JPH0689379B2 - Structural component having porous layer on surface and method of manufacturing the same - Google Patents

Structural component having porous layer on surface and method of manufacturing the same

Info

Publication number
JPH0689379B2
JPH0689379B2 JP61048586A JP4858686A JPH0689379B2 JP H0689379 B2 JPH0689379 B2 JP H0689379B2 JP 61048586 A JP61048586 A JP 61048586A JP 4858686 A JP4858686 A JP 4858686A JP H0689379 B2 JPH0689379 B2 JP H0689379B2
Authority
JP
Japan
Prior art keywords
powder
base material
alloy
porous layer
structural component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61048586A
Other languages
Japanese (ja)
Other versions
JPS62174302A (en
Inventor
昇 上西
農士 黒石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPS62174302A publication Critical patent/JPS62174302A/en
Publication of JPH0689379B2 publication Critical patent/JPH0689379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はその表面にポーラスな層を有する構造部品及び
その製造方法に関するものであり、このような構造部品
は人工骨、軸受の一部、吸振合金の構成部分等、多岐に
わたる分野に利用されうる。
Description: TECHNICAL FIELD The present invention relates to a structural component having a porous layer on its surface and a method for manufacturing the same, and such a structural component includes an artificial bone, a part of a bearing, It can be used in a wide variety of fields such as components of vibration-absorbing alloys.

(従来の技術) 基材とその表面にポーラスな層を有する構造部品を造る
方法の一例として、従来、第2図に示すように鋳造法又
は粉末治金法等により作製した基材部1の表面に合金粉
末3を配し、これらを炉中にて高温度にさらし、合金粉
末3と基材部1との間に固相拡散を起させることによ
り、第3図に示すような、基材部31とポーラスな層32か
らなる構造部品を製造することが行われていた。
(Prior Art) As an example of a method for producing a structural component having a substrate and a porous layer on the surface thereof, conventionally, as shown in FIG. 2, a substrate portion 1 produced by a casting method or a powder metallurgy method is used. By disposing the alloy powder 3 on the surface and exposing them to a high temperature in a furnace to cause solid phase diffusion between the alloy powder 3 and the base material portion 1, as shown in FIG. It has been practiced to manufacture structural parts consisting of a lumber part 31 and a porous layer 32.

(発明が解決しようとする問題点) しかしながら上記した従来法は次の欠点を有していた。
まず第1に得られたポーラス層を有する構造部品の強度
特性がポーラス層を有しない場合に比して著しく劣化す
ることである。これは第3図の5として示した部分での
応力集中や、基材部31とポーラス層32を構成する合金粉
末3との間の境界面付近における組織異常が破壊発生の
起点となるためと考えられる。第2に十分な固相拡散を
せしめるためには温度を高くする(融点の90〜95%)必
要があることで、温度が低い場合には基材部31と合金粉
末3との固着が十分なものにならない。従つて、エネル
ギー的にコスト高となる。
(Problems to be Solved by the Invention) However, the above-mentioned conventional method has the following drawbacks.
First, the strength characteristics of the structural component having the porous layer obtained are significantly deteriorated as compared with the case where the structural component does not have the porous layer. This is because the stress concentration at the portion shown as 5 in FIG. 3 and the structural abnormality near the boundary surface between the base material portion 31 and the alloy powder 3 forming the porous layer 32 are the starting points of fracture occurrence. Conceivable. Secondly, it is necessary to raise the temperature (90 to 95% of the melting point) in order to cause sufficient solid-phase diffusion. Therefore, when the temperature is low, the adhesion between the base material portion 31 and the alloy powder 3 is sufficient. It does not become something. Therefore, the cost is high in terms of energy.

本発明は、従来法における上記したような欠点に鑑み、
ポーラス層を形成しても強度特性の劣化が少なく、必要
温度が低くても合金粉末と基材部の十分な結合を可能と
する新規な、表面にポーラスな層を有する構造部品とそ
の製造方法を意図するものである。
The present invention, in view of the above-mentioned drawbacks in the conventional method,
A structural component having a porous layer on the surface and a method for producing the same, which does not deteriorate the strength characteristics even if a porous layer is formed and enables sufficient bonding between the alloy powder and the base material portion even if the required temperature is low. Is intended.

さらに本発明は上記の発明で得た表面にポーラスな層を
有する構造部品の基材部の強度をより向上した構造部品
の製造方法に係わる発明をも提供するものである。
Further, the present invention also provides an invention relating to a method for manufacturing a structural component having a substrate having a porous layer on the surface obtained in the above-mentioned invention, in which the strength of the base material is further improved.

(問題点を解決するための手段) 本発明者らは、鋭意研究の結果圧粉成形により形成した
基材部表面に合金粉末を配置し加圧後焼結することによ
り、合金粉末と基材部とが強固に結合できること、また
固相拡散が従来法より容易に進行することを見出し、本
発明に到達した。
(Means for Solving the Problems) As a result of earnest research, the inventors of the present invention arranged the alloy powder on the surface of the base material formed by powder compacting, and sintered after pressurizing the alloy powder and the base material. The present invention has been accomplished by finding that they can be firmly bonded to the part and that solid phase diffusion proceeds more easily than in the conventional method.

すなわち、本発明は合金を形成するための純金属粉末を
含む要素粉末(以下、単に要素粉末という)をベースと
して圧粉成形された基材部と合金粉末を原料とし該基材
部表面に形成されたポーラスな層からなり、該ポーラス
な層は上記基材部表面にくい込むように結合固着されて
いることを特徴とする表面にポーラスな層を有する構造
部品及び、要素粉末をベースとする基材部を、圧粉成形
した後、平均粒径100μm以上の合金粉末を該基材部の
表面に配し次いで上記基材部圧粉成形時の圧力の1/10以
上の圧力を加え、それにより得られ表面に合金粉末層を
有する複合圧粉体を焼結することを特徴とする、表面に
ポーラスな層を有する構造部品の製造方法に関する。上
記方法において、基材部圧粉成形時の圧力の1/10以上の
圧力は、冷間静水圧成形により加えることが特に好まし
い。
That is, according to the present invention, a base material part which is compacted and formed on the basis of element powder containing pure metal powder for forming an alloy (hereinafter referred to simply as element powder) and an alloy powder are formed on the surface of the base material part. And a structural part having a porous layer on the surface, characterized in that the porous layer is bonded and fixed to the surface of the base material portion, and a base based on element powder. After powder compacting the material part, an alloy powder having an average particle size of 100 μm or more is placed on the surface of the base material part, and then a pressure of 1/10 or more of the pressure at the time of compaction molding of the base material part is applied. The present invention relates to a method for producing a structural component having a porous layer on the surface, which comprises sintering the composite green compact having the alloy powder layer on the surface obtained by the above. In the above method, it is particularly preferable to apply a pressure of 1/10 or more of the pressure at the time of powder compacting of the base material portion by cold isostatic pressing.

