JPH0688723A - Interatomic force microscope - Google Patents

Interatomic force microscope

Info

Publication number
JPH0688723A
JPH0688723A JP23962592A JP23962592A JPH0688723A JP H0688723 A JPH0688723 A JP H0688723A JP 23962592 A JP23962592 A JP 23962592A JP 23962592 A JP23962592 A JP 23962592A JP H0688723 A JPH0688723 A JP H0688723A
Authority
JP
Japan
Prior art keywords
probe
piezoelectric element
sample surface
atomic force
force microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23962592A
Other languages
Japanese (ja)
Inventor
Takeshi Murayama
健 村山
Kiyoshi Nagasawa
潔 長澤
Takashi Morimoto
高史 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP23962592A priority Critical patent/JPH0688723A/en
Publication of JPH0688723A publication Critical patent/JPH0688723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To obtain an interatomic force microscope, which can perform high- speed scanning and can be manufactured readily. CONSTITUTION:A piezoelectric element 12 is fixed between a probe 10 and a supporting body 11, which supports the probe 10. When the probe 10 faces a sample surface 1a with a minute gap, interatomic force acts between the atom at the tip of the probe 10 and the atom of the sample surface 1a. This force also acts on the piezoelectric element 12. Thus, a voltage corresponding to the displacement is generated across electrodes 12a and 12b. In this constitution, a cantilever, whose rigidity is very small, is not used. Therefore, high-speed scanning is possible, and the manufacturing is easy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子間力を用いて試料
表面を原子オーダの分解能で測定する原子間力顕微鏡に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomic force microscope for measuring a sample surface with atomic force using atomic force.

【0002】[0002]

【従来の技術】近年、半導体用の微細回路素子、光ディ
スク、磁気ディスク等の試料の表面形状を、これら試料
表面を切断することなく、かつ、原子オーダの分解能で
測定する必要が生じてきた。このような形状測定のた
め、原子間力顕微鏡が用いられている。
2. Description of the Related Art In recent years, it has become necessary to measure the surface shape of a sample such as a fine circuit element for semiconductors, an optical disk, a magnetic disk, etc., without cutting the surface of the sample and with a resolution of atomic order. An atomic force microscope is used for such shape measurement.

【0003】図2は従来の原子間力顕微鏡の概略構成を
示す側面図である。図で、1は測定対称となる物体(試
料)、1aは試料の表面、2は試料1と対向する探針で
ある。3は片持ち梁のレバーであり、一端に探針2を支
持し、他端は支持体4に支持されている。5は探針2の
変位を検出する変位検出器を示す。この変位検出器5に
は、例えばトンネル顕微鏡、光干渉計、光てこ等が用い
られる。なお、その他の付随する構成の図示は省略す
る。
FIG. 2 is a side view showing a schematic structure of a conventional atomic force microscope. In the figure, 1 is an object (sample) that is symmetrical to the measurement, 1a is the surface of the sample, and 2 is a probe facing the sample 1. Reference numeral 3 denotes a cantilever lever, which supports the probe 2 at one end and is supported by the support 4 at the other end. Reference numeral 5 denotes a displacement detector that detects the displacement of the probe 2. For the displacement detector 5, for example, a tunnel microscope, an optical interferometer, an optical lever or the like is used. It should be noted that the illustration of other accompanying configurations is omitted.

【0004】探針2と試料1が微小間隙(ナノメートル
のオーダ)をもって接近すると、探針2の先端を構成す
る原子と試料表面1aを構成する原子との間に原子間力
(図では斥力Fで示されている)が作用し、この結果、
探針2を支持するレバー3が上下方向に変位する。この
変位は変位検出器5で検出される。探針2を試料表面1
aに沿って相対的に走査し、その走査中の変位検出器5
の検出値をみることにより、試料表面1aの凹凸を原子
的オーダで測定、観察することができる。
When the probe 2 and the sample 1 approach each other with a very small gap (on the order of nanometers), an atomic force (repulsive force in the figure) between the atom forming the tip of the probe 2 and the atom forming the sample surface 1a. (Indicated by F), which results in
The lever 3 supporting the probe 2 is vertically displaced. This displacement is detected by the displacement detector 5. Attach the probe 2 to the sample surface 1
Displacement detector 5 that relatively scans along a
By observing the detected value of, it is possible to measure and observe the unevenness of the sample surface 1a in atomic order.

