JPH0686535B2 - Ultrafine inorganic fine particle film, method for producing the same, magnetic recording medium to which the same is applied, and method for producing the same - Google Patents

Ultrafine inorganic fine particle film, method for producing the same, magnetic recording medium to which the same is applied, and method for producing the same

Info

Publication number
JPH0686535B2
JPH0686535B2 JP4599989A JP4599989A JPH0686535B2 JP H0686535 B2 JPH0686535 B2 JP H0686535B2 JP 4599989 A JP4599989 A JP 4599989A JP 4599989 A JP4599989 A JP 4599989A JP H0686535 B2 JPH0686535 B2 JP H0686535B2
Authority
JP
Japan
Prior art keywords
inorganic fine
organic compound
fine particle
magnetic
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4599989A
Other languages
Japanese (ja)
Other versions
JPH02225534A (en
Inventor
規央 美濃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4599989A priority Critical patent/JPH0686535B2/en
Priority to US07/361,261 priority patent/US4985273A/en
Priority to EP19890305701 priority patent/EP0346074B1/en
Priority to DE1989624198 priority patent/DE68924198T2/en
Publication of JPH02225534A publication Critical patent/JPH02225534A/en
Priority to US07/606,620 priority patent/US5277980A/en
Publication of JPH0686535B2 publication Critical patent/JPH0686535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Description

【発明の詳細な説明】 産業上の利用分野 本発明は無機物微粒子からなる超薄膜およびその製造方
法に関し、さらにその応用として、前記無機物微粒子か
らなる超薄膜を記録層とする磁気記録媒体およびその製
造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to an ultrathin film made of inorganic fine particles and a method for producing the same, and as an application thereof, a magnetic recording medium having an ultrathin film made of the inorganic fine particles as a recording layer and its production. It is about the method.

従来の技術 従来より、無機物微粒子超薄膜は配線材料、加工材料、
記録材料、印刷材料などとして広く用いられている。以
下、従来の技術の一例として磁気記録媒体およびその製
造方法について説明する。
Conventional technology Conventionally, ultra-fine particles of inorganic fine particles are
It is widely used as a recording material and printing material. Hereinafter, a magnetic recording medium and a method of manufacturing the same will be described as an example of a conventional technique.

従来の磁気記録媒体の製造方法は、磁性無機物微粒子を
バインダーと呼ばれる合成樹脂の中に分散させて磁性ペ
イントを作成し、この磁性ペイントを基板上に薄く均一
に塗工することにより記録層を形成する方法が多く用い
られている。また、保磁力を大きくするために、磁性ペ
イントを基板上に塗工してから乾く前に磁場をかけて磁
性無機物微粒子の配向を揃える工程がある。
In the conventional method of manufacturing a magnetic recording medium, magnetic inorganic fine particles are dispersed in a synthetic resin called a binder to prepare a magnetic paint, and the magnetic paint is applied thinly and uniformly on a substrate to form a recording layer. The method of doing is often used. Further, in order to increase the coercive force, there is a step of applying a magnetic paint on the substrate and then applying a magnetic field before drying to align the orientation of the magnetic inorganic fine particles.

発明が解決しようとする課題 しかしながら、従来の磁気記録媒体の製造方法では、磁
性のない合成樹脂からなるバインダーが多く含まれてお
り高密度化には好ましくなかった。また、バインダーの
粘性のため磁性無機物微粒子の配向を完全に揃えること
は容易ではなかった。さらに、磁気記録媒体の表面は平
坦でかつ滑らかである必要があるが、従来の製造方法で
は平坦でかつ滑らかな表面を得ることが難しかった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, the conventional method for manufacturing a magnetic recording medium contains a large amount of a binder made of a non-magnetic synthetic resin, which is not preferable for increasing the density. Moreover, it was not easy to perfectly align the orientation of the magnetic inorganic fine particles due to the viscosity of the binder. Further, the surface of the magnetic recording medium needs to be flat and smooth, but it has been difficult to obtain a flat and smooth surface by the conventional manufacturing method.

課題を解決するための手段 本発明の無機物微粒子超薄膜は、薄膜状に固定された無
機物微粒子と、前記無機物微粒子の表面に形成された有
機化合物分子よりなる有機薄膜とからなり、かつ前記有
機化合物分子同志が化学結合していることを特徴とする
ものである。
Means for Solving the Problems The inorganic fine particle ultra-thin film of the present invention comprises inorganic fine particles fixed in a thin film shape, and an organic thin film made of organic compound molecules formed on the surface of the inorganic fine particles, and the organic compound The feature is that the molecules of the molecules are chemically bonded.

上記構成の無機物微粒子超薄膜を製造するために、本発
明の無機物微粒子超薄膜の製造方法は、無機物微粒子表
面に均一に有機化合物分子からなる単分子膜を形成する
工程と、前記無機物微粒子を気水界面に展開し基板に移
し取る工程と、前記基板に移し取られた前記無機物微粒
子に前記有機化合物分子同志を化学結合させるための化
学的処理または物理的処理を施す工程とからなることを
特徴とするものである。
In order to produce the inorganic fine particle ultra-thin film having the above structure, the method for producing an inorganic fine particle ultra-thin film of the present invention comprises a step of uniformly forming a monomolecular film of organic compound molecules on the surface of the inorganic fine particles, It is characterized by comprising a step of developing on a water interface and transferring to a substrate, and a step of subjecting the inorganic fine particles transferred to the substrate to a chemical treatment or a physical treatment for chemically bonding the organic compound molecules to each other. It is what

さらに本発明の磁気記録媒体は、無機物微粒子として磁
性無機物微粒子を用いて本発明の無機物微粒子超薄膜を
形成し、前記超薄膜を記録層としたものである。
Further, in the magnetic recording medium of the present invention, the inorganic fine particle ultra-thin film of the present invention is formed by using magnetic inorganic fine particles as the inorganic fine particles, and the ultra-thin film is used as a recording layer.