また本発明は上記の方法で得た、表面にポーラスな層を
有する構造部品の基材部をさらに高強度とするための方
法として、要素粉末をベースとする基材部を圧粉成形し
た後、平均粒径100μm以上の合金粉末を該基材部の表
面に配し、次いで上記基材部圧粉成形時の圧力の1/10以
上の圧力を加え、それにより得られた表面に合金粉末層
を有する複合圧粉体を焼結する。、ことにより得た焼結
材について、さらに基材部部分を熱間静水圧成形もしく
は熱処理を施こし、それにより基材部強度を向上するこ
とを特徴とする、表面にポーラスな層を有する構造部品
の製造方法にも関する。
Further, the present invention is a method for further strengthening the base material portion of the structural component having the porous layer on the surface obtained by the above-mentioned method, in which the base material portion based on the element powder is compacted. , An alloy powder having an average particle size of 100 μm or more is placed on the surface of the base material portion, and then a pressure that is 1/10 or more of the pressure at the time of the above-mentioned base material portion compaction molding is applied, and the alloy powder is thus obtained Sintering the composite green body with layers. A structure having a porous layer on the surface of the sintered material obtained by subjecting the base material portion to hot isostatic pressing or heat treatment, thereby improving the strength of the base material portion. It also relates to a method of manufacturing a component.

本発明に特に好ましい実施態様としては粉末合金の基本
組成がTi−6Al−4V合金、Co−Cr系合金、Fe−Cr系ステ
ンレス合金又はFe−Cr−ni系ステンレス合金である上記
の構造部品及びその製造方法が挙げられる。
In a particularly preferred embodiment of the present invention, the basic composition of the powder alloy is Ti-6Al-4V alloy, Co-Cr-based alloy, Fe-Cr-based stainless alloy or Fe-Cr-ni-based stainless alloy and the above structural parts and The manufacturing method is mentioned.

以下に本発明の方法を具体的に説明する。The method of the present invention will be specifically described below.

本発明の方法は基本的には次の3段階からなる。すなわ
ち、 1)要素粉末を圧粉成形し、基材部を作製する段階、 2)該基材部の表面にポーラス層を形成する段階、 3)以上により得られた複合圧粉体の焼結を行う段階で
ある。
The method of the present invention basically comprises the following three steps. That is, 1) a step of compacting the element powder to produce a base material part, 2) a step of forming a porous layer on the surface of the base material part, and 3) sintering of the composite green compact obtained above. Is the stage to do.

まず第1に要素粉末を用い必要とする構造部品の圧粉成
形を行うが、これは金型プレス、冷間静水圧成形等通常
行われている粉末成形法のいずれによつてもよい。
First of all, the required structural parts are powder-compacted by using the element powder, but this may be carried out by any of the commonly-used powder compacting methods such as die pressing and cold isostatic pressing.

この際の負荷圧力は基材部成形のためであるのでこれが
余りに低い場合には基材部の成形自体が困難になるのみ
ならず、次工程における圧力負荷で合金粉末3が基材部
表面にくいこんで付着し十分に結合するというより、第
4図のbとして示すように基材1の内部まで入りこんで
しまい、基材部表面が凸凹になり、ひどい場合には基材
部の形がくずれたり損傷したりしてしまう。従つて用い
る合金種に対応して十分な強度をもつ基材部の成形に必
要な圧力で行うべきである。例えばCo−Cr系合金の場合
はTi−6Al−4V、Fe−Cr系、Fe−Cr−Ni系合金よりも低
い負荷圧力で成形できる。実際には0.1t/cm2以上程度の
圧力であるが、特に限定されるところはない。
Since the load pressure at this time is for molding the base material portion, if it is too low, not only the molding of the base material portion itself becomes difficult, but also the alloy powder 3 is hard to surface on the base material portion due to the pressure load in the next step. Rather than sticking and adhering sufficiently, it penetrates into the inside of the base material 1 as shown in FIG. 4b, the surface of the base material part becomes uneven, and in severe cases, the shape of the base material part collapses. It will be damaged or damaged. Therefore, it should be performed at a pressure necessary for forming a base material having sufficient strength corresponding to the type of alloy used. For example, in the case of a Co-Cr alloy, it can be formed at a lower load pressure than Ti-6Al-4V, Fe-Cr alloy, and Fe-Cr-Ni alloy. Actually, the pressure is about 0.1 t / cm 2 or more, but there is no particular limitation.

次に圧粉成形した基材部の表面にポーラス層を形成する
ため、圧粉成形体の表面に合金粉末を配した後、これを
再度加圧する。この時の加圧により合金粉末は基材部の
表面に押しつけられ第1図の4に示すように食い込む様
に結合、固着される。
Next, in order to form a porous layer on the surface of the base material that has been compacted, the alloy powder is placed on the surface of the compacted body, and then pressed again. By the pressure applied at this time, the alloy powder is pressed against the surface of the base material portion, and as shown by 4 in FIG.

なお第1図中1は基材部、3は合金粉末、2はポーラス
な層である。
In FIG. 1, 1 is a base material portion, 3 is an alloy powder, and 2 is a porous layer.

本発明においては、基材部を構成する要素粉末は合金を
形成するための純金属粉末を含む粉末である。そのた
め、圧粉成形体の表面はポーラス層を形成するための合
金粉末の粒子に比較して軟らかいので、圧粉成形体の表
面に合金粉末を配して加圧することにより第1図のよう
な形で基材部表面に合金粉末が結合した複合圧粉体が得
られるのである。また、この複合圧粉体の基材部は後工
程の焼結により緻密な合金層を形成し、本質的にポーラ
スではない基材部を形成する。
In the present invention, the element powder forming the base material portion is a powder containing pure metal powder for forming an alloy. Therefore, since the surface of the green compact is softer than the particles of the alloy powder for forming the porous layer, by placing the alloy powder on the surface of the green compact and applying pressure, as shown in FIG. In this way, a composite green compact is obtained in which the alloy powder is bonded to the surface of the base material portion in a shape. Further, the base material portion of this composite green compact forms a dense alloy layer by the sintering in the subsequent step, and forms a base material portion which is not essentially porous.

