JPH0686605B2 - Highly compressible sintering powder and its manufacturing method - Google Patents

Highly compressible sintering powder and its manufacturing method

Info

Publication number
JPH0686605B2
JPH0686605B2 JP61262318A JP26231886A JPH0686605B2 JP H0686605 B2 JPH0686605 B2 JP H0686605B2 JP 61262318 A JP61262318 A JP 61262318A JP 26231886 A JP26231886 A JP 26231886A JP H0686605 B2 JPH0686605 B2 JP H0686605B2
Authority
JP
Japan
Prior art keywords
particles
copper
powder
alloy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61262318A
Other languages
Japanese (ja)
Other versions
JPS63114903A (en
Inventor
義孝 高橋
俊太郎 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61262318A priority Critical patent/JPH0686605B2/en
Publication of JPS63114903A publication Critical patent/JPS63114903A/en
Publication of JPH0686605B2 publication Critical patent/JPH0686605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は構造用機械部品等に使用する高強度焼結材料の
製造に適した高圧縮性焼結用粉末及びその製法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a highly compressible sintering powder suitable for producing a high-strength sintered material used for structural machine parts and the like, and a production method thereof.

(従来の技術) 焼結材料の使用方法としては、従来は焼結プロセスの持
つ高い歩留まりと、切削加工の大幅な省略が可能という
特徴を生かして、製造コストの低減を目的とした使用方
法が主であった。しかし、近年は機能材料として使用さ
れることも多い。例えば、強度を必要とする部位に用い
る機械部品への採用も検討されており、既に使用されて
いるものもある。焼結材料に対する高強度化の要求は年
々高まりつつあるが、この要求に適合する材料は少な
い。
(Prior art) As a method of using a sintered material, there is a conventional method of use for the purpose of reducing the manufacturing cost by taking advantage of the high yield of the sintering process and the fact that cutting can be largely omitted. Was the Lord. However, in recent years, it is often used as a functional material. For example, adoption in mechanical parts used in parts requiring strength is also under study, and some have already been used. The demand for higher strength of sintered materials is increasing year by year, but few materials meet this requirement.

高強度焼結材料を得るため、合金化、均質化及び高密度
化等の種々の強化方法が検討されている。この中で合金
化により強度を向上させるため、銅(Cu)、ニッケル
(Ni)、モリブデン(Mo)、マンガン(Mn)、クロム
(Cr)等を鉄中に固溶させ強化させる予合金化法あるい
は混合法が知られている。しかしながら、Cr、Mnおよび
B等のいわゆる活性金属を添加したものは粒子表面に酸
化被膜を生じやすい、焼入性が悪い等の問題を有し、Ni
は高価であり、その割には効果が得られない。このた
め、特開昭50-26705号に、比較的安価であり、芯部の焼
入硬度を高めるのに寄与するCuと、焼入性常数の高いMo
を配合した焼結用鋼粉が提案されている。該鋼粉は、粒
子の表面に酸化被膜を生じることがなく、またコストが
低いという点で従来の焼結用鋼粉より優れている。
In order to obtain a high-strength sintered material, various strengthening methods such as alloying, homogenization and densification have been studied. A prealloying method in which copper (Cu), nickel (Ni), molybdenum (Mo), manganese (Mn), chromium (Cr), etc. are solid-dissolved in iron and strengthened in order to improve strength by alloying in this Alternatively, a mixing method is known. However, those to which so-called active metals such as Cr, Mn and B are added have problems such as easy formation of an oxide film on the particle surface and poor hardenability.
Is expensive and ineffective. For this reason, in JP-A-50-26705, Cu, which is relatively inexpensive and contributes to increasing the hardening hardness of the core, and Mo, which has a high hardenability constant, are disclosed.
A steel powder for sintering containing the above is proposed. The steel powder is superior to the conventional steel powder for sintering in that it does not form an oxide film on the surface of the particles and is low in cost.

