm 2 from the winding to the outer winding, and the other coil has the outer winding part 1/2 with the same 9.7 kg as in the conventional process.
/ mm 2 and the contrast, the inner winding 1/2 the coil of the present invention by changing stepwise tension as 7.2 kg / mm 2 25% lower than the coil outer winding, the two coils, dry N 2 The sample was annealed at a temperature rising rate of 35 ° C / hr in it, and subjected to finish annealing with retention at 1200 ° C for 10 hr in dry H 2 . The annealing separator is removed, tension coating is applied, and flattening annealing is performed to make a product. Shearing of Epstein size specimens from the positions corresponding to the inner and outer windings of the coil and strain relief at 800 ° C for 3 hours are performed. Then, the magnetic properties B 10 (T), W17 / 50 (w / kg) were measured with a sample weighing 0.5 kg, and the analysis with the forsterite coating from which the annealing separating agent was removed after finish annealing was performed on S, Se, The Ti and N components were tested, and the total amount is shown in Table 17 together with the magnetic properties.

同表から明らかなように、従来工程に比べて本発明適正
範囲を満たしているものは、仕上焼鈍においてコイル内
巻部の純化が著しく改善されて、所期した磁気特性が得
られた。
As is clear from the table, those satisfying the proper range of the present invention as compared with the conventional process were significantly improved in the purification of the coil inner winding portion in the finish annealing, and the desired magnetic characteristics were obtained.

〈発明の効果〉 かくして、本発明によれば、十分に高い磁束密度と低い
鉄損値を有する一方向性けい素鋼板を、コイル全長に亘
って均一に安定して、コストを上昇させることなく製造
することが可能となった。
<Effect of the Invention> Thus, according to the present invention, a unidirectional silicon steel sheet having a sufficiently high magnetic flux density and a low iron loss value is uniformly stable over the entire length of the coil without increasing the cost. It has become possible to manufacture.

【図面の簡単な説明】[Brief description of drawings]