このときの加圧力は、基材部成形時の圧力の1/10以上が
好ましい。これは1/10に未たない圧力の場合には合金粉
末と基材部との間で十分な固着力が得られないためであ
る。本発明においてポーラス層を形成する合金粉末はこ
のような圧力にて加圧することにより第1図に示したよ
うに基材部表面にくいこむように固着し、基材部と合金
粉末の境界面付近の組織に異常をきたさないので、得ら
れた構造部品の強度特性は劣化が少なく、ポーラス層を
有しない場合の強度に比肩しうる。またこのような加圧
固着により、合金粉末表面と基材部との接触面積が大き
く、焼結時の固相拡散の進行による合金粉末と基材部と
の結合がより容易に行われる。従つて従来法に比べ、固
相拡散に必要な温度が低くてよく、エネルギーロスが少
なくてすむ。
The pressing force at this time is preferably 1/10 or more of the pressure at the time of molding the base material portion. This is because when the pressure is not less than 1/10, a sufficient adhesive force cannot be obtained between the alloy powder and the base material. In the present invention, the alloy powder forming the porous layer is fixed under such a pressure so as to firmly indent the base material surface as shown in FIG. Since the structure does not become abnormal, the strength characteristics of the obtained structural component are less deteriorated, and can be comparable to the strength without the porous layer. Further, due to such pressure fixation, the contact area between the alloy powder surface and the base material portion is large, and the alloy powder and the base material portion are more easily bonded due to the progress of solid phase diffusion during sintering. Therefore, as compared with the conventional method, the temperature required for the solid phase diffusion may be lower and the energy loss may be smaller.

また、このように合金粉末を基材部表面に配した後の圧
力負荷を冷間静水圧成形(CIP)で行うと、基材部に残
留する空孔をなくすことができる。CIPによれば、その
圧力負荷状態は、基材部に対し等方的な圧力負荷が行え
ることにより、より均一かつ等方的になる。よつて基材
部には合金粉末を介して、他の圧力負荷法(例えば金型
プレス)に比べ、より大きな力が加えられるため、基材
部の成形体密度はより高くなることになる。このような
効果からも最初に行う基材部の成形をCIPで行うことも
好ましい。
Further, when the pressure load after the alloy powder is placed on the surface of the base material portion is performed by cold isostatic pressing (CIP), it is possible to eliminate the pores remaining in the base material portion. According to the CIP, the pressure load state becomes more uniform and isotropic by applying an isotropic pressure load to the base material portion. Therefore, since a larger force is applied to the base material portion through the alloy powder as compared with other pressure loading methods (for example, die pressing), the density of the molded body of the base material portion becomes higher. From such an effect as well, it is preferable to perform the molding of the base material portion first by CIP.

この場合にも、焼結後の密度は同じ圧力で行う他の方
法、例えば最も広く行われている圧力負荷法である金型
プレス法等に比べ高密度になることが期待できる。
In this case as well, it can be expected that the density after sintering will be higher than that of other methods in which the same pressure is applied, such as the die pressing method, which is the most widely used pressure loading method.

又、合金粉末の基材部への固着をCIPで行つて有利な他
の理由は、基材部が複雑形状を有している場合において
も、CIPの有する等方等な圧力負荷能力により、効果的
に合金粉末を基材部に付着させることができるためであ
る。
Further, another reason why it is advantageous to fix the alloy powder to the base material portion by CIP is that even if the base material portion has a complicated shape, due to the isotropic pressure load capability of CIP, This is because the alloy powder can be effectively attached to the base material portion.

又、材質がTiやTi合金の場合、金型プレスでは粉末と型
との凝着が問題となるため、その成形は困難であるが、
CIPによる方法は凝着の問題がなく、非常に有効であ
る。
Further, when the material is Ti or Ti alloy, the molding of the powder and the mold is difficult because the adhesion between the powder and the mold becomes a problem in the mold press.
The CIP method has no problem of adhesion and is very effective.

本発明において用いられる、基材部とその表面に形成さ
れるポーラスな合金の層の材質としては、構造部品の用
途に応じ適宜選択できるが、特に好ましい基材又は合金
粉末の基本組成としては、例えばTi、6Al−4V合金、Co
−Cr系合金、Fe−Cr系ステンレス合金、Fe−Cr−Ni系ス
テンレス合金等が挙げられる。
The material of the porous alloy layer formed on the substrate portion and its surface used in the present invention can be appropriately selected according to the application of the structural component, but as a particularly preferred basic composition of the substrate or alloy powder, For example, Ti, 6Al-4V alloy, Co
-Cr-based alloys, Fe-Cr-based stainless alloys, Fe-Cr-Ni-based stainless alloys and the like can be mentioned.

本発明において、基材部と合金粉末の基本組成の組合せ
については何らの制限もなく、勿論基材部と合金粉末が
同種のものでもよい。
In the present invention, there is no limitation on the combination of the basic composition of the base material part and the alloy powder, and of course, the base material part and the alloy powder may be the same kind.

本発明において基材部周囲に配する粉末は、製品として
得る構造部品に求められるポーラス層の平均空孔径に対
応して、最適な平均粒子径を持つものを選択する。例え
ば人工骨用構造部品としては、骨との結合性の関係で20
〜200μmの空孔径が好ましいとされているので、この
ような場合には基材部表面に配する合金粉末をその平均
粒径が100μm以上のものとすると、最も適当とされる
平均空孔径20μm以上のポーラス層が得られる。平均空
孔径が余りに小さくなると、最早ポーラス層とは言えな
くなる。
In the present invention, the powder to be distributed around the base material portion is selected to have an optimum average particle diameter corresponding to the average pore diameter of the porous layer required for the structural part obtained as a product. For example, as a structural part for artificial bone, it has a
Since it is said that a pore diameter of ~ 200 μm is preferable, in such a case, if the alloy powder to be placed on the surface of the base material has an average particle diameter of 100 μm or more, the most suitable average pore diameter is 20 μm. The above porous layer is obtained. If the average pore size becomes too small, it is no longer a porous layer.

最後に得られた複合圧粉体の焼結を行う。焼結により、
基材部の焼結進行と共に、合金粉末と基材部の間により
強固な結合力が得られ、表面にポーラスな層を有する構
造部品を作製することができる。
Finally, the resulting composite green compact is sintered. By sintering,
Along with the progress of sintering of the base material, a stronger bonding force can be obtained between the alloy powder and the base material, and a structural component having a porous layer on the surface can be manufactured.