(発明が解決しようとする問題点) しかしながら、上記のCuとMoを配合した焼結用鋼粉は、
Cuを含む鉄基合金の溶湯を、水噴霧法またはガス噴霧法
により急冷することにより製造され、このときの冷却速
度は焼入時の冷却速度より極めて速いため、Cuの固溶硬
化により合金粉末の硬さが増し、圧縮性が極めて低くな
るといる問題点を有する。従って、本発明は、高強度化
のために、Cuが配合されており、しかもCuにより圧縮性
が低下することのない焼結用粉末を提供することを目的
とする。
(Problems to be solved by the invention) However, the steel powder for sintering containing the above Cu and Mo is
A molten iron-based alloy containing Cu is produced by quenching with a water atomization method or a gas atomization method.The cooling rate at this time is much faster than the cooling rate during quenching, so solid solution hardening of Cu causes alloy powder Has the problem that the hardness increases and the compressibility becomes extremely low. Therefore, it is an object of the present invention to provide a powder for sintering which contains Cu for enhancing the strength and does not reduce the compressibility due to Cu.

(問題点を解決するための手段) 上記の目的を達成するための本発明の高圧縮性焼結用粉
末は、モリブデン(Mo)0.2〜1.4重量%、マンガン(M
n)0.05〜0.25重量%、銅(Cu)粒子0.5〜5重量%、炭
素(C)0.1重量%以下、及び不純物を含む残部鉄(F
e)からなり、上記組成のうち、銅を除く成分からなる
合金粒子に銅粒子が付着してなり、そして 上記銅粒子の平均粒子径は上記合金粒子の平均粒子径の
1/5以下であり且つ上記銅粒子は上記合金粉末との接合
部が合金化した状態で上記合金粉末の表面に融着してい
ることを特徴とする。
(Means for Solving the Problems) The highly compressible sintering powder of the present invention for achieving the above object is molybdenum (Mo) 0.2 to 1.4% by weight and manganese (M
n) 0.05 to 0.25% by weight, copper (Cu) particles 0.5 to 5% by weight, carbon (C) 0.1% by weight or less, and residual iron (F) containing impurities.
of the above composition, copper particles are adhered to alloy particles consisting of components other than copper, and the average particle diameter of the copper particles is equal to the average particle diameter of the alloy particles.
It is 1/5 or less and the copper particles are fused to the surface of the alloy powder in a state where the joint portion with the alloy powder is alloyed.

また、本発明の高圧縮性焼結用粉末の製造方法は、前記
本発明の高圧縮性焼結用粉末を製造するにあたり、上記
合金粒子と、平均粒子径が上記合金粉末の平均粒子径の
1/5以下である銅または銅酸化物の粒子とを均一に混合
し、次いで不酸化性または還元性雰囲気下で加熱処理を
施すことを特徴とする。
Further, the method for producing a highly compressible sintering powder of the present invention, in producing the highly compressible sintering powder of the present invention, the alloy particles, the average particle size of the average particle diameter of the alloy powder
It is characterized by uniformly mixing with 1/5 or less of particles of copper or copper oxide, and then performing heat treatment in an non-oxidizing or reducing atmosphere.

本発明の高圧縮性焼結用粉末の製造方法は、より好まし
くは下記に示す5工程よりなる。まず、Mo、Mn及びFeか
らなる溶湯を水噴霧法またはガス噴霧法により粉末化し
て合金粉を製造する(第1工程)。次に、上記のMo-Mn-
Fe合金粉を、平均粒子径が該合金粉の1/5以下である銅
または銅酸化物粉と均一に混合する(第2工程)。前記
混合粉末を不酸化性または還元性雰囲気下で加熱する。
これにより、銅は、Mo-Mn-Fe合金粉と完全に合金化する
ことはなく、一部合金化した状態でMo-Mn-Fe合金粉の表
面に付着するとともに、前記合金粉及び銅粉が焼鈍し、
あるいは前記合金粉末及び銅酸化物粉が還元焼鈍し、そ
の結果、混合粉は凝集してケーキ状粉末集合体となる
(第3工程)。次に、前記のケーキ状粉末集合体を粉砕
して粉砕物を得る(第4工程)。そして、前記の粉砕物
を必要に応じて粒度調整する(第5工程)。
The method for producing the highly compressible sintering powder of the present invention more preferably comprises the following 5 steps. First, a molten metal composed of Mo, Mn and Fe is pulverized by a water atomization method or a gas atomization method to produce an alloy powder (first step). Next, the above Mo-Mn-
The Fe alloy powder is uniformly mixed with copper or copper oxide powder having an average particle size of 1/5 or less of the alloy powder (second step). The mixed powder is heated under a non-oxidizing or reducing atmosphere.
Thereby, copper does not completely alloy with Mo-Mn-Fe alloy powder, and adheres to the surface of Mo-Mn-Fe alloy powder in a partially alloyed state, and the alloy powder and copper powder Was annealed,
Alternatively, the alloy powder and the copper oxide powder are subjected to reduction annealing, and as a result, the mixed powder aggregates to form a cake-like powder aggregate (third step). Next, the cake-like powder aggregate is crushed to obtain a crushed product (fourth step). Then, the particle size of the pulverized product is adjusted as necessary (fifth step).