作用 本発明の無機物微粒子超薄膜およびその製造方法は上記
の構成によって、より新しく容易な無機物微粒子の取扱
方法により無機物微粒子の超薄膜を形成することが出来
る。さらに、本発明の磁気記録媒体およびその製造方法
は、バインダーにあたるものがまったく無いため高密度
化が実現でき、かつ磁性無機物微粒子の配向を揃えるこ
とも容易である。
Action The ultrafine inorganic fine particle film and the method for producing the same according to the present invention can form an ultrathin thin film of inorganic fine particles by a newer and easier method for handling inorganic fine particles. Further, since the magnetic recording medium and the method for producing the same of the present invention have no binder, it is possible to realize high density and it is easy to align the orientation of the magnetic inorganic fine particles.

実施例 以下、本発明の無機物微粒子超薄膜の一実施例を第1図
および第2図を用いて詳細に説明する。ここで、第1図
は無機物微粒子超薄膜の模式断面図であり、第2図は第
1図の円Aで囲む部分の拡大図である。
Examples Hereinafter, one example of the inorganic fine particle ultra-thin film of the present invention will be described in detail with reference to FIGS. 1 and 2. Here, FIG. 1 is a schematic cross-sectional view of the inorganic fine particle ultra-thin film, and FIG. 2 is an enlarged view of a portion surrounded by a circle A in FIG.

1は直径約100Aの無機物微粒子である。無機物微粒子1
の周囲には前記無機物の構成元素の酸化物膜が形成され
ており、前記酸化物膜上には直鎖状炭化水素基を有する
有機化合物分子2が吸着している。前記直鎖状炭化水素
基を有する有機化合物分子2は隣接している直鎖状炭化
水素基を有する有機化合物分子と互いに化学結合してい
る。3はエチレン結合からなる化学結合部をさす。4は
基板である。第2図で示すように直鎖状炭化水素基を有
する有機化合物分子2は無機物微粒子1と なるシロキサン結合5を形成している。従って、無機物
微粒子1は直鎖状炭化水素基を有する有機化合物分子2
で固定されており、また、直鎖状炭化水素基を有する有
機化合物分子2はエチレン結合からなる化学結合部3で
固定されている。そのため、無機物微粒子1の保持性が
優れている。また、ラングミュア・ブロジェット法を使
用できるため無機物微粒子超薄膜を層状に形成でき、そ
の厚みを一様にすることができる。
1 is an inorganic fine particle having a diameter of about 100A. Inorganic fine particles 1
An oxide film of the constituent element of the inorganic substance is formed around the, and the organic compound molecule 2 having a linear hydrocarbon group is adsorbed on the oxide film. The organic compound molecule 2 having a linear hydrocarbon group is chemically bonded to the adjacent organic compound molecule having a linear hydrocarbon group. 3 indicates a chemical bond consisting of an ethylene bond. Reference numeral 4 is a substrate. As shown in FIG. 2, the organic compound molecule 2 having a linear hydrocarbon group is A siloxane bond 5 is formed. Therefore, the inorganic fine particles 1 are the organic compound molecules 2 having a linear hydrocarbon group.
Further, the organic compound molecule 2 having a linear hydrocarbon group is fixed at the chemical bond portion 3 composed of an ethylene bond. Therefore, the retention of the inorganic fine particles 1 is excellent. Moreover, since the Langmuir-Blodgett method can be used, an ultrafine thin film of inorganic fine particles can be formed into a layer and the thickness thereof can be made uniform.

なお、本実施例では無機物微粒子超薄膜は一層だけの例
を示したが、必要に応じて累積層にしてもよい。
In addition, although the example of the inorganic fine particle ultra-thin film is only one layer in this embodiment, it may be a cumulative layer if necessary.

また、本実施例では直鎖状炭化水素基を有する有機化合
物分子同志の結合がエチレン結合である例を示したが、
これだけに限らないことは言うまでもない。
Further, in this example, an example in which the bond between the organic compound molecules having a linear hydrocarbon group is an ethylene bond,
It goes without saying that this is not the only option.

さらに、本実施例では無機物微粒子と直鎖状炭化水素基
を有する有機化合物分子との結合がシロキサン結合であ
る例を示したが、他の結合、例えば、−S−無機物結合
などであっても構わない。
Furthermore, in this example, the bond between the inorganic fine particles and the organic compound molecule having a linear hydrocarbon group is a siloxane bond, but other bonds such as -S-inorganic bond may also be used. I do not care.

以下、本発明の無機物微粒子超薄膜の製造方法の第1の
実施例を第3図を用いて段階的に詳細に説明する。な
お、第3図はすべて断面図である。
Hereinafter, the first embodiment of the method for producing an ultrafine inorganic fine particle film of the present invention will be described step by step with reference to FIG. Incidentally, FIG. 3 is a sectional view.

無機物微粒子に吸着させる有機化合物分子として、例え
ば、 CH3−C≡C−(CH2)17−SiCl3 のようなクロルシラン基およびアセチレン結合を含む直
鎖状炭化水素基を有する有機化合物分子を10をクロロホ
ルムを主体とする非水系溶媒に溶かし、その中に無機物
微粒子11を入れて攪拌する。無機物微粒子11の周囲に形
成された前記無機物の構成元素の酸化物膜にクロルシラ
ン基が反応し、シロキサン結合が形成され、直鎖状炭化
水素基を有する有機化合物10が吸着される。吸着処理を
施した無機物微粒子11を気水界面12上に展開し、バリア
13によって無機物微粒子11をかき集め、さらに、適宜な
圧力を加え無機物微粒子超薄膜14を形成する。前記無機
物微粒子超薄膜14を任意の基板15例えばシリコン基板に
移し取る。ここで、無機物微粒子11の周囲に吸着された
直鎖状炭化水素基を有する有機化合物分子10はもちろん
無機物微粒子11の周囲全面にわたって形成されるが図面
では煩雑になるため三次元的に記載していない(第3図
(A))。
As the organic compound molecule to be adsorbed on the inorganic fine particles, for example, an organic compound molecule having a chlorosilane group such as CH 3 —C≡C— (CH 2 ) 17 —SiCl 3 and a linear hydrocarbon group containing an acetylene bond is used. Is dissolved in a non-aqueous solvent mainly containing chloroform, and the inorganic fine particles 11 are put therein and stirred. The chlorosilane group reacts with the oxide film of the constituent element of the inorganic substance formed around the inorganic fine particles 11 to form a siloxane bond, and the organic compound 10 having a linear hydrocarbon group is adsorbed. Inorganic fine particles 11 that have been subjected to adsorption treatment are spread on the water-water interface 12 to form a barrier.
The inorganic fine particles 11 are scraped by 13 and an appropriate pressure is applied to form an ultrafine inorganic fine particle film 14. The ultrafine inorganic particle thin film 14 is transferred to an arbitrary substrate 15, for example, a silicon substrate. Here, the organic compound molecules 10 having a linear hydrocarbon group adsorbed around the inorganic fine particles 11 are formed over the entire surface of the inorganic fine particles 11 as a matter of course. No (Fig. 3 (A)).