第1図は、焼鈍分離剤の塗布量と磁気特性ならびにフォ
ルステライト被膜付のS,Se,Ti成分の膜付分析合計量と
の関係を示す図、第2図は、焼鈍分離剤を塗布してコイ
ルに巻取る際の外巻部に対する内巻部の巻取張力軽減率
と仕上焼鈍後のフォルステライト被膜付S,Se,Ti成分の
合計量ならびに磁気特性との関係を示した図である。
FIG. 1 is a diagram showing the relationship between the applied amount of the annealing separator and the magnetic properties and the total analysis amount of S, Se, and Ti components with forsterite coating, and FIG. 2 shows the relationship between the applied annealing separator. FIG. 3 is a diagram showing the relationship between the reduction ratio of the winding tension of the inner winding portion relative to the outer winding portion when winding the coil on the vertical coil, the total amount of S, Se, and Ti components with forsterite coating after finish annealing, and the magnetic properties. .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−190119(JP,A) 特開 昭63−137123(JP,A) 特公 昭62−1458(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 63-190119 (JP, A) JP 63-137123 (JP, A) JP 62-1458 (JP, B2)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.020〜0.080%,Si:2.5〜4.0
%,Mn:0.03〜0.15%ならびにS及びSeのいずれか1種又
は2種合計で0.008〜0.080%を含むけい素鋼素材スラブ
を熱間圧延し、1回又は中間焼鈍を挟む2回の冷間圧延
を最終冷延圧下率40〜80%で施して最終板厚に仕上げた
のち、脱炭焼鈍しついで焼鈍分離剤を塗布乾燥してコイ
ルに巻取り、最終仕上焼鈍を施す一連の工程よりなる一
方向性けい素鋼板の製造方法において、該焼鈍分離剤を
塗布するに際に、塗布量を鋼板両面合計量で8g/m2以上
とし、かつ鋼帯中央部よりコイル内巻部の塗布量を外巻
部よりその平均値で10%以上多くしたことを特徴とする
一方向性けい素鋼板の製造方法。
1. C: 0.020 to 0.080% by weight, Si: 2.5 to 4.0
%, Mn: 0.03 to 0.15% and any one or two of S and Se, 0.008 to 0.080% in total, hot rolled a silicon steel material slab and cooled once or twice with intermediate annealing. Hot rolling at a final cold rolling reduction of 40 to 80% to finish to the final plate thickness, decarburization annealing, then applying an annealing separator, drying and winding it into a coil, and performing a final finishing annealing. In the method for producing a unidirectional silicon steel sheet, when applying the annealing separator, the application amount is 8 g / m 2 or more in terms of the total amount of both sides of the steel sheet, and the application of the coil inner winding portion from the center of the steel strip. A method for producing a unidirectional silicon steel sheet, characterized in that the amount is increased by 10% or more on average from the outer wound portion.
【請求項2】重量%で、C:0.020〜0.080%,Si:2.5〜4.0
%,Mn:0.03〜0.15%,S及びSeのいずれか1種又は2種合
計で0.008〜0.080%,酸可溶性Al:0.010〜0.070%,N:0.
0035〜0.0140%を含むけい素鋼素材スラブを熱間圧延
し、熱延板を焼鈍後、圧下率80〜95%の冷間圧延を施
し、最終板厚に仕上げたのち、脱炭焼鈍し、ついで焼鈍
分離剤を塗布乾燥してコイルに巻取り、最終仕上焼鈍を
施す一連の工程よりなる一方向性けい素鋼板の製造方法
において、該焼鈍分離剤を塗布するに際に、塗布量を鋼
板両面合計量で8g/m2とし、かつ鋼帯中央部よりコイル
内巻部の塗布量を外巻部よりその平均値で10%以上多く
したことを特徴とする一方向性けい素鋼板の製造方法。
2. C: 0.020 to 0.080%, Si: 2.5 to 4.0 in weight%.
%, Mn: 0.03 to 0.15%, any one or two of S and Se in total of 0.008 to 0.080%, acid-soluble Al: 0.010 to 0.070%, N: 0.
[0035] Hot rolling a silicon steel material slab containing 0.0140 ~ 0.0140%, after annealing the hot rolled sheet, subjected to cold rolling with a reduction rate of 80 ~ 95%, after finishing to a final sheet thickness, decarburization annealing, Then, in a method for producing a unidirectional silicon steel sheet comprising a series of steps of applying an annealing separator and drying and winding it into a coil, and performing final finishing annealing, when applying the annealing separator, the coating amount is a steel plate. Manufacture of unidirectional silicon steel sheet characterized in that the total amount of both sides is 8 g / m 2 and the coating amount of the coil inner winding part is 10% or more larger than the outer winding part on average from the central part of the steel strip. Method.
【請求項3】重量%で、C:0.020〜0.080%,Si:2.5〜4.0
%,Mn:0.03〜0.15%ならびにS及びSeのいずれか1種又
は2種合計で0.008〜0.080%を含むけい素鋼素材スラブ
を熱間圧延し、1回又は中間焼鈍を挟む2回の冷間圧延
を最終冷延圧下率40〜80%で施して最終板厚に仕上げた
のち、脱炭焼鈍し、ついで焼鈍分離剤を塗布乾燥してコ
イルに巻取り、最終仕上焼鈍を施す一連の工程よりなる
一方向性けい素鋼板の製造方法において、コイルに巻取
る際に、鋼帯中央部より内巻部の巻取り張力を3〜12kg
/mm2の範囲で、かつ外巻部の巻取り張力より10%以上低
くして巻取ることを特徴とする一方向性けい素鋼板の製
造方法。
3. C: 0.020 to 0.080%, Si: 2.5 to 4.0 in weight%.
%, Mn: 0.03 to 0.15% and any one or two of S and Se, 0.008 to 0.080% in total, hot rolled a silicon steel material slab and cooled once or twice with intermediate annealing. A series of processes in which hot rolling is performed at a final cold rolling reduction of 40 to 80% to finish to a final plate thickness, decarburization annealing is performed, and then an annealing separator is applied and dried, wound on a coil, and final finishing annealing is performed. In the method for producing a unidirectional silicon steel sheet, the winding tension of the inner winding portion from the center of the steel strip is 3 to 12 kg when winding the coil.
A method for manufacturing a unidirectional silicon steel sheet, characterized in that the coiling is carried out in the range of / mm 2 and at least 10% lower than the coiling tension of the outer coil.
【請求項4】重量%で、C:0.020〜0.080%,Si:2.5〜4.0
%,Mn:0.03〜0.15%,S及びSeのいずれか1種又は2種合
計で0.008〜0.080%,酸可溶性Al:0.010〜0.070%,N:0.
0035〜0.0140%を含むけい素鋼素材スラブを熱間圧延
し、熱延板を焼鈍後、圧下率80〜95%の冷間圧延を施
し、最終板厚に仕上げたのち、脱炭焼鈍し、ついで焼鈍
分離剤を塗布乾燥してコイルに巻取り、最終仕上焼鈍を
施す一連の工程よりなる一方向性けい素鋼板の製造方法
において、コイルに巻取る際に、鋼帯中央部より内巻部
の巻取り張力を3〜12kg/mm2の範囲で、かつ外巻部の巻
取り張力より10%以上低くして巻取ることを特徴とする
一方向性けい素鋼板の製造方法。
4. By weight%, C: 0.020 to 0.080%, Si: 2.5 to 4.0
%, Mn: 0.03 to 0.15%, any one or two of S and Se in total of 0.008 to 0.080%, acid-soluble Al: 0.010 to 0.070%, N: 0.
[0035] Hot rolling a silicon steel material slab containing 0.0140 ~ 0.0140%, after annealing the hot rolled sheet, subjected to cold rolling with a reduction rate of 80 ~ 95%, after finishing to a final sheet thickness, decarburization annealing, Next, in the method for producing a unidirectional silicon steel sheet consisting of a series of steps in which an annealing separator is applied and dried and wound into a coil, and final finishing annealing is performed, when wound into a coil, the inner winding part is rolled from the central part of the steel strip. The method for producing a unidirectional silicon steel sheet according to claim 1, wherein the winding tension is less than 3% to 12 kg / mm 2 and lower than the winding tension of the outer winding portion by 10% or more.
JP21838288A 1988-09-02 1988-09-02 Method for manufacturing unidirectional silicon steel sheet Expired - Lifetime JPH0689403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21838288A JPH0689403B2 (en) 1988-09-02 1988-09-02 Method for manufacturing unidirectional silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21838288A JPH0689403B2 (en) 1988-09-02 1988-09-02 Method for manufacturing unidirectional silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH0270020A JPH0270020A (en) 1990-03-08
JPH0689403B2 true JPH0689403B2 (en) 1994-11-09