以下に、本発明の高圧縮性焼結用粉末の限定理由を示
す。なお、%は重量%を示す。
The reasons for limiting the highly compressible sintering powder of the present invention are shown below. In addition,% shows weight%.

Moは焼結体組織をベイナイト化し、強度を向上させ、且
つ熱処理等の焼入性を向上させるためのものであるが、
0.2%未満では効果が少なく、1.4%を超えると圧縮性の
低下を招き、焼入性の向上にさほどの効果が見られなく
なり、且つコスト高となるため0.2〜1.4%の範囲とし
た。
Mo is to bainite the sintered structure, improve the strength, and improve the hardenability such as heat treatment.
If it is less than 0.2%, the effect is small, and if it exceeds 1.4%, the compressibility is deteriorated, the effect of improving the hardenability is not so significant, and the cost becomes high, so the range was made 0.2 to 1.4%.

MnはMoと類似の効果を示すが、0.05%未満では効果が期
待できず、0.25%を超える圧縮性の低下や強度の低下を
招くため、0.05〜0.25%の範囲とした。
Mn has a similar effect to that of Mo, but if less than 0.05%, no effect can be expected, and if it exceeds 0.25%, the compressibility and strength are deteriorated, so the range was made 0.05 to 0.25%.

Cは0.1%を超えると圧縮性を低下させるため0.1%以下
とした。
When C exceeds 0.1%, the compressibility decreases, so the content is made 0.1% or less.

Cuは焼結体に固溶し、焼結体の強度を向上させるととも
に熱処理後の強度を高めるが、0.5%未満では効果が期
待できず、5%を超えると圧縮性の低下を招き、また、
添加の割に効果が期待できないため、0.5〜5%の範囲
とした。
Cu forms a solid solution in the sintered body, and improves the strength of the sintered body and the strength after heat treatment. However, if less than 0.5%, no effect can be expected, and if it exceeds 5%, the compressibility decreases, and ,
The effect cannot be expected for the addition, so the range was made 0.5 to 5%.

銅または銅酸化物の平均粒子径は、添加割合が一定の場
合、粒子径が大きい程存在割合が小さくなり、偏折の可
能性が高くなる。本発明者らは、銅または銅酸化物の平
均粒子径をMo-Mn-Fe合金の平均粒子径の1/5以下とする
ことにより、偏折の発生を防止できることを見出した。
これにより、銅または銅酸化物の平均粒子径を規定し
た。従って、本発明の方法においては平均粒子径が合金
粒子の平均粒子径の1/5以下である銅または銅酸化物の
粒子を使用し、この結果、本発明の粉末が得られる。
Regarding the average particle size of copper or copper oxide, when the addition ratio is constant, the larger the particle size, the smaller the existing ratio, and the higher the possibility of uneven bending. The present inventors have found that by setting the average particle diameter of copper or copper oxide to 1/5 or less of the average particle diameter of Mo-Mn-Fe alloy, the occurrence of unevenness can be prevented.
Thereby, the average particle diameter of copper or copper oxide was specified. Therefore, in the method of the present invention, particles of copper or copper oxide having an average particle diameter of 1/5 or less of the average particle diameter of the alloy particles are used, and as a result, the powder of the present invention is obtained.