焼結の際の温度は、一般に高い程、合金粉末と基材部と
の結合はより強くなるが、本発明の方法では前述のよう
に従来法ほどの温度は要しないので、例えばTi、6Al−4
Vの場合はm.pの約78%程度で充分であつた。
Generally, the higher the temperature during sintering, the stronger the bond between the alloy powder and the base material, but the method of the present invention does not require the temperature of the conventional method as described above. −4
In the case of V, about 78% of mp was sufficient.

以上述べた方法で得た表面にポーラスな層を有する構造
部品は、ポーラスな層と基材部との固着力は強固で非常
にすぐれている。
The structural component having the porous layer on the surface obtained by the above-described method has a strong adhesive force between the porous layer and the base material portion and is very excellent.

しかしながら、この構造部品の基材部は、要素粉末の圧
粉成形及び焼結によつているため、基材部自体の強度は
鋳・鍛造材と比べ、必ずしも高強度を有するとは限らな
い。これは、焼結過程を経た後も気孔等が残留するため
と考えられる。このような場合には、基材部をさらに高
強度なものとする手段を取ることが好ましい。すなわ
ち、得られた表面ポーラスな焼結材について、さらに熱
間静水圧成形(HIP)又は熱処理を行う。さらなるHIPに
より基材部の緻密化が可能であり、表面に形成されたポ
ーラス層を損なうことなく基材部の真強度化が実現でき
る。また、熱処理がポーラスな層を有する基材部の強化
に有効であることは言うまでもない。
However, since the base material portion of this structural part is formed by compacting and sintering the element powder, the strength of the base material portion itself is not always higher than that of the cast / forged material. It is considered that this is because pores and the like remain after the sintering process. In such a case, it is preferable to take a means for further strengthening the base material portion. That is, the obtained surface porous sintered material is further subjected to hot isostatic pressing (HIP) or heat treatment. Further HIP makes it possible to densify the base material portion and realize real strength of the base material portion without damaging the porous layer formed on the surface. It goes without saying that the heat treatment is effective for strengthening the base material portion having the porous layer.

表面にポーラスな層を持つ基材部の密度が真密度比で94
%以上ある焼結材の場合には、コンテナー等の密閉容器
内に封入することなくHIPを行うことができるので、ポ
ーラスな層の空隙を介して、加圧されるArガスによる基
材部の緻密化がよりいつそう可能である。94%以上の密
度の基材部を有する焼結材を得るには、要素粉末圧粉成
形ペース上に、合金粉末をCIPにより、結合固着するこ
とが有利である。一般にCIPは金型プレスに比べ、同じ
成形圧力でも、その粉末成形能は高く、高密度の成形体
を得ることが可能である。したがつて、CIPによれば真
密度比で94%以上のものを得ることが、比較的容易であ
るが、勿論、金型プレスその他の方法によつて、真密度
比で94%以上のものを得てもよい。また、焼結材を密閉
容器内に封入してHIPを行う場合には、基材部密度94%
以上としておく必要はない。
The density of the base material with a porous layer on the surface is 94 in terms of true density ratio.
%, The HIP can be performed without enclosing it in a closed container such as a container, so that the base material part by the pressurized Ar gas passes through the void of the porous layer. More refinement is possible at any time. In order to obtain a sintered material having a base material portion having a density of 94% or more, it is advantageous to bond and fix the alloy powder by CIP on the element powder compacting pace. Generally, CIP has a higher powder molding ability than a die press even at the same molding pressure, and a high-density molding can be obtained. Therefore, according to CIP, it is relatively easy to obtain a true density ratio of 94% or more, but of course, a die press or other method can obtain a true density ratio of 94% or more. You may get When HIP is performed by sealing the sintered material in a closed container, the density of the base material is 94%.
There is no need to keep the above.

本発明の方法により製造した表面にポーラスな層を有す
る構造部品の利用例を次に示すが、これに限定されるも
のではないことは言うまでもない。
The use example of the structural component having a porous layer on the surface produced by the method of the present invention is shown below, but it goes without saying that the present invention is not limited to this.

第5図には人工股関節として用いた例を示す図であつ
て、基材部51からなる人工骨のステムの周囲にポーラス
層52を設けてある。該ポーラス層52の存在により、人工
骨ステムと人体の骨との間の癒着・結合力が向上する。
FIG. 5 is a view showing an example used as an artificial hip joint, in which a porous layer 52 is provided around the stem of the artificial bone made of the base material portion 51. The presence of the porous layer 52 improves the adhesion / coupling force between the artificial bone stem and the human bone.

第6図は軸受に用いた場合を示す図であつて、軸受外側
を基材部61とし、内側をポーラス層62をスケルトンとす
る構造にする。外側の基材部61は例えばFe−Cu−C系の
強度の高い材質とし、ポーラス層62に油を含浸したり、
或はポーラス層62にZnやSnの低融点金属を含浸したりし
て用いる。
FIG. 6 is a diagram showing a case where the bearing is used, in which the outside of the bearing is the base material portion 61 and the inside is the skeleton of the porous layer 62. The outer base material portion 61 is made of, for example, a Fe—Cu—C-based material having high strength, and the porous layer 62 is impregnated with oil,
Alternatively, the porous layer 62 is used by impregnating it with a low melting point metal such as Zn or Sn.

第7図は吸振合金として用いた場合を示す図であつて、
基材部71の中間層をポーラス層72としたものである。
FIG. 7 is a diagram showing a case where it is used as a vibration absorbing alloy,
The intermediate layer of the base material portion 71 is a porous layer 72.

(実施例) 実施例1 純Ti粉末、Al−V母合金粉末、純Al粉末を原料とし、
(Ti90%、Al−V8%、Al2%を混合)冷間静水圧成形(C
IP)にて圧力1500、3000、6000kg/cm2で径20mm、長さ30
mmの円柱圧粉成形体を作製した。これを基材部とし、表
面に遠心力アトマイズ法により得た平均粒径330μmのT
i−6Al−4V合金粉末を配し、CIP圧6000kg/cm2にて再加
圧した後、真空中温度1350℃で5時間焼結を行つた。
(Example) Example 1 Using pure Ti powder, Al-V mother alloy powder, and pure Al powder as raw materials,
(Ti 90%, Al-V8%, Al2% mixed) Cold isostatic pressing (C
IP) with pressure 1500, 3000, 6000 kg / cm 2 diameter 20 mm, length 30
A cylindrical powder compact of mm was produced. Using this as the base material, T with an average particle size of 330 μm obtained by the centrifugal atomization method on the surface
After the i-6Al-4V alloy powder was placed and repressurized at a CIP pressure of 6000 kg / cm 2 , the powder was sintered in a vacuum at a temperature of 1350 ° C. for 5 hours.