次に、前記基板15上に形成された無機物微粒子超薄膜14
に不活性ガス雰囲気中でエネルギービーム16例えば電子
線を照射する(第3図(B))。
Next, the inorganic fine particle ultra-thin film 14 formed on the substrate 15
Then, the energy beam 16 such as an electron beam is irradiated in an inert gas atmosphere (FIG. 3 (B)).

電子線等のエネルギービーム16を照射することにより無
機物微粒子11の周囲に吸着した直鎖状炭化水素基を有す
る有機化合物分子10のアセチレン結合が隣接する直鎖状
炭化水素基を有する有機化合物分子10のアセチレン結合
と化学反応を生じ、エチレン結合17を形成する。ここ
で、エチレン結合17は同一の無機物微粒子11の周囲に吸
着した直鎖状炭化水素基を有する有機化合物分子10のア
セチレン結合間、または、隣接する無機物微粒子11の周
囲に吸着した直鎖状炭化水素基を有する有機化合物分子
10のアセチレン結合間の反応で形成されるが、図面では
煩雑になるため模式的に示してある(第3図(C))。
An organic compound molecule 10 having a linear hydrocarbon group having an adjacent acetylene bond of an organic compound molecule 10 having a linear hydrocarbon group adsorbed around the inorganic fine particles 11 by irradiation with an energy beam 16 such as an electron beam. A chemical reaction occurs with the acetylene bond of to form an ethylene bond 17. Here, the ethylene bonds 17 are linear carbon atoms adsorbed between the acetylene bonds of the organic compound molecule 10 having a linear hydrocarbon group adsorbed around the same inorganic fine particle 11 or around the adjacent inorganic fine particles 11. Organic compound molecule having hydrogen group
It is formed by the reaction between 10 acetylene bonds, but it is shown schematically because it becomes complicated in the drawing (Fig. 3 (C)).

なお、本実施例では無機物微粒子超薄膜を一層だけ形成
したが、同様の方法を用いて累積膜にすることもでき
る。
Although only one ultrafine inorganic fine particle film is formed in this embodiment, a cumulative film can be formed by using the same method.

また、本実施例では直鎖状炭化水素基を有する有機化合
物分子中の不飽和結合基としてアセチレン結合を用いた
が、他の不飽和結合基、例えばエチレン結合、ジアセチ
レン結合などであってもよい。
Further, in this example, an acetylene bond was used as the unsaturated bond group in the organic compound molecule having a linear hydrocarbon group, but other unsaturated bond groups such as an ethylene bond and a diacetylene bond may also be used. Good.

さらに、本実施例では直鎖状炭化水素基を有する有機化
合物分子として末端基がクロルシラン基であるものを使
用したが、他に例えば、トリアジンジチオール誘導体を
使うことも可能である。トリアジンジチオール誘導体を
使用する時は非水系溶剤を使う必要もなく、また、シロ
キサン結合を形成しない。
Furthermore, in this example, as the organic compound molecule having a linear hydrocarbon group, one having a chlorosilane group as the terminal group was used, but it is also possible to use, for example, a triazinedithiol derivative. When using the triazinedithiol derivative, it is not necessary to use a non-aqueous solvent, and a siloxane bond is not formed.

さらになお、本実施例では基板に無機物微粒子を移し取
った後にエネルギービームを照射したが、気水界面上で
エネルギービームを照射し、その後移し取ってもよい。
Furthermore, in this embodiment, the energy beam is irradiated after the inorganic fine particles are transferred to the substrate, but the energy beam may be irradiated on the air-water interface and then transferred.

さらにまた、無機物微粒子の配向性を高めるため、無機
物微粒子が磁場に感応するときは気水界面上で超薄膜を
形成するとき、もしくはエネルギービームを照射すると
きに磁場もしくは電場をかけてもよい。
Furthermore, in order to enhance the orientation of the inorganic fine particles, a magnetic field or an electric field may be applied when the inorganic fine particles are sensitive to a magnetic field, when forming an ultrathin film on the air-water interface, or when irradiating an energy beam.

以下、本発明の無機物微粒子超薄膜の製造方法の第2の
実施例を第3図を用いて段階的に詳細に説明する。な
お、第3図はすべて断面図である。
Hereinafter, a second embodiment of the method for producing an ultrafine inorganic fine particle film of the present invention will be described step by step with reference to FIG. Incidentally, FIG. 3 is a sectional view.

ここで、無機物微粒子の周囲に直鎖状炭化水素基を有す
る有機化合物分子を吸着させる工程、並びに、気水界面
上に前記無機物微粒子の超薄膜を形成し、基板に移し取
る工程は第1の実施例と同じであるので省略する。
Here, the step of adsorbing organic compound molecules having a linear hydrocarbon group around the inorganic fine particles, and the step of forming an ultrathin film of the inorganic fine particles on the air-water interface and transferring it to the substrate are the first step. Since it is the same as the embodiment, its explanation is omitted.