(作用) 本発明の高圧縮性焼結用粉末においては、平均粒子径が
合金(Fe-Mo-Mn合金)粒子の平均粒子径の1/5以下であ
るCu粒子が合金粒子に所定形態で付着しているため、使
用に際して圧縮性に優れている。これは、Cu粒子が合金
粒子との間の完全な合金として存在するのではなく、製
造時の加熱により合金粒子の表面に融着して、合金粉末
との接合部のみが合金化した状態である。このため、前
記接合部(CuがFe-Mo-Mn合金と更に合金化した部分)を
ミクロ的に見れば合金粒子の硬度に比べて硬度が増して
いるものの、接合部は合金粒子の全表面にわたって各々
は小さな領域でほぼ均一に点在していると考えられるの
で、マクロ的に見れば合金粒子の硬度は増していないと
思われる。即ち、本発明の高圧縮性焼結用粉末は、圧縮
時には軟らかいFe-Mo-Mn合金部分は塑性変形することに
より圧縮され、硬度の増したCu合金化部分は前記Fe-Mo-
Mn合金部分内に埋没するため圧縮性に悪影響を及ぼさな
い。それ故、本発明の高圧縮性焼結用粉末を使用する
と、焼結時にCu粒子からのCuの作用により焼結体が高強
度化されると考えられる。
(Operation) In the highly compressible sintering powder of the present invention, the Cu particles having an average particle diameter of 1/5 or less of the average particle diameter of the alloy (Fe-Mo-Mn alloy) particles have a predetermined form in the alloy particles. Since it adheres, it has excellent compressibility when used. This is because the Cu particles do not exist as a complete alloy with the alloy particles, but are fused to the surface of the alloy particles by heating during manufacturing, and only the joint with the alloy powder is alloyed. is there. For this reason, although the hardness is higher than the hardness of the alloy particles in a microscopic view of the above-mentioned bonding portion (the portion where Cu is further alloyed with the Fe-Mo-Mn alloy), the bonding portion has the entire surface of the alloy particles. Since it is considered that each of them is scattered almost uniformly in a small area, it is considered that the hardness of the alloy particles does not increase from a macroscopic viewpoint. That is, the highly compressible sintering powder of the present invention, the soft Fe-Mo-Mn alloy portion during compression is compressed by plastic deformation, the Cu alloyed portion with increased hardness is Fe-Mo-
Since it is buried in the Mn alloy part, it does not adversely affect the compressibility. Therefore, it is considered that when the highly compressible sintering powder of the present invention is used, the strength of the sintered body is enhanced by the action of Cu from the Cu particles during sintering.

また、本発明の高圧縮性焼結用粉末の製造方法において
は、合金粒子と、平均粒子径が上記合金粉末の平均粒子
径の1/5以下である銅または銅酸化物の粒子とを均一に
混合し、次いで不酸化性または還元性雰囲気下で加熱処
理を施すことにより、前述の本発明の高圧縮性焼結用粉
末が容易に調製される。
Further, in the method for producing the highly compressible sintering powder of the present invention, the alloy particles and the particles of copper or copper oxide having an average particle diameter of 1/5 or less of the average particle diameter of the alloy powder are uniform. And then heat-treated in an non-oxidizing or reducing atmosphere to easily prepare the highly compressible sintering powder of the present invention.

(実施例) 以下、本発明を実施例によりさらに詳細に説明する。(Examples) Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1: 第1表に示す組成のうちCuを除く成分、即ちFe、Mo及び
Mnを含む溶湯を用いて、水噴霧法により粉末化し、合金
粉を製造した。この合金粉に、平均粒子径が合金粉の1/
5以下であるCuO粉を所定量添加し、V型混合機を用いて
20分間混合し、均一な混合体を得た。
Example 1: Components other than Cu in the composition shown in Table 1, that is, Fe, Mo and
An alloy powder was produced by pulverizing the molten metal containing Mn by the water atomization method. The average particle size of this alloy powder is 1 / of the alloy powder.
Add a certain amount of CuO powder that is 5 or less and use a V-type mixer
The mixture was mixed for 20 minutes to obtain a uniform mixture.

この混合体を分解アンモニアガス雰囲気中で45分間加熱
することにより、CuO及びFe-Mo-Mn合金粉を還元すると
ともに、Cu粒子をFe-Mo-Mn合金粒子の表面に付着させ
た。得られた粉末凝集体を粉砕機(ハンマーミル)にて
粉砕した後、80メッシュ篩にて篩別し、80メッシュ粉を
得た。
By heating this mixture for 45 minutes in a decomposed ammonia gas atmosphere, CuO and Fe-Mo-Mn alloy powder were reduced and Cu particles were attached to the surface of Fe-Mo-Mn alloy particles. The obtained powder agglomerate was crushed with a crusher (hammer mill) and then sieved with an 80 mesh sieve to obtain 80 mesh powder.