【0005】[0005]

【発明が解決しようとする課題】上記原子間力Fの大き
さは、ほぼ(1/108 )〜(1/109 )ニュートン
(N)という微小な値であるので、片持ち梁のレバー3
は、変位検出器5で検出可能な変位を発生させるため
に、曲げ剛性が極度に低くなるように構成しなければな
らない。即ち、上記オーダの原子間力Fにより、レバー
3を数nm〜数μmたわませる必要があり、このために
は、レバー3の剛性を極度に弱くしなければならないの
は明らかである。
Since the magnitude of the interatomic force F is a minute value of approximately (1/10 8 ) to (1/10 9 ) Newton (N), the lever of the cantilever is used. Three
In order to generate the displacement that can be detected by the displacement detector 5, the bending rigidity must be extremely low. That is, it is necessary to bend the lever 3 by several nm to several μm by the atomic force F of the order, and for this purpose, it is obvious that the rigidity of the lever 3 must be extremely weakened.

【0006】ところで、試料表面1aの走査は、効率的
な測定を行うためにできるだけ高速で行うことが望まし
い。しかし、図2に示す従来の装置では、上述のように
レバー3の剛性が極めて低いため、高速走査を行った場
合、レバー3が追従しきれなくなるという問題があり、
この面から走査速度が制限されていた。さらに、上記の
ように極度に剛性の低いレバー3は、その製造が容易で
はなく、製造コストを上昇させるという問題もあった。
By the way, it is desirable that the scanning of the sample surface 1a is performed as fast as possible in order to perform efficient measurement. However, in the conventional device shown in FIG. 2, since the rigidity of the lever 3 is extremely low as described above, there is a problem that the lever 3 cannot follow up when high speed scanning is performed,
From this aspect, the scanning speed was limited. Further, the lever 3 having extremely low rigidity as described above has a problem that the manufacturing thereof is not easy and the manufacturing cost is increased.

【0007】本発明の目的は、上記従来技術における課
題を解決し、高速走査が可能であり、かつ、製造容易な
原子間力顕微鏡を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide an atomic force microscope capable of high-speed scanning and easy to manufacture.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、試料表面とこれに微小間隙をもって近接
する探針との間に生じる現象を用いて当該試料表面の形
状を検出する原子間力顕微鏡において、前記探針とこの
探針を支持する支持体との間に、当該探針に作用する力
を検出する微小断面積の圧電素子を介在させたことを特
徴とする。
In order to achieve the above object, the present invention detects the shape of a sample surface by using a phenomenon that occurs between the sample surface and a probe that is in close proximity to the sample surface. In the atomic force microscope, a piezoelectric element having a minute cross section for detecting a force acting on the probe is interposed between the probe and a support body supporting the probe.

【0009】[0009]

【作用】探針と試料表面との間に原子間力が作用すると
圧電素子にも、この力が作用し、この力に比例した電圧
が発生する。結局、この電圧が試料表面の凹凸に対応す
ることになる。剛性の低い片持ち梁のレバーを使用しな
いので、試料表面の高速走査が可能である。
When an interatomic force acts between the probe and the sample surface, this force also acts on the piezoelectric element, and a voltage proportional to this force is generated. After all, this voltage corresponds to the unevenness of the sample surface. Since a cantilever lever with low rigidity is not used, high-speed scanning of the sample surface is possible.

【0010】[0010]

【実施例】以下、本発明を図示の実施例に基づいて説明
する。図1は本発明の実施例に係る原子間力顕微鏡の概
略構成を示す側面図である。図1で、1は試料、1aは
試料表面を示し、これらは図2に示すものと同じであ
る。10は探針、11は探針10を支持する支持体であ
る。12は探針10と支持体11との間に固定された微
小断面積を有する圧電素子である。なお、図で、圧電素
子12の厚さは極端に誇張して描かれている。12a、
12bは圧電素子12の両面の電極を示す。圧電素子1
2には酸化亜鉛(ZnO)の薄膜が用いられ、この薄膜
は、各電極12a、12bとともに薄膜プロセス技術に
より形成される。
The present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a side view showing a schematic configuration of an atomic force microscope according to an embodiment of the present invention. In FIG. 1, 1 is a sample, 1a is a sample surface, and these are the same as those shown in FIG. Reference numeral 10 is a probe, and 11 is a support body that supports the probe 10. Reference numeral 12 is a piezoelectric element having a minute cross-sectional area fixed between the probe 10 and the support 11. Note that the thickness of the piezoelectric element 12 is extremely exaggerated in the drawing. 12a,
Reference numeral 12b indicates electrodes on both surfaces of the piezoelectric element 12. Piezoelectric element 1
A thin film of zinc oxide (ZnO) is used for 2, and this thin film is formed by the thin film process technology together with the electrodes 12a and 12b.