次に、5族もしくは6族遷移金属もしくは前記金属の化
合物よりなる触媒、例えば塩化タンタルを適宜非水系溶
媒に溶解し、その中に前記基板上に形成された無機物微
粒子超薄膜を浸漬する。浸漬によって直鎖状炭化水素基
を有する有機化合物分子中のアセチレン結合は隣接する
直鎖状炭化水素基を有する有機化合物分子中のアセチレ
ン結合と化学反応を生じ、エチレン結合を形成する(第
3図(C))。
Next, a catalyst made of a Group 5 or Group 6 transition metal or a compound of the metal, such as tantalum chloride, is appropriately dissolved in a non-aqueous solvent, and the ultrafine inorganic fine particle film formed on the substrate is immersed therein. Upon immersion, the acetylene bond in the organic compound molecule having a linear hydrocarbon group causes a chemical reaction with the acetylene bond in the adjacent organic compound molecule having a linear hydrocarbon group to form an ethylene bond (Fig. 3). (C)).

なお、本実施例では5族もしくは6族遷移金属もしくは
前記金属の化合物よりなる触媒を用いたが、有機化合物
分子同志を化学結合させるための触媒ならばいずれを使
用してもよい。
Although a catalyst made of a Group 5 or Group 6 transition metal or a compound of the above metals was used in this example, any catalyst may be used as long as it is a catalyst for chemically bonding organic compound molecules.

また、無機物微粒子の配向性を高めるため、無機物微粒
子が磁場に感応するときは気水界面上で超薄膜を形成す
るとき、もしくは触媒溶液に浸漬するときに磁場もしく
は電場をかけてもよい。
In order to improve the orientation of the inorganic fine particles, a magnetic field or an electric field may be applied when the inorganic fine particles are sensitive to a magnetic field, when forming an ultrathin film on the air-water interface, or when immersed in a catalyst solution.

以下、本発明の磁気記録媒体の一実施例を第4図および
第5図を用いて説明する。なお、第4図は磁気記録媒体
の模式断面図であり、第5図が第4図の円Bで囲む部分
の拡大図である。
An embodiment of the magnetic recording medium of the present invention will be described below with reference to FIGS. 4 and 5. Incidentally, FIG. 4 is a schematic sectional view of the magnetic recording medium, and FIG. 5 is an enlarged view of a portion surrounded by a circle B in FIG.

20は直径約100Aの磁性無機物微粒子である。磁性無機物
微粒子20の周囲には前記磁性無機物の構成元素の酸化物
が形成されており、前記酸化物膜上には直鎖状炭化水素
基を有する有機化合物分子21が吸着している。前記直鎖
状炭化水素基を有する有機化合物分子21は隣接している
直鎖状炭化水素基を有する有機化合物分子と互いに化学
結合している。22は前記直鎖状炭化水素基を有する有機
化合物分子21間のエチレン結合からなる化学結合部をさ
す。また、23は前記直鎖状炭化水素基を有する有機化合
物分子21の末端部に設けられたフッ素置換部である。24
は基板である。第5図で示すように直鎖状炭化水素基を
有する有機化合物分子21は磁性無機物微粒子20と なるシロキサン結合25を形成している。従って、磁性無
機物微粒子20は直鎖状炭化水素基を有する有機化合物分
子21で固定されており、また、直鎖状炭化水素基を有す
る有機化合物分子21はエチレン結合からなる化学結合部
22で固定されている。そのため、磁性無機物微粒子の保
持性が優れている。また、ラングミュア・ブロジェット
法を使用できるため磁性無機物微粒子超薄膜を層状に形
成でき、その厚みを一様にすることができる。
20 is a magnetic inorganic fine particle having a diameter of about 100A. Oxides of the constituent elements of the magnetic inorganic substance are formed around the magnetic inorganic fine particles 20, and organic compound molecules 21 having a linear hydrocarbon group are adsorbed on the oxide film. The organic compound molecule 21 having a linear hydrocarbon group is chemically bonded to the adjacent organic compound molecule having a linear hydrocarbon group. Reference numeral 22 denotes a chemical bond consisting of an ethylene bond between the organic compound molecules 21 having the linear hydrocarbon group. In addition, 23 is a fluorine-substituted portion provided at the terminal end of the organic compound molecule 21 having the linear hydrocarbon group. twenty four
Is the substrate. As shown in FIG. 5, the organic compound molecule 21 having a linear hydrocarbon group is Siloxane bond 25 is formed. Therefore, the magnetic inorganic fine particles 20 are fixed by the organic compound molecule 21 having a linear hydrocarbon group, and the organic compound molecule 21 having a linear hydrocarbon group is a chemical bond part composed of an ethylene bond.
It is fixed at 22. Therefore, the retention of the magnetic inorganic fine particles is excellent. Further, since the Langmuir-Blodgett method can be used, it is possible to form a magnetic inorganic fine particle ultra-thin film in a layered form and make its thickness uniform.

さらに、直鎖状炭化水素基を有する有機化合物分子21の
末端部の水素原子をフッ素原子で置換しておくことによ
り磁性無機物微粒子超薄膜の表面が常にフッ素原子で覆
われているため、磁気ヘッドなどの摩擦に対する耐摩耗
性が優れている。さらにまた、層状に磁性無機物微粒子
超薄膜を形成できるため、必要とする磁気特性を得易
い。
Furthermore, since the surface of the magnetic inorganic fine particle ultra-thin film is always covered with fluorine atoms by substituting the hydrogen atoms at the ends of the organic compound molecule 21 having a linear hydrocarbon group with fluorine atoms, the magnetic head Has excellent wear resistance to friction. Furthermore, since the magnetic inorganic fine particle ultra-thin film can be formed in layers, it is easy to obtain the required magnetic characteristics.

また、本実施例では直鎖状炭化水素基を有する有機化合
物分子間の結合がエチレン結合である例を示したが、こ
れだけに限らないことは言うまでもない。
Further, in this example, the bond between the organic compound molecules having a linear hydrocarbon group is an ethylene bond, but it goes without saying that the bond is not limited to this.