実施例2ないし4 実施例1と基本的に同様の方法により、第1表に示す組
成の焼結用粉末を製造した。
Examples 2 to 4 By the same method as in Example 1, powders for sintering having the compositions shown in Table 1 were produced.

比較例1 Mo、Mn、C及びFeに加えて、Cuを含有する溶湯を粉末化
して焼結粉末とするほかは、実施例1と同様の方法によ
り、第1表に示す組成の焼結粉末を製造した。
Comparative Example 1 A sintered powder having the composition shown in Table 1 was prepared in the same manner as in Example 1 except that a molten metal containing Cu in addition to Mo, Mn, C and Fe was powdered to obtain a sintered powder. Was manufactured.

比較例2 実施例1と同様の方法により、第1表に示す組成の焼結
粉末を製造した。
Comparative Example 2 By the same method as in Example 1, a sintered powder having the composition shown in Table 1 was produced.

試験例1 上記の実施例1ないし4並びに比較例1及び2の粉末に
ついて、下記の方法により圧縮性を試験した。それぞれ
の粉末を成形圧力5T/cm2にて圧縮し、11.3×10mm(直径
×高さ)の円柱試験片を製造した。成形は超硬製金型を
用い、内壁に潤滑剤を塗布して行った。得られた試験片
の密度を調べた。結果を図のグラフに示す。グラフにお
いて、白棒は試験片の圧縮性を密度で示し、斜線入り棒
は試験片の引張強さ(後述の試験例2参照)を示す。
Test Example 1 The powders of Examples 1 to 4 and Comparative Examples 1 and 2 were tested for compressibility by the following method. Each powder was compressed at a molding pressure of 5 T / cm 2 to produce a cylindrical test piece of 11.3 × 10 mm (diameter × height). Molding was performed by using a cemented carbide die and applying a lubricant to the inner wall. The density of the obtained test piece was examined. The results are shown in the graph in the figure. In the graph, the white bar indicates the compressibility of the test piece in terms of density, and the shaded bar indicates the tensile strength of the test piece (see Test Example 2 below).

グラフより明らかなように、実施例1ないし4の試験片
の密度は6.87g/cm3以上であり、Cuを合金化して製造し
た比較例1の試験片の密度(6.46g/cm3)に比べて著し
く高い。従って、実施例の焼結用粉末が比較例の焼結用
粉末に比べて優れた圧縮性を持つことが明らかである。
As is apparent from the graph, the density of the test pieces of Examples 1 to 4 is 6.87 g / cm 3 or more, which is the same as the density (6.46 g / cm 3 ) of the test piece of Comparative Example 1 manufactured by alloying Cu. Remarkably higher than Therefore, it is clear that the sintering powder of the example has superior compressibility as compared with the sintering powder of the comparative example.

試験例2 実施例1ないし4及び比較例1及び2の焼結用粉末によ
り製造した焼結品を熱処理して製造した材料について、
下記の方法により引張強さを試験した。まず、それぞれ
の焼結用粉末に、0.5%の黒鉛粉及び0.6%の潤滑用ステ
アリン酸亜鉛を加え、V型混合機で30分間混合する。得
られた混合粉末によりJSPM標準引張試験片(圧縮体密度
6.8g/cm3)を成形し、分解アンモニアガス雰囲気中で焼
結した。得られた焼結品を、不酸化雰囲気中で加熱(85
0×30分間)し、オイル中に投入(油焼入)し、170℃×
90分で焼戻しすることにより熱処理を施した。これによ
り得られた試験片の引張強さを調べた。結果を図のグラ
フに示す。グラフにより、実施例1〜4の焼結用粉末に
より製造した熱処理材の引張強さは、比較例1及び2の
ものと比べて、同等またはそれ以上であることが明らか
である。
Test Example 2 Regarding materials produced by heat-treating the sintered products produced from the sintering powders of Examples 1 to 4 and Comparative Examples 1 and 2,
The tensile strength was tested by the following method. First, 0.5% of graphite powder and 0.6% of zinc stearate for lubrication are added to each sintering powder, and they are mixed for 30 minutes by a V-type mixer. With the obtained mixed powder, the JSPM standard tensile test piece (compressed body density
6.8 g / cm 3 ) was molded and sintered in a decomposed ammonia gas atmosphere. The obtained sintered product is heated (85
0 × 30 minutes), put in oil (oil quenching), 170 ℃ ×
Heat treatment was performed by tempering in 90 minutes. The tensile strength of the test piece thus obtained was examined. The results are shown in the graph in the figure. From the graph, it is apparent that the tensile strength of the heat-treated materials produced from the sintering powders of Examples 1 to 4 is equal to or higher than that of Comparative Examples 1 and 2.