【0011】探針10を試料表面1aに微小間隙をもっ
て接近させると、前述のように原子間力Fが作用する。
この原子間力Fは探針10から圧電素子12に伝達さ
れ、圧電素子12の各電極12a、12b間に、当該原
子間力Fに応じた電圧Vout が発生する。
When the probe 10 is brought close to the sample surface 1a with a minute gap, the atomic force F acts as described above.
This atomic force F is transmitted from the probe 10 to the piezoelectric element 12, and a voltage V out according to the atomic force F is generated between the electrodes 12a and 12b of the piezoelectric element 12.

【0012】ここで、Lを圧電素子12の厚さ、Gを力
−電界変換係数、Tを圧電素子12に作用する応力とす
ると、上記電圧Vout は、 Vout =L・G・T ……………………(1) で表される。圧電素子12が酸化亜鉛で構成されている
場合、係数Gは約(135/103)V・m/N であ
る。、L=2μm、圧電素子12の断面を(1×1)μ
mとすると、原子間FをF=1/108Nとした場合、
応力Tは、F/断面積となり、Vout は0.0027V
となる。この程度の出力電圧は簡単な装置で検出可能で
ある。
Here, where L is the thickness of the piezoelectric element 12, G is the force-electric field conversion coefficient, and T is the stress acting on the piezoelectric element 12, the above voltage V out is V out = L · G · T. ………………… (1) When the piezoelectric element 12 is made of zinc oxide, the coefficient G is about (135/10 3 ) V · m / N 2. , L = 2 μm, the cross section of the piezoelectric element 12 is (1 × 1) μ
If the interatomic F is F = 1/10 8 N,
The stress T becomes F / cross-sectional area, and V out is 0.0027V
Becomes An output voltage of this level can be detected with a simple device.

【0013】このように、本実施例では、探針10とそ
の支持体11との間に圧電素子12を固定し、探針10
と試料表面1aとの間に作用する原子間力を圧電素子1
2に伝達し、圧電素子12の出力で原子間力を検出する
ようにしたので、探針10を高い剛性で支持することが
でき、これにより高速走査を実現することができる。
又、剛性の極度に低いレバーを用いる必要がないので、
製造容易であり、特に圧電素子12に酸化亜鉛の薄膜を
用いたので、圧電素子12を薄膜プロセスで構成するこ
とができ、この面でも製造容易となり、製造コストを低
減することができる。
As described above, in the present embodiment, the piezoelectric element 12 is fixed between the probe 10 and its support 11, and the probe 10 is fixed.
Between the atomic force acting between the piezoelectric element 1 and the sample surface 1a
2 and the atomic force is detected by the output of the piezoelectric element 12, so that the probe 10 can be supported with high rigidity and high-speed scanning can be realized.
Also, since it is not necessary to use a lever with extremely low rigidity,
It is easy to manufacture, and since the thin film of zinc oxide is used for the piezoelectric element 12, the piezoelectric element 12 can be formed by a thin film process, which also facilitates the manufacturing and reduces the manufacturing cost.

【0014】なお、上記実施例の説明では、圧電素子1
2に酸化亜鉛の薄膜を用いる例について説明したが、圧
電素子12には他の適宜の材料を用い、適宜の手段で構
成することもできる。
In the description of the above embodiment, the piezoelectric element 1
Although the example in which the thin film of zinc oxide is used for 2 has been described, the piezoelectric element 12 may be made of another appropriate material and configured by an appropriate means.

【0015】[0015]

【発明の効果】以上述べたように、本発明では、探針の
変位を圧電素子により検出するようにしたので、剛性が
極度に低い片持ち梁のレバーを用いる必要はなく、これ
により、高速走査を行うことができ、又、製造も容易と
なり、製造コストを低減することができる。
As described above, according to the present invention, since the displacement of the probe is detected by the piezoelectric element, it is not necessary to use a cantilever lever whose rigidity is extremely low. Scanning can be performed, manufacturing is facilitated, and manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る原子間力顕微鏡の概略構
成を示す側面図である。
FIG. 1 is a side view showing a schematic configuration of an atomic force microscope according to an embodiment of the present invention.