以下、本発明の磁気記録媒体の製造方法の一実施例を第
6図を用いて段階的に詳細に説明する。なお、第6図は
すべて断面図である。
An embodiment of the method of manufacturing a magnetic recording medium of the present invention will be described in detail below step by step with reference to FIG. Incidentally, FIG. 6 is a sectional view.

磁性無機物微粒子に吸着させる有機化合物分子として、
例えば、 CF3−C≡C−(CH2)17−SiCl3 のようなクロルシラン基、トリフルオロメチル基および
アセチレン結合を含む直鎖状炭化水素基を有する有機化
合物分子30をクロロホルムを主体とする溶媒に溶かし、
その中に磁性無機物微粒子31を入れて攪拌する。磁性無
機物微粒子31の周囲に形成された前期磁性無機物の構成
元素の酸化物膜にクロルシラン基が反応し、シロキサン
結合が形成され、直鎖状炭化水素基を有する有機化合物
30が吸着される。吸着処理を施した磁性無機物微粒子31
を気水界面32上に展開し、バリア33によって磁性無機物
微粒子31をかき集め、さらに、適宜な圧力を加え磁性無
機物微粒子超薄膜34を形成する。このとき、さらに、磁
性無機物微粒子31の配向性をよくするため磁場35を加え
る。前記磁性無機物微粒子超薄膜34を任意の基板36例え
ばシリコン基板に移し取る。ここで、磁性無機物微粒子
31の周囲に形成された直鎖状炭化水素基を有する有機化
合物分子30はもちろん磁性無機物微粒子31の周囲全面に
わたって形成されるが図面では煩雑になるため三次元的
に記載していない(第6図(A))。
As an organic compound molecule to be adsorbed on magnetic inorganic fine particles,
For example, chlorosilanes group such as CF 3 -C≡C- (CH 2) 17 -SiCl 3, the organic compound molecules 30 having a straight chain hydrocarbon group containing a trifluoromethyl group and acetylene bonds mainly of chloroform Dissolve in a solvent,
The magnetic inorganic fine particles 31 are put therein and stirred. An organic compound having a linear hydrocarbon group in which a chlorosilane group reacts with the oxide film of the constituent element of the primary magnetic inorganic material formed around the magnetic inorganic fine particles 31 to form a siloxane bond.
30 is adsorbed. Magnetic Inorganic Fine Particles 31 Adsorbed
Is spread on the air-water interface 32, the magnetic inorganic fine particles 31 are scraped by the barrier 33, and further an appropriate pressure is applied to form the magnetic inorganic fine particle ultrathin film 34. At this time, a magnetic field 35 is further applied to improve the orientation of the magnetic inorganic fine particles 31. The magnetic inorganic fine particle ultra-thin film 34 is transferred to an arbitrary substrate 36 such as a silicon substrate. Here, magnetic inorganic fine particles
The organic compound molecule 30 having a linear hydrocarbon group formed around 31 is of course formed over the entire circumference of the magnetic inorganic fine particles 31, but it is not described three-dimensionally because it becomes complicated in the drawing (6th (A).

次に、前記基板36上に形成された磁性無機物微粒子超薄
膜34にエネルギービーム37例えば電子線を照射する(第
6図(B))。
Next, the magnetic inorganic fine particle ultrathin film 34 formed on the substrate 36 is irradiated with an energy beam 37, for example, an electron beam (FIG. 6 (B)).

電子線等のエネルギービーム37を照射することにより磁
性無機物微粒子31の周囲に吸着した直鎖状炭化水素基を
有する有機化合物分子30のアセチレン結合が隣接する直
鎖状炭化水素基を有する有機化合物分子30のアセチレン
結合と化学反応を生じ、エチレン結合38を形成する。こ
こで、エチレン結合38は同一の磁性無機物微粒子31の周
囲に吸着した直鎖状炭化水素基を有する有機化合物分子
30のアセチレン結合間、または、隣接する磁性無機物微
粒子31の周囲に吸着した直鎖状炭化水素基を有する有機
化合物分子30のアセチレン結合間の反応で形成される
が、図面では煩雑になるため模式的に示してある(第6
図(C))。
Organic compound molecule having a linear hydrocarbon group having a linear hydrocarbon group 30 adsorbed around the magnetic inorganic fine particles 31 by irradiation with an energy beam 37 such as an electron beam An organic compound molecule having a linear hydrocarbon group adjacent to an acetylene bond A chemical reaction occurs with the 30 acetylene bond to form the ethylene bond 38. Here, the ethylene bond 38 is an organic compound molecule having a linear hydrocarbon group adsorbed around the same magnetic inorganic fine particle 31.
Formed by a reaction between 30 acetylene bonds, or between acetylene bonds of the organic compound molecule 30 having a linear hydrocarbon group adsorbed around the adjacent magnetic inorganic fine particles 31, but it is complicated in the drawing (6th
(Figure (C)).

次に、第6図(A)および(B)で示したのと同様の方
法により磁性無機物微粒子超薄膜34を被着した基板36上
にさらに磁性無機物微粒子超薄膜34を被着し、累積膜を
形成して本実施例の磁気記録媒体が作成される(第6図
(D))。
Next, the magnetic inorganic fine particle ultra-thin film 34 is further deposited on the substrate 36 on which the magnetic inorganic fine particle ultra-thin film 34 is deposited by the same method as shown in FIGS. To form the magnetic recording medium of this embodiment (FIG. 6 (D)).

なお、本実施例ではエネルギービームによるエチレン結
合形成の例を示したが、無機物微粒子超薄膜の製造方法
の実施例で示すように金属もしくは前記金属の化合物よ
りなる触媒による方法を用いてもよい。
Although the example of forming ethylene bonds by the energy beam is shown in this embodiment, a method using a catalyst made of a metal or a compound of the metal may be used as shown in the embodiment of the method for producing an ultrafine inorganic fine particle film.

また、本実施例では基板に磁性無機物微粒子を移し取っ
た後にエネルギービームを照射したが、気水界面上でエ
ネルギービームを照射し、その後移し取ってもよい。
Further, in this embodiment, the magnetic inorganic fine particles are transferred to the substrate and then the energy beam is irradiated, but the energy beam may be irradiated on the air-water interface and then transferred.