(発明の効果) 本発明の焼結用粉末は、モリブデン、マンガン、炭素及
び鉄からなる合金粒子の表面に銅粒子が特定の形態で付
着してなり、銅は合金粉末と完全には合金化していない
ため、銅により合金粉末自体の硬度が高くなることはな
く、従って圧縮性が良好である。しかも、本発明の焼結
用粉末はコストも低く、これにより製造された焼結部品
は、引張強さ、特に熱処理した材料の引張強さが優れて
いる。従って、本発明の焼結用粉末は、熱処理を施す部
材の製造用原料として特に適している。
(Effects of the Invention) The sintering powder of the present invention has copper particles adhered to the surface of alloy particles made of molybdenum, manganese, carbon and iron in a specific form, and copper is completely alloyed with the alloy powder. Therefore, the hardness of the alloy powder itself is not increased by copper, and therefore the compressibility is good. Moreover, the powder for sintering of the present invention is low in cost, and the sintered parts produced by the powder are excellent in tensile strength, especially in heat-treated material. Therefore, the sintering powder of the present invention is particularly suitable as a raw material for manufacturing a member to be heat-treated.

また、本発明の高圧縮性焼結用粉末は、所定性状の合金
粒子と所定性状の銅または銅酸化物の粒子とを均一に混
合し、次いで銅粒子を使用するかまたは銅酸化物粒子を
使用するかによって加熱処理条件を適宜選択することに
より、前述の本発明の高圧縮性焼結用粉末を簡便迅速且
つ容易に得ることができる。従って、本発明の高圧縮性
焼結用粉末を低コストで供給することが可能である。
Further, the highly compressible sintering powder of the present invention is a uniform mixture of alloy particles having a predetermined property and particles of copper or a copper oxide having a predetermined property, and then using copper particles or copper oxide particles. By appropriately selecting the heat treatment conditions depending on whether to use, the above-mentioned highly compressible sintering powder of the present invention can be simply, quickly and easily obtained. Therefore, it is possible to supply the highly compressible sintering powder of the present invention at low cost.