この結果、合金粉末1〜4層からなり平均空孔径60μm
以上を有するポーラスな層を表面に有する円柱部材が得
られた。
As a result, it consists of 1 to 4 layers of alloy powder and has an average pore diameter of 60 μm.
A cylindrical member having a porous layer having the above was obtained.

実施例2 実施例1と同じ基材用原料を用いてCIP圧力6000kg/cm2
により人工股関節成形体を作製した。さらにポーラス層
を形成するために、該人工股関節ステム部の周囲に遠心
アトマイズ法により得た平均粒子径330μmの球状Ti−6
Al−4V粉末を配し、CIP圧力6000kg/cm2によりゴムモー
ルド内で再加圧した。得られたポーラス層付き人工股関
節成形体を温度1350℃にて5時間真空焼結することによ
り、ポーラス層付き人工股関節製品を作製した。ポーラ
ス層は1〜4層からなり、平均空孔系60μm以上を有す
るもので、人工股関節に強固に固着しており、該ポーラ
ス層と人工股関節境界面での組織異常はなかつた。
Example 2 Using the same base material as in Example 1, CIP pressure 6000 kg / cm 2
An artificial hip joint molded body was produced by Further, in order to form a porous layer, spherical Ti-6 having an average particle diameter of 330 μm obtained by centrifugal atomization around the artificial hip joint stem portion.
Al-4V powder was placed and repressurized in a rubber mold with a CIP pressure of 6000 kg / cm 2 . The obtained artificial hip joint molded product with a porous layer was vacuum-sintered at a temperature of 1350 ° C. for 5 hours to produce an artificial hip joint product with a porous layer. The porous layer was composed of 1 to 4 layers, had an average pore size of 60 μm or more, was firmly fixed to the artificial hip joint, and there was no tissue abnormality at the interface between the porous layer and the artificial hip joint.

なお、以上の実施例1及び2で得られた本発明品の疲労
試験を行つたところ、焼結条件が1350℃5時間の条件で
あつたがポーラス層がない場合の50%以上の高強度が得
られた。
In addition, when the fatigue test of the products of the present invention obtained in the above Examples 1 and 2 was conducted, it was found that the sintering condition was 1350 ° C. for 5 hours, but the high strength of 50% or more when there was no porous layer. was gotten.

比較のために同じ組成で従来法によりポーラス層を形成
したところ、1500℃5時間で固相拡散を行つたにもかか
わらず、その疲労強度はポーラス層が無い場合の33%に
低下してしまつた。これにより、本発明が強度低下の少
ないポーラス層を有する構造部品をエネルギー効率良く
得られることが明らかにわかる。
For comparison, when a porous layer was formed by the conventional method with the same composition, the fatigue strength decreased to 33% of that without the porous layer, even though solid phase diffusion took place at 1500 ° C for 5 hours. Ivy. From this, it is clearly understood that the present invention can obtain a structural component having a porous layer with little strength reduction with energy efficiency.

実施例3 Co−57Cr、Co−60Mo、及び純Co粉末を用い、CIP圧力500
0kg/cm2により径30mm、長さ40mmの円柱圧粉体を成形し
た。これを基材部とし、表面にCo−Crを主成分とする合
金粉末を配し、CIP圧6000kg/cm2にて再加圧を行つた
後、温度1200℃にて7時間真空焼結を行つた。この結
果、合金粉末1〜3層からなる空孔径30μm以上のポー
ラスな層を有するCO−Cr系合金円柱部材を得た。
Example 3 Co-57Cr, Co-60Mo, and pure Co powder were used, and CIP pressure was 500.
A cylindrical green compact having a diameter of 30 mm and a length of 40 mm was molded with 0 kg / cm 2 . This is used as the base material, alloy powder containing Co-Cr as the main component is placed on the surface, and after re-pressurizing at a CIP pressure of 6000 kg / cm 2 , vacuum sintering is performed at a temperature of 1200 ° C for 7 hours. I went. As a result, a CO—Cr based alloy columnar member having a porous layer having a pore diameter of 30 μm or more composed of 1 to 3 layers of alloy powder was obtained.

従来法では同様のポーラス層を得るには、1330℃7時間
の固相拡散を行つたにもかかわらず、疲労強度はポーラ
ス層なしの場合60%に低下してしまつた。
In the conventional method, in order to obtain the same porous layer, although the solid phase diffusion was carried out at 1330 ° C. for 7 hours, the fatigue strength decreased to 60% without the porous layer.

しかし上記の本発明によるものは1200℃7時間という条
件にもかかわらずポーラス層の無いものの70%程度とい
う高い疲労強度が得られた。
However, the above-mentioned one according to the present invention obtained a high fatigue strength of about 70% of that without the porous layer, despite the condition of 1200 ° C. for 7 hours.

実施例4 純Fe、純Cr及び純Ni粉末を80%、18%、2%の割合で混
合し、金型プレス法により4000kg/cm2にて径50mm、長さ
20mmの円板状圧粉体を成形した。これを基材部とし、表
面にFe−Cr−Ni系ステンレス合金粉末を配し、金型プレ
ス圧法にて圧力1000kg/cm2で再加圧を行つた。得られた
複合圧粉体を1200℃にて3時間行つた。この結果、合金
粉末1〜4層からなる空孔径30μm以上のポーラスな層
を有するFe−Cr−Ni系ステンレス円板を作製することが
できた。
Example 4 Pure Fe, pure Cr and pure Ni powders were mixed at a ratio of 80%, 18% and 2%, and the diameter was 50 mm and the length was 4000 kg / cm 2 by a die pressing method.
A 20 mm disk-shaped green compact was molded. Using this as a base material portion, Fe-Cr-Ni-based stainless alloy powder was placed on the surface, and repressurization was performed at a pressure of 1000 kg / cm 2 by a die press pressure method. The obtained composite green compact was run at 1200 ° C. for 3 hours. As a result, it was possible to produce a Fe-Cr-Ni-based stainless steel disc having a porous layer having a pore diameter of 30 µm or more, which was composed of 1 to 4 layers of alloy powder.