さらに、本実施例では直鎖状炭化水素基を有する有機化
合物中の不飽和結合基としてアセチレン結合を用いた
が、他の不飽和結合基例えばエチレン結合、ジアセチレ
ン結合などであってもよい。
Furthermore, in this example, an acetylene bond was used as the unsaturated bond group in the organic compound having a linear hydrocarbon group, but other unsaturated bond groups such as an ethylene bond and a diacetylene bond may be used.

さらになお、本実施例では配向性を高めるための磁場を
気水界面上に磁性無機物微粒子超薄膜を形成したときに
かけたが、エネルギービームを照射するときにもかけて
もよい。
Furthermore, in this embodiment, the magnetic field for enhancing the orientation is applied when the magnetic inorganic fine particle ultrathin film is formed on the air-water interface, but it may also be applied when the energy beam is irradiated.

さらにまた、本実施例では磁場を用いたが電場であって
もよい。
Furthermore, although a magnetic field is used in this embodiment, an electric field may be used.

発明の効果 本発明の無機物微粒子超薄膜およびその製造方法は無機
物微粒子の新しい取扱方法を提供するものである。さら
にその応用として、前記無機物微粒子からなる超薄膜を
記録層とする磁気記録媒体およびその製造方法は従来の
磁気記録媒体の持つ問題点であるバインダーにあたるも
のがまったくないため高密度化が実現できる。さらに、
無機物微粒子の保持性に優れており、かつ、従来の潤滑
剤にあたるものを新たに添加する必要がない。さらにま
た、無機物微粒子は撥水性の単分子膜で覆われているた
めに耐候性が非常に高い。さらにまた、本発明を垂直磁
気記録媒体に用いると高性能の磁気記録媒体を得ること
ができ、その製造も非常に容易になる。また、本発明の
無機物微粒子超薄膜およびその製造方法を用いる磁気記
録媒体以外の応用として配線材料、砥石などの加工材
料、感光性記録材料、印刷材料などの用途が考えられ
る。
Effects of the Invention The ultrafine inorganic fine particle film and the method for producing the same according to the present invention provide a new method for handling inorganic fine particles. Further, as an application thereof, the magnetic recording medium using the ultra-thin film made of the inorganic fine particles as a recording layer and the method for producing the same do not have a binder, which is a problem of the conventional magnetic recording medium, so that high density can be realized. further,
It has excellent retention of inorganic fine particles, and there is no need to newly add a lubricant that is a conventional lubricant. Furthermore, since the inorganic fine particles are covered with a water-repellent monolayer, the weather resistance is very high. Furthermore, when the present invention is applied to a perpendicular magnetic recording medium, a high-performance magnetic recording medium can be obtained, and the manufacturing thereof becomes very easy. Further, as applications other than the magnetic recording medium using the inorganic fine particle ultra-thin film and the method for producing the same, wiring material, processing material such as grindstone, photosensitive recording material, printing material and the like can be considered.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の無機物微粒子超薄膜の一実施例の模式
断面図、第2図は第1図の円Aで囲む部分の拡大図、第
3図は本発明の無機物微粒子超薄膜の製造方法の一実施
例を段階的に説明する模式断面図、第4図は本発明の磁
気記録媒体の一実施例を説明する模式断面図、第5図は
第4図の円Bで囲む部分の拡大図、第6図は本発明の磁
気記録媒体の製造方法の一実施例を段階的に説明する模
式断面図である。 1,11……無機物微粒子、2,10,21,30……直鎖状炭化水素
基を有する有機化合物分子、3,22……化学結合部、5,25
……シロキサン結合、16,37……エネルギービーム、17,
38……エチレン結合、20,31……磁性無機物微粒子、23
……フッ素置換部、35……磁場。
FIG. 1 is a schematic cross-sectional view of an embodiment of an inorganic fine particle ultra-thin film of the present invention, FIG. 2 is an enlarged view of a portion surrounded by a circle A in FIG. 1, and FIG. 3 is a production of the inorganic fine particle ultra-thin film of the present invention. FIG. 4 is a schematic sectional view for explaining one embodiment of the method stepwise, FIG. 4 is a schematic sectional view for explaining one embodiment of the magnetic recording medium of the present invention, and FIG. 5 is a portion surrounded by a circle B in FIG. FIG. 6 is an enlarged view, and FIG. 6 is a schematic cross-sectional view for explaining stepwise an embodiment of a method for manufacturing a magnetic recording medium of the present invention. 1,11 …… Inorganic fine particles, 2,10,21,30 …… Molecular organic compound molecule with linear hydrocarbon group, 3,22 …… Chemical bond, 5,25
…… Siloxane bond, 16,37 …… Energy beam, 17,
38 …… Ethylene bond, 20,31 …… Magnetic inorganic fine particles, 23
…… Fluorine substitution part, 35 …… Magnetic field.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】薄膜状に固定された無機物微粒子と、前記
無機物微粒子の表面に形成された有機化合物分子よりな
る有機薄膜とを含み、かつ前記有機化合物分子同志が化
学結合していることを特徴とする無機物微粒子超薄膜。
1. An inorganic fine particle fixed in a thin film form, and an organic thin film composed of organic compound molecules formed on the surface of the inorganic fine particle, wherein the organic compound molecules are chemically bonded to each other. Inorganic fine particle ultra thin film.
【請求項2】無機物微粒子表面に、前記無機物の構成元
素の酸化物膜が形成されていることを特徴とする請求項
1に記載の無機物微粒子超薄膜。
2. The ultrafine inorganic fine particle film according to claim 1, wherein an oxide film of the constituent elements of the inorganic substance is formed on the surface of the inorganic fine particle.
【請求項3】有機化合物分子の一方の末端基と無機物微
粒子との化学結合が 結合(シロキサン結合)または −S−無機物 結合であることを特徴とする請求項1もしくは2に記載
の無機物微粒子超薄膜。
3. The chemical bond between one end group of the organic compound molecule and the inorganic fine particles is Bonding (siloxane bond) or -S-inorganic material bond, The ultrafine inorganic particle ultrathin film according to claim 1 or 2, characterized in that
【請求項4】無機物微粒子表面に均一に有機化合物分子
よりなる単分子膜を形成する工程と、前記無機物微粒子
を気水界面に展開し基板に移し取る工程と、前記基板に
移し取られた前記無機物微粒子に前記有機化合物分子同
志を化学結合させるための化学的処理または物理的処理
を施す工程とを含むことを特徴とする無機物微粒子超薄
膜の製造方法。
4. A step of uniformly forming a monomolecular film composed of organic compound molecules on the surface of the inorganic fine particles, a step of developing the inorganic fine particles on a water-water interface and transferring them to a substrate, and a step of transferring the inorganic particles to the substrate. A step of subjecting the inorganic fine particles to a chemical treatment or a physical treatment for chemically bonding the organic compound molecules to each other, the method for producing an ultrafine inorganic fine particle film.
【請求項5】無機物微粒子表面に有機化合物分子よりな
る単分子膜を形成する工程が化学吸着法を用いた工程で
あることを特徴とする請求項4に記載の無機物微粒子超
薄膜の製造方法。
5. The method for producing an ultrafine inorganic fine particle film according to claim 4, wherein the step of forming a monomolecular film of organic compound molecules on the surface of the inorganic fine particle is a step using a chemical adsorption method.
【請求項6】有機化合物分子が、CH2基の数が10以上
で、かつ中に重合反応を行なう基を有する直鎖状炭化水
素基と、前記有機化合物分子の一方の末端に無機物微粒
子表面と吸着反応を行なう基とを有することを特徴とす
る請求項4もしくは5に記載の無機物微粒子超薄膜の製
造方法。