【図面の簡単な説明】 図は、本発明の実施例1ないし4並びに比較例1及び2
により製造された成形品の密度及び引張試験の結果を示
すグラフである。
BRIEF DESCRIPTION OF THE DRAWING The drawings show Examples 1 to 4 of the present invention and Comparative Examples 1 and 2.
5 is a graph showing the results of the density and tensile test of the molded product manufactured by.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】モリブデン(Mo)0.2〜1.4重量%、マンガ
ン(Mn)0.05〜0.25重量%、銅(Cu)粒子0.5〜5重量
%、炭素(C)0.1重量%以下、及び不純物を含む残部
鉄(Fe)からなり、上記組成のうち、銅を除く成分から
なる合金粒子に銅粒子が付着してなり、そして 上記銅粒子の平均粒子径は上記合金粒子の平均粒子径の
1/5以下であり且つ上記銅粒子は上記合金粒子との接合
部のみが合金化した状態で上記合金粒子の表面に融着し
ていることを特徴とする高圧縮性焼結用粉末。
1. Molybdenum (Mo) 0.2 to 1.4% by weight, manganese (Mn) 0.05 to 0.25% by weight, copper (Cu) particles 0.5 to 5% by weight, carbon (C) 0.1% by weight or less, and the balance containing impurities. Copper particles adhere to alloy particles composed of iron (Fe) and having a composition other than copper in the above composition, and the average particle diameter of the copper particles is equal to that of the alloy particles.
1/5 or less and the above-mentioned copper particles are fused to the surface of the above-mentioned alloy particles in a state where only the joints with the above-mentioned alloy particles are alloyed, and a highly compressible sintering powder.
【請求項2】モリブデン(Mo)0.2〜1.4重量%、マンガ
ン(Mn)0.05〜0.25重量%、銅(Cu)粒子0.5〜5重量
%、炭素(C)0.1重量%以下、及び不純物を含む残部
鉄(Fe)からなり、上記組成のうち、銅を除く成分から
なる合金粒子に銅粒子が付着してなり、そして 上記銅粒子の平均粒子径は上記合金粒子の平均粒子径の
1/5以下であり且つ上記銅粒子は上記合金粒子との接合
部のみが合金化した状態で上記合金粒子の表面に融着し
ている高圧縮性焼結用粉末の製造方法であって、 上記合金粒子と、平均粒子径が上記合金粒子の平均粒子
径の1/5以下である銅または銅酸化物の粒子とを均一に
混合し、次いで不酸化性または還元性雰囲気下で加熱処
理を施すことを特徴とする高圧縮性焼結用粉末の製造方
法。
2. Molybdenum (Mo) 0.2 to 1.4% by weight, manganese (Mn) 0.05 to 0.25% by weight, copper (Cu) particles 0.5 to 5% by weight, carbon (C) 0.1% by weight or less, and the balance containing impurities. Copper particles adhere to alloy particles composed of iron (Fe) and having a composition other than copper in the above composition, and the average particle diameter of the copper particles is equal to that of the alloy particles.
1/5 or less and the copper particles is a method for producing a highly compressible sintering powder which is fused to the surface of the alloy particles in a state where only the joints with the alloy particles are alloyed, The alloy particles and an average particle size of the particles of copper or copper oxide having an average particle size of 1/5 or less of the average particle size of the alloy particles are uniformly mixed, and then heat-treated under an non-oxidizing or reducing atmosphere. A method for producing a powder for highly compressive sintering, which comprises applying the powder.
JP61262318A 1986-11-04 1986-11-04 Highly compressible sintering powder and its manufacturing method Expired - Lifetime JPH0686605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61262318A JPH0686605B2 (en) 1986-11-04 1986-11-04 Highly compressible sintering powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61262318A JPH0686605B2 (en) 1986-11-04 1986-11-04 Highly compressible sintering powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS63114903A JPS63114903A (en) 1988-05-19
JPH0686605B2 true JPH0686605B2 (en) 1994-11-02

Family

ID=17374103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61262318A Expired - Lifetime JPH0686605B2 (en) 1986-11-04 1986-11-04 Highly compressible sintering powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0686605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685979B2 (en) 2016-03-23 2023-06-27 Höganäs Ab (Publ) Iron based powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617529B2 (en) * 2010-10-28 2014-11-05 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011077A (en) * 1975-06-06 1977-03-08 Ford Motor Company Copper coated, iron-carbon eutectic alloy powders
JPS5850308B2 (en) * 1976-11-06 1983-11-09 住友電気工業株式会社 High strength sintered steel and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685979B2 (en) 2016-03-23 2023-06-27 Höganäs Ab (Publ) Iron based powder

Also Published As

Publication number Publication date
JPS63114903A (en) 1988-05-19

Similar Documents

Publication Publication Date Title
JP5920984B2 (en) Iron-based powder composition
CA2528698C (en) Mixed powder for powder metallurgy
US5552109A (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
CN101069927B (en) Sinter-hardening powder and their sintered compacts
JPH05117703A (en) Iron-base powder composition for powder metallurgy, its production and production of iron-base sintering material
JPH10140206A (en) Low alloy steel powder for sintering and hardening
CN110267754B (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JPH0686605B2 (en) Highly compressible sintering powder and its manufacturing method
EP0835329B1 (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
JP2007169736A (en) Alloy steel powder for powder metallurgy
JP6645631B1 (en) Alloy steel powder for powder metallurgy and iron-base mixed powder for powder metallurgy
WO2000039353A1 (en) Iron-based powder blend for use in powder metallurgy
JP4005189B2 (en) High strength sintered steel and method for producing the same
JP4301657B2 (en) Manufacturing method of high strength sintered alloy steel
RU2327547C1 (en) Method of producing iron base powder (variants)
JP4093070B2 (en) Alloy steel powder
JPH0689361B2 (en) High-strength iron-based powder with excellent machinability and method for producing the same
JP2003147405A (en) Alloy steel powder for iron sintering heat treatment material
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH0689363B2 (en) High strength alloy steel powder for powder metallurgy
CN110234448B (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
WO2018143088A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JP3392228B2 (en) Alloy steel powder for powder metallurgy
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term