同様のものを従来法で作製するには、ポーラス層を施す
ために1300℃3時間の固相拡散を要したが、両者の疲労
強度を比較したところ、従来法のものは本発明品より30
%程度低い値を示した。
In order to produce a similar product by the conventional method, solid phase diffusion at 1300 ° C. for 3 hours was required to apply the porous layer. The fatigue strength of both was compared with that of the present invention.
It showed a low value of about%.

実施例5 純Fe及び純Cr粉末を用い、Fe85%、Cr15%の配合比で混
合の上金型プレス法にて4000kg/cm2によりφ50×20の円
板状圧粉体を成形した。これを基材部とし、表面にFe−
13Cr合金粉末を配しCIP法にて圧力1000kg/cm2で再加圧
を行つた。得られた複合圧粉体の焼結を1150℃で3時間
行つた。この結果合金粉末1〜2層からなるポーラスな
層を有するFe−Cr系ステンレス円板を作製することがで
きた。
Example 5 Pure Fe and pure Cr powders were mixed at a compounding ratio of Fe85% and Cr15%, and a disk-shaped green compact of φ50 × 20 was molded by 4000 kg / cm 2 by a die pressing method. Using this as the base material, Fe-
13Cr alloy powder was placed, and re-pressurization was performed by the CIP method at a pressure of 1000 kg / cm 2 . The obtained composite green compact was sintered at 1150 ° C. for 3 hours. As a result, it was possible to produce a Fe-Cr-based stainless disk having a porous layer composed of 1 to 2 layers of alloy powder.

従来法によれば1350℃で3時間の固相拡散を要するにも
かかわらず得られた円板の疲労強度は本発明によるもの
に比して、30%程度の低い値を示した。
According to the conventional method, the fatigue strength of the obtained disk was about 30% lower than that of the present invention, though the solid phase diffusion was required at 1350 ° C. for 3 hours.

実施例6 純Ti粉末、Al−V母合金粉末、純Al粉末を原料とし、
(Ti90%、Al−V8%、Al2%を混合)冷間静水圧成形(C
IP)にて圧力3000、6000kg/cm2で径20mm、長さ30mmの円
柱圧粉成形体を作製した。これを基材部とし、表面に遠
心力アトマイズ法により得た平均粒径330μmのTi−6Al
−4V合金粉末を配し、CIP圧4000kg/cm2にて再加圧した
後、真空中温度1350℃で5時間焼結を行つた。
Example 6 Using pure Ti powder, Al-V mother alloy powder, and pure Al powder as raw materials,
(Ti 90%, Al-V8%, Al2% mixed) Cold isostatic pressing (C
A cylindrical powder compact having a diameter of 20 mm and a length of 30 mm was produced by IP) at a pressure of 3000 and 6000 kg / cm 2 . Ti-6Al with an average particle size of 330μm obtained by centrifugal force atomizing method on the surface using this as a base material
After -4V alloy powder was placed and repressurized at a CIP pressure of 4000 kg / cm 2 , sintering was performed at a temperature of 1350 ° C. for 5 hours in a vacuum.

この結果、合金粉末1〜4層からなり平均空孔径60μm
以上を有するポーラスな層を表面に有する円柱部材が得
られた。
As a result, it consists of 1 to 4 layers of alloy powder and has an average pore diameter of 60 μm.
A cylindrical member having a porous layer having the above was obtained.

実施例7 実施例6で得た円柱部材について、その基材部強度を増
すために、(A)950℃,1000kg/cm2,1時間、および
(B)930℃,の条件でHIPをそれぞれ行い、円柱部材A
およびBを得た。得られた表面にポーラスな層を有する
円柱部材AおよびBは真密度比で99%以上の密度を有し
ていた為、HIP処理を行わなかつた場合(実施例6)の9
6%に比べ、高密度を有する基材部が得られていること
が明らかになつた。
Example 7 For the columnar member obtained in Example 6, HIP was applied under the conditions of (A) 950 ° C., 1000 kg / cm 2 , 1 hour, and (B) 930 ° C. to increase the strength of the base material. Done, columnar member A
And B were obtained. The columnar members A and B having a porous layer on the surface thus obtained had a true density ratio of 99% or more, so that the case where the HIP treatment was not performed (Example 6) was 9
It was revealed that a base material having a high density was obtained as compared with 6%.

実施例8 実施例6で得られた円柱部材について基材部強度を増す
ため、(C)950℃1時間W・θ(水冷)および540℃、
4時間A・C(空冷)、条件で熱処理を施し、表面にポ
ーラス層を有する円柱部材Cを得た。
Example 8 In order to increase the strength of the base member of the columnar member obtained in Example 6, (C) 950 ° C. for 1 hour W · θ (water cooling) and 540 ° C.,
Heat treatment was performed under the conditions of A and C (air cooling) for 4 hours to obtain a columnar member C having a porous layer on the surface.

実施例6〜8の円柱部材の比較試験 以上のCIP、HIP、熱処理の基材部強度化に対する効果を
調べる為、基材部より引張試片を切り出し、その常温強
度を調べたところ、CIP圧力3000、6000kg/cm2で円柱圧
粉成形体(基材部)を作成した焼結材の引張強度はそれ
ぞれ80、86kg/cm2であつた。これは金型プレス法にて圧
力3000kg/cm2にて作成した場合の強度78kg/cm2に比べ高
い値であり、CIPを用いることによる基材部の高強度化
が得られていることが明らかとなつた。
Comparative test of cylindrical members of Examples 6 to 8 In order to investigate the effect of the above CIP, HIP and heat treatment on strengthening of the base material portion, a tensile test piece was cut out from the base material portion and its room temperature strength was examined. the tensile strength of the sintered material in 3000,6000kg / cm 2 was prepared columnar green compact (the base portion) was found to be respectively 80,86kg / cm 2. This is a higher value than the strength of 78 kg / cm 2 when the pressure is 3000 kg / cm 2 created by the die pressing method, and it can be seen that the strength of the base material can be increased by using CIP. It became clear.

又、HIP、熱処理を施した材料の強度はそれぞれ96、120
kg/cm2であつた。以上により明らかにCIP、HIP、熱処理
の各処理により、基材部の高強度化が図れたことが明ら
かになつた。
The strength of HIP and heat treated materials is 96 and 120 respectively.
It was kg / cm 2 . From the above, it was clarified that the strength of the base material portion was enhanced by each treatment of CIP, HIP and heat treatment.