6. A linear hydrocarbon group having 10 or more CH 2 groups in the organic compound molecule and having a group for carrying out a polymerization reaction therein, and an inorganic fine particle surface at one end of the organic compound molecule. The method for producing an ultrafine inorganic fine particle film according to claim 4 or 5, further comprising: and a group that performs an adsorption reaction.
【請求項7】無機物微粒子表面と吸着反応を行なう基が
(モノ,ジもしくはトリ)クロルシラン基もしくはトリ
アジンジチオール基であることを特徴とする請求項6に
記載の無機物微粒子超薄膜の製造方法。
7. The method for producing an ultrafine inorganic fine particle film according to claim 6, wherein the group that undergoes an adsorption reaction with the surface of the inorganic fine particle is a (mono-, di- or tri) chlorosilane group or a triazinedithiol group.
【請求項8】重合反応を行なう基が不飽和結合基である
ことを特徴とする請求項6もしくは7に記載の無機物微
粒子超薄膜の製造方法。
8. The method of producing an inorganic fine particle ultra-thin film according to claim 6, wherein the group that carries out the polymerization reaction is an unsaturated bond group.
【請求項9】無機物微粒子を基板上に移し取る工程がラ
ングミュア・ブロジェット法を用いた工程であることを
特徴とする請求項4から8のいずれかに記載の無機物微
粒子超薄膜の製造方法。
9. The method for producing an ultrafine inorganic fine particle film according to claim 4, wherein the step of transferring the fine inorganic particle onto the substrate is a step using a Langmuir-Blodgett method.
【請求項10】有機化合物分子同志を化学結合させるた
めの物理的処理を施す工程が紫外線、遠紫外線、電子
線、X線等のエネルギービームを照射する工程であるこ
とを特徴とする請求項4から9のいずれかに記載の無機
物微粒子超薄膜の製造方法。
10. The step of subjecting a physical treatment for chemically bonding organic compound molecules to each other is a step of irradiating an energy beam such as ultraviolet rays, far ultraviolet rays, electron beams, and X-rays. 11. The method for producing an ultrafine inorganic fine particle film according to any one of 1 to 9.
【請求項11】有機化合物分子同志を化学結合させるた
めの化学的処理を施す工程が触媒反応を施す工程である
ことを特徴とする請求項4から9のいずれかに記載の無
機物微粒子超薄膜の製造方法。
11. The inorganic fine particle ultrathin film according to claim 4, wherein the step of subjecting the organic compound molecules to the chemical treatment for chemically bonding them is a step of carrying out a catalytic reaction. Production method.
【請求項12】薄膜状に固定された磁性無機物微粒子
と、前記磁性無機物微粒子の表面に形成された有機化合
物分子よりなる有機薄膜とを含み、かつ前記有機化合物
分子同志が化学結合していることを特徴とする磁気記録
媒体。
12. A magnetic inorganic fine particle fixed in a thin film shape, and an organic thin film made of organic compound molecules formed on the surface of the magnetic inorganic fine particle, wherein the organic compound molecules are chemically bonded to each other. A magnetic recording medium characterized by:
【請求項13】有機化合物分子が、中に重合反応を行な
う基を有する直鎖状炭化水素基を有し、かつ前記有機化
合物分子の一方の末端基と磁性無機物微粒子との化学結
合が 結合(シロキサン結合)または −S−無機物 結合であり、もう一方の末端におけるメチル基の水素原
子がフッ素原子に1つ以上置換されており、かつ前記重
合反応を行なう基間で重合反応して化学結合しているこ
とを特徴とする請求項12に記載の磁気記録媒体。
13. An organic compound molecule has a linear hydrocarbon group having a group in which a polymerization reaction occurs, and one end group of the organic compound molecule is chemically bonded to the magnetic inorganic fine particles. Bond (siloxane bond) or -S-inorganic bond, one or more hydrogen atoms of the methyl group at the other end are replaced by fluorine atoms, and a polymerization reaction occurs between the groups performing the above-mentioned polymerization reaction. 13. The magnetic recording medium according to claim 12, wherein the magnetic recording medium is bonded.
【請求項14】磁性無機物微粒子表面に有機化合物分子
よりなる単分子膜を均一に形成する工程と、前記磁性無
機物微粒子を気水界面に展開し基板に移し取る工程と、
前記基板に移し取られた前記磁性無機物微粒子に前記有
機化合物分子同志を化学結合させるための化学的処理ま
たは物理的処理を施す工程とを含むことを特徴とする磁
気記録媒体の製造方法。
14. A step of uniformly forming a monomolecular film of organic compound molecules on the surface of magnetic inorganic fine particles, a step of developing the magnetic inorganic fine particles on a water-water interface and transferring them to a substrate,
A step of subjecting the magnetic inorganic fine particles transferred to the substrate to a chemical treatment or a physical treatment for chemically bonding the organic compound molecules to each other, the method for producing a magnetic recording medium.
【請求項15】有機化合物分子よりなる単分子膜で覆わ
れた磁性無機物微粒子を気水界面上に展開し基板に移し
取る工程において、気水界面上に展開する際に磁場をか
けることを特徴とする請求項14に記載の磁気記録媒体の
製造方法。
15. A step of developing a magnetic inorganic fine particle covered with a monomolecular film of organic compound molecules on a water-water interface and transferring it to a substrate, wherein a magnetic field is applied when developing on the air-water interface. 15. The method for manufacturing a magnetic recording medium according to claim 14.
JP4599989A 1988-06-07 1989-02-27 Ultrafine inorganic fine particle film, method for producing the same, magnetic recording medium to which the same is applied, and method for producing the same Expired - Lifetime JPH0686535B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4599989A JPH0686535B2 (en) 1989-02-27 1989-02-27 Ultrafine inorganic fine particle film, method for producing the same, magnetic recording medium to which the same is applied, and method for producing the same
US07/361,261 US4985273A (en) 1988-06-07 1989-06-05 Method of producing fine inorganic particles
EP19890305701 EP0346074B1 (en) 1988-06-07 1989-06-06 Mass of fine particles of inorganic material and method of producing the same, ultrathin film of the inorganic fine particles and method of making the same, magnetic recording medium and method of providing the same method of manufacturing patterns of inorganic material, and method of manufacturing wirings of inorganic material
DE1989624198 DE68924198T2 (en) 1988-06-07 1989-06-06 Mass of fine particles of an inorganic material and process for its production, ultra-thin film of fine inorganic particles and process for its production, magnetic recording medium and process for its production, process for the production of motifs of inorganic material and process for the production of wirings made of inorganic material .
US07/606,620 US5277980A (en) 1988-06-07 1990-10-31 Mass of fine particles of inorganic material and a film of the fine inorganic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4599989A JPH0686535B2 (en) 1989-02-27 1989-02-27 Ultrafine inorganic fine particle film, method for producing the same, magnetic recording medium to which the same is applied, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02225534A JPH02225534A (en) 1990-09-07
JPH0686535B2 true JPH0686535B2 (en) 1994-11-02