Family

ID=16719024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21838288A Expired - Lifetime JPH0689403B2 (en) 1988-09-02 1988-09-02 Method for manufacturing unidirectional silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0689403B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2520082A1 (en) 2009-12-31 2012-11-07 Arçelik Anonim Sirketi A digital broadcast receiving device having an electronic program guide
MX2012014567A (en) * 2010-06-29 2013-02-12 Jfe Steel Corp Oriented magnetic steel sheet and production method thereof.
BR112013002913B1 (en) * 2010-08-06 2022-04-05 Jfe Steel Corporation Grain-oriented electric steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0270020A (en) 1990-03-08

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
EP2880190B1 (en) Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
JP3537339B2 (en) Grain-oriented electrical steel sheet having excellent film properties and magnetic properties and method for producing the same
WO2016067636A1 (en) Production method for oriented electromagnetic steel sheet
JPH0885825A (en) Production of grain oriented silicon steel sheet excellent in magnetic property over entire length of coil
JPS6250529B2 (en)
JP2006299297A (en) Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic
JP4811390B2 (en) Bi-directional electrical steel sheet
JPH0689403B2 (en) Method for manufacturing unidirectional silicon steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JPH0696743B2 (en) Method for producing unidirectional silicon steel sheet having excellent magnetic properties
JP4075258B2 (en) Manufacturing method of bi-directional electrical steel sheet
EP4335938A1 (en) Method for producing grain-oriented electromagnetic steel sheet
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3253111B2 (en) Manufacturing method of unidirectional silicon steel sheet
JP2653637B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
JP6702259B2 (en) Method for producing grain-oriented electrical steel sheet
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
EP4317471A1 (en) Production method for grain-oriented electrical steel sheet
JP2758543B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JP3903494B2 (en) Manufacturing method of electrical steel sheet
JPH10273725A (en) Manufacture of grain oriented silicon steel sheet
EP4317472A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP2004285402A (en) Manufacturing method of grain-oriented magnetic steel sheet