(発明の効果) 以上詳述したところならびに実施例の結果から明らかな
ように、本発明の表面にポーラスな層を有する構造部品
はポーラス層と基材表面の結合性が良く、従来品に比し
ポーラス層設置による強度劣化が少ないという長所を有
する。また本発明の表面にポーラスな層を有する構造部
品の製造方法は上記した有利を部品を実現しうるのに加
え、従来法よりも熱効率が良く行える、さらに基材部を
HIP又は熱処理によつてより高強度のものにできる、と
いう効果を奏する、産業上非常に有利な方法である。
(Effects of the Invention) As is clear from the above-mentioned details and the results of the examples, the structural component having a porous layer on the surface of the present invention has a good bonding property between the porous layer and the substrate surface, It has the advantage that the strength deterioration due to the porous layer installation is small. In addition to the advantages described above, the method of manufacturing a structural component having a porous layer on the surface of the present invention can realize the component with higher thermal efficiency than the conventional method.
It is an industrially very advantageous method that has the effect that it can be made stronger by HIP or heat treatment.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の表面にポーラスな層を有する構造部品
の説明図、第2図及び第3図は従来の構造部品及びその
製造方法を説明する図、第4図は基材部の圧粉成形が不
適な場合を説明する図である。 第5図〜第7図は本発明の構造部品の実施態様を説明す
る図であつて、第5図は人工股関節、第6図は軸受け、
第7図は吸振合金の場合を示す。
FIG. 1 is an explanatory view of a structural component having a porous layer on the surface of the present invention, FIGS. 2 and 3 are diagrams for explaining a conventional structural component and a manufacturing method thereof, and FIG. It is a figure explaining the case where powder molding is unsuitable. 5 to 7 are views for explaining an embodiment of the structural component of the present invention. FIG. 5 is an artificial hip joint, FIG. 6 is a bearing,
FIG. 7 shows the case of a vibration absorbing alloy.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】合金を形成するための純金属粉末を含む要
素粉末をベースとして圧粉成形された基材部と、合金粉
末を原料とし該基材部表面に形成されたポーラスな層か
らなり、該ポーラスな層は上記基材部表面にくい込むよ
うに結合固着されていることを特徴とする表面にポーラ
スな層を有する構造部品。
1. A base material part which is compacted and formed by using element powder containing pure metal powder for forming an alloy as a base, and a porous layer formed on the surface of the base material part from alloy powder. The structural component having a porous layer on the surface, wherein the porous layer is bonded and fixed so as to fit into the surface of the base material portion.
【請求項2】要素粉末がTi、Al、Co、Fe、Cr及びNiから
なる群から選ばれる1種以上の純金属粉末を含む混合粉
末である特許請求の範囲第(1)項記載の表面にポーラ
スな層を有する構造部品。
2. The surface according to claim 1, wherein the element powder is a mixed powder containing at least one pure metal powder selected from the group consisting of Ti, Al, Co, Fe, Cr and Ni. A structural component with a porous layer.
【請求項3】合金粉末の基本組成が、Ti−6Al−4V合金
である特許請求の範囲第(1)項記載の表面にポーラス
な層を有する構造部品。
3. A structural component having a porous layer on the surface according to claim 1, wherein the alloy powder has a basic composition of Ti-6Al-4V alloy.
【請求項4】合金粉末の基本組成がCo−Cr系合金である
特許請求の範囲第(1)項記載の表面にポーラスな層を
有する構造部品。
4. A structural component having a porous layer on the surface according to claim 1, wherein the basic composition of the alloy powder is a Co—Cr alloy.
【請求項5】合金粉末の基本組成がFe−Cr系ステンレス
合金である特許請求の範囲第(1)項記載の表面にポー
ラスな層を有する構造部品。
5. The structural component having a porous layer on the surface according to claim 1, wherein the alloy powder has a basic composition of a Fe—Cr-based stainless alloy.
【請求項6】合金粉末の基本組成がFe−Cr−Ni系ステン
レス合金である特許請求の範囲第(1)項記載の表面に
ポーラスな層を有する構造部品。
6. The structural component having a porous layer on the surface according to claim 1, wherein the basic composition of the alloy powder is a Fe—Cr—Ni type stainless alloy.
【請求項7】要素粉末と合金粉末が同じ基本組成である
特許請求の範囲第(1)項ないし第(6)項のいずれか
に記載される表面にポーラスな層を有する構造部品。
7. A structural component having a porous layer on a surface according to any one of claims (1) to (6), wherein the element powder and the alloy powder have the same basic composition.
【請求項8】合金を形成するための純金属粉末を含む要
素粉末をベースとする基材部を圧粉成形した後、平均粒
径100μm以上の合金粉末を該基材部の表面に配し、次
いで上記基材部圧粉成形時の圧力の1/10以上の圧力を加
え、それにより得られた表面に合金粉末層を有する複合
圧粉体を焼結することを特徴とする表面にポーラスな層
を有する構造部品の製造方法。
8. A base material part based on element powder containing pure metal powder for forming an alloy is compacted, and then an alloy powder having an average particle size of 100 μm or more is placed on the surface of the base material part. Then, a pressure not less than 1/10 of the pressure at the time of powder compaction of the base material part is applied, and the composite powder compact having an alloy powder layer on the surface thus obtained is sintered, and the surface is porous. Of manufacturing a structural part having various layers.
【請求項9】基材部圧粉成形時の圧力の1/10以上の圧力
を冷間静水圧成形により加える、特許請求の範囲第
(8)項に記載の表面にポーラスな層を有する構造部品
の製造方法。
9. A structure having a porous layer on the surface according to claim (8), wherein a pressure of 1/10 or more of the pressure at the time of powder compacting of the base material portion is applied by cold isostatic pressing. Manufacturing method of parts.
【請求項10】合金を形成するための純金属粉末を含む
要素粉末をベースとする基材部を圧粉成形した後、平均
粒径100μm以上の合金粉末を該基材部の表面に配し、
次いで上記基材部圧粉成形時の圧力の1/10以上の圧力を
加え、それにより得られた表面に合金粉末層を有する複
合圧粉体を焼結することにより得た焼結材について、さ
らに熱間静水圧成形を施こし、それにより基材部強度を
向上することを特徴とする表面にポーラスな層を有する
構造部品の製造方法。
10. A base material part based on element powder containing pure metal powder for forming an alloy is compacted, and then an alloy powder having an average particle size of 100 μm or more is placed on the surface of the base material part. ,
Then, a pressure of 1/10 or more of the pressure at the time of base material compaction is applied, and a sintered material obtained by sintering the composite compact having an alloy powder layer on the surface thus obtained, A method for manufacturing a structural component having a porous layer on the surface, which is characterized in that hot isostatic pressing is further performed to improve the strength of the base material.
【請求項11】真密度比94%以上の基材部を有する焼結
材について、密閉容器内に封入することなく、熱間静水
圧成形を施こす、特許請求の範囲第(10)項に記載の表
面にポーラスな層を有する構造部品の製造方法。
11. A sintered material having a base material portion having a true density ratio of 94% or more is subjected to hot isostatic pressing without enclosing it in a closed container. A method for producing a structural component having a porous layer on the surface thereof.
【請求項12】合金を形成するための純金属粉末を含む
要素粉末をベースとする基材部を圧粉成形した後、平均
粒径100μm以上の合金粉末を該基材部の表面に配し、
次いで上記基材部圧粉成形時の圧力の1/10以上の圧力を
加え、それにより得られた表面に合金粉末層を有する複
合圧粉体を焼結することにより得た焼結材について、さ
らに熱処理を施こし、それにより基材部強度を向上する
ことを特徴とする表面にポーラスな層を有する構造部品
の製造方法。
12. A base material part based on element powder containing pure metal powder for forming an alloy is compacted, and then an alloy powder having an average particle diameter of 100 μm or more is placed on the surface of the base material part. ,
Then, a pressure of 1/10 or more of the pressure at the time of base material compaction is applied, and a sintered material obtained by sintering the composite compact having an alloy powder layer on the surface thus obtained, A method for producing a structural component having a porous layer on the surface, which is characterized by further subjecting to heat treatment, thereby improving the strength of the base material portion.
【請求項13】合金粉末の基本組成が、Ti−6Al−4V合
金である特許請求の範囲第(8)項ないし第(12)項の
いずれかに記載される表面にポーラスな層を有する構造
部品の製造方法。
13. A structure having a porous layer on the surface according to any one of claims (8) to (12), wherein the basic composition of the alloy powder is a Ti-6Al-4V alloy. Manufacturing method of parts.
【請求項14】合金粉末の基本組成がCo−Cr系合金であ
る特許請求の範囲第(8)項ないし第(12)項のいずれ
かに記載される表面にポーラスな層を有する構造部品の
製造方法。
14. A structural component having a porous layer on the surface according to any one of claims (8) to (12), wherein the basic composition of the alloy powder is a Co--Cr alloy. Production method.
【請求項15】合金粉末の基本組成がFe−Cr系ステンレ
ス合金である特許請求の範囲第(8)項ないし第(12)
項のいずれかに記載される表面にポーラスな層を有する
構造部品の製造方法。
15. The alloy powder as claimed in claim 8, wherein the basic composition is an Fe-Cr-based stainless alloy.
A method of manufacturing a structural component having a porous layer on the surface according to any one of items.
【請求項16】合金粉末の基本組成がFe−Cr−Ni系ステ
ンレス合金である特許請求の範囲第(8)項ないし第
(12)項のいずれかに記載される表面にポーラスな層を
有する構造部品の製造方法。
16. The porous powder is provided on the surface according to any one of claims (8) to (12), in which the basic composition of the alloy powder is a Fe--Cr--Ni series stainless alloy. Manufacturing method of structural parts.
【請求項17】合金を形成するための純金属粉末を含む
要素粉末と合金粉末が同じ基本組成である特許請求の範
囲第(8)項ないし第(16)項のいずれかに記載される
表面にポーラスな層を有する構造部品の製造方法。
17. The surface according to any one of claims (8) to (16), wherein the element powder containing pure metal powder for forming an alloy and the alloy powder have the same basic composition. A method for manufacturing a structural component having a porous layer in the interior.
JP61048586A 1985-10-18 1986-03-07 Structural component having porous layer on surface and method of manufacturing the same Expired - Lifetime JPH0689379B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23098285 1985-10-18
JP60-230982 1985-10-18