Family

ID=12734794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4599989A Expired - Lifetime JPH0686535B2 (en) 1988-06-07 1989-02-27 Ultrafine inorganic fine particle film, method for producing the same, magnetic recording medium to which the same is applied, and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0686535B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3961958B2 (en) 2001-05-08 2007-08-22 富士通株式会社 Method for manufacturing magnetic recording medium
JP4973877B2 (en) * 2008-09-17 2012-07-11 信越化学工業株式会社 Metal surface treatment agent, surface-treated steel material and method for treating the same, painted steel material and method for producing the same

Also Published As

Publication number Publication date
JPH02225534A (en) 1990-09-07

Similar Documents

Publication Publication Date Title
CN1110797C (en) Magnetic memory medium formed from nano size particles
Maoz et al. “Constructive Nanolithography”: Inert Monolayers as Patternable Templates for In‐Situ Nanofabrication of Metal–Semiconductor–Organic Surface Structures—A Generic Approach
Sato et al. Single electron transistor using a molecularly linked gold colloidal particle chain
Werts et al. Nanometer scale patterning of Langmuir− Blodgett films of gold nanoparticles by electron beam lithography
KR102043920B1 (en) Damascene template for directed assembly and transfer of nanoelements
US4992300A (en) Manufacturing method for a recording medium or a recording head
US4985273A (en) Method of producing fine inorganic particles
US20040203256A1 (en) Irradiation-assisted immobilization and patterning of nanostructured materials on substrates for device fabrication
JPH0766990B2 (en) Organic device and manufacturing method thereof
EP0584891B1 (en) Method for the formation of built-up films of monomolecular layers using silane compounds having an acetylene bond
JPH0488678A (en) Organic device and manufacture thereof
US5093154A (en) Process for preparing a monomolecular built-up film
Chen et al. Patterned 3D assembly of Au nanoparticle on silicon substrate by colloid lithography
JPH0686535B2 (en) Ultrafine inorganic fine particle film, method for producing the same, magnetic recording medium to which the same is applied, and method for producing the same
JPH01309902A (en) Metal fine particle aggregate and manufacture thereof and magnetic recording medium using metal fine particle aggregate and manufacture thereof
EP0498338B1 (en) Magnetic recording medium and method of manufacturing the same
Morneau et al. Osmium carbonyl cluster growth on self-assembled (3-mercaptopropyl) trimethoxysilane on a gold surface
Leu et al. Improved performance of nanocrystal memory for aminosilane-mediated Au–SiO 2 embedded core–shell nanoparticles
Azar et al. A novel strategy to increase performance of solid‐phase microextraction fibers: Electrodeposition of sol‐gel films on highly porous substrate
JP2837148B2 (en) Magnetic fluid, method of manufacturing the same, and magnetic seal device using the same
JP3007436B2 (en) Siloxane-based molecular film
JPH0756867B2 (en) Ultra-thin metal film and manufacturing method thereof
JPH075671B2 (en) Method for producing polyacetylene
Yamamoto et al. Location control of nanoparticles using combination of top-down and bottom-up nano-fabrication
Toprak et al. Patterning 2D metallic surfaces by soft lithography

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20071102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20081102

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 15