【図2】従来の原子間力顕微鏡の概略構成を示す側面図
である。
FIG. 2 is a side view showing a schematic configuration of a conventional atomic force microscope.

【符号の説明】[Explanation of symbols]

1 試料 1a 試料表面 10 探針 11 支持体 12 圧電素子 12a、12b 電極 1 Sample 1a Sample surface 10 Probe 11 Support 12 Piezoelectric element 12a, 12b Electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料表面とこれに微小間隙をもって近接
する探針との間に生じる現象を用いて当該試料表面の形
状を検出する原子間力顕微鏡において、前記探針とこの
探針を支持する支持体との間に、当該探針に作用する力
を検出する微小断面積の圧電素子を介在させたことを特
徴とする原子間力顕微鏡。
1. An atomic force microscope that detects the shape of a sample surface by using a phenomenon that occurs between the sample surface and a probe that is in close proximity to the sample surface, and supports the probe and the probe. An atomic force microscope characterized in that a piezoelectric element having a minute cross section for detecting a force acting on the probe is interposed between the support and the support.
【請求項2】 請求項1において、前記圧電素子は、酸
化亜鉛の薄膜であることを特徴とする原子間力顕微鏡。
2. The atomic force microscope according to claim 1, wherein the piezoelectric element is a thin film of zinc oxide.
【請求項3】 請求項1において、前記圧電素子は、厚
さおよび断面の各方向の寸法が1/107 〜1/106
であることを特徴とする原子間力顕微鏡。
3. The piezoelectric element according to claim 1, wherein the piezoelectric element has a thickness and a cross-sectional dimension in each direction of 1/10 7 to 1/10 6.
Atomic force microscope.
JP23962592A 1992-09-08 1992-09-08 Interatomic force microscope Pending JPH0688723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23962592A JPH0688723A (en) 1992-09-08 1992-09-08 Interatomic force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23962592A JPH0688723A (en) 1992-09-08 1992-09-08 Interatomic force microscope

Publications (1)

Publication Number Publication Date
JPH0688723A true JPH0688723A (en) 1994-03-29

Family

ID=17047509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23962592A Pending JPH0688723A (en) 1992-09-08 1992-09-08 Interatomic force microscope

Country Status (1)

Country Link
JP (1) JPH0688723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989535B2 (en) 1998-11-20 2006-01-24 Hitachi, Ltd. Atomic force microscopy, method of measuring surface configuration using the same, and method of producing magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989535B2 (en) 1998-11-20 2006-01-24 Hitachi, Ltd. Atomic force microscopy, method of measuring surface configuration using the same, and method of producing magnetic recording medium

Similar Documents

Publication Publication Date Title
US6272907B1 (en) Integrated silicon profilometer and AFM head
US5856672A (en) Single-crystal silicon cantilever with integral in-plane tip for use in atomic force microscope system
US5193383A (en) Mechanical and surface force nanoprobe
US6073484A (en) Microfabricated torsional cantilevers for sensitive force detection
JP2915554B2 (en) Barrier height measurement device
JPH06507718A (en) How to assemble integrated and aligned tunnel chip pairs
US5729026A (en) Atomic force microscope system with angled cantilever having integral in-plane tip
US20010049959A1 (en) Integrated silicon profilometer and AFM head
US20060033024A1 (en) Scanning probe microscopy with inherent disturbance suppression
JPH04369418A (en) Cantilever type probe and interatomic force microscope, data processing apparatus
Harley Advances in piezoresistive probes for atomic force microscopy
JPH09304409A (en) Cantilever with force displacement sensor
JPH0688723A (en) Interatomic force microscope
JPH08297129A (en) Cantilever for interatomic force microscope and its manufacture
JP3270141B2 (en) Force detection device
JPH06258072A (en) Piezoelectric element thin film evaluating apparatus, interatomic force microscope
JP2001108605A (en) Cantilever for scanning-type probe microscope and its manufacturing method, and scaning-type probe microscope and surface charge-measuring microscope
Tortonese Force sensors for scanning probe microscopy
KR20020067265A (en) cantilever for a scanning probe microscope
JPH1114641A (en) Afm sensor
KR20040036378A (en) Piezoelectric cantilever having piezoresistive sensor
JPH079363B2 (en) Surface mechanical property measuring device
JPH06323845A (en) Thin film force detection probe for scanning force microscope
JP3188022B2 (en) Integrated AFM sensor drive circuit
JPH0835976A (en) Integrated spm sensor and displacement detecting circuit