Publications (2)

Publication Number Publication Date
JPS62174302A JPS62174302A (en) 1987-07-31
JPH0689379B2 true JPH0689379B2 (en) 1994-11-09

Family

ID=16916371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61048586A Expired - Lifetime JPH0689379B2 (en) 1985-10-18 1986-03-07 Structural component having porous layer on surface and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0689379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7438812B2 (en) * 2020-03-27 2024-02-27 三菱重工業株式会社 Oxidation-resistant alloy and method for producing oxidation-resistant alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138007A (en) * 1979-04-10 1980-10-28 Katsuragi Sangyo Kk Porous sintered laminar body of metal and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138007A (en) * 1979-04-10 1980-10-28 Katsuragi Sangyo Kk Porous sintered laminar body of metal and its preparation

Also Published As

Publication number Publication date
JPS62174302A (en) 1987-07-31

Similar Documents

Publication Publication Date Title
JP4385285B2 (en) Surgical implant manufacturing method and surgical implant
US7097807B1 (en) Nanocrystalline aluminum alloy metal matrix composites, and production methods
CN110607464B (en) Hot isostatic pressing process of Ti2AlNb alloy powder
US20090026027A1 (en) Brake rotors for vehicles
JPS58179584A (en) Welding by hot hydrostatic pressure press
US8951465B2 (en) Method of bonding porous metal to metal substrates
JPH0130882B2 (en)
JPH01301806A (en) Formation of high density contact
CN102653001A (en) Method for manufacturing components with a nickel base alloyas well as components manufactured therewith
JPH0130898B2 (en)
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
JPH0689379B2 (en) Structural component having porous layer on surface and method of manufacturing the same
JPH05215163A (en) Manufacture of brake lining including stud with plurality of mutually separate skin and brake lining manufactured through said method
US4536234A (en) Method for refining microstructures of blended elemental powder metallurgy titanium articles
JPH04364858A (en) Porous implant material
JPH04210448A (en) Functionally gradient material using zn-22al superplastic powder and method for forming the same
JP3954236B2 (en) Manufacturing method of composite sintered machine parts
JP4144100B2 (en) Brake disc material manufacturing method for railway vehicles
JPS59157201A (en) Manufacture of molded body of zinc-aluminum alloy powder
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy
JPH10148107A (en) Valve lifter for internal combustion engine and manufacture thereof
JPS624804A (en) Production of titanium alloy by element powder mixing method
JP2008545064A (en) Metal body bonding method by sintering
JPS6126703A (en) Production of amorphous metallic compact
JPH10158825A (en) Production of ceramic/metal-compounded sputtering target material