JPH0685878B2 - Method for activating chromium-based fluorination catalyst - Google Patents

Method for activating chromium-based fluorination catalyst

Info

Publication number
JPH0685878B2
JPH0685878B2 JP63092377A JP9237788A JPH0685878B2 JP H0685878 B2 JPH0685878 B2 JP H0685878B2 JP 63092377 A JP63092377 A JP 63092377A JP 9237788 A JP9237788 A JP 9237788A JP H0685878 B2 JPH0685878 B2 JP H0685878B2
Authority
JP
Japan
Prior art keywords
catalyst
oxygen
chromium
supply
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63092377A
Other languages
Japanese (ja)
Other versions
JPH01262946A (en
Inventor
博一 青山
義雄 岩井
靖久 古▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63092377A priority Critical patent/JPH0685878B2/en
Publication of JPH01262946A publication Critical patent/JPH01262946A/en
Publication of JPH0685878B2 publication Critical patent/JPH0685878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、含水素ハロゲン化炭化水素のフッ素化反応に
おける触媒、特にクロム系フッ素化触媒の賦活方法に関
する。
TECHNICAL FIELD The present invention relates to a method for activating a catalyst in a fluorination reaction of a hydrogen-containing halogenated hydrocarbon, particularly a chromium-based fluorination catalyst.

[従来の技術] フッ素を含有するハロゲン化炭化水素は、一般にフロン
ガスと呼ばれ、噴射剤、発泡剤、冷媒、溶剤およびその
他の用途に幅広く応用される。
[Prior Art] Fluorine-containing halogenated hydrocarbons are generally called CFCs, and are widely applied to propellants, foaming agents, refrigerants, solvents and other applications.

近年、塩素を含有するフロンガス類が成層圏のオゾン層
を破壊する恐れがあると指摘され、国際的にも消費量削
減が決定されている。このため、大気圏中において分解
が期待される含水素フルオロアルカンが代替品として有
望視されており、その工業化が切望されている。
In recent years, it has been pointed out that CFCs containing chlorine may destroy the ozone layer in the stratosphere, and it has been decided internationally to reduce the consumption. For this reason, hydrogen-containing fluoroalkanes, which are expected to be decomposed in the atmosphere, are regarded as promising alternatives, and their industrialization is highly desired.

含水素フルオロアルカンを気相反応により合成しようと
する場合、使用する触媒としては従来から知られている
クロム系触媒が充分な活性を示すが、水素を含まない原
料をフッ素化する場合と比較して触媒寿命が極めて短い
点で工業的には問題であることが判っている。
When a hydrogen-containing fluoroalkane is to be synthesized by a gas phase reaction, a conventionally known chromium-based catalyst has sufficient activity as a catalyst to be used, but compared with the case of fluorinating a raw material containing no hydrogen. It has been found that this is an industrial problem because the catalyst life is extremely short.

上述のような触媒活性の低下に対して、従来から提案さ
れている触媒寿命の延命および賦活方法には、例えば特
公昭52−33604号公報、特公昭56−23407号公報、特公昭
52−30477号公報などに記載されている方法がある。
With respect to the catalyst activity decrease as described above, there have been proposed methods for prolonging catalyst life and activating the catalyst, for example, Japanese Patent Publication No. 52-33604, Japanese Patent Publication No. 56-23407, and Japanese Patent Publication No.
There is a method described in Japanese Patent No. 52-30477.

[発明が解決しようとする課題] 特公昭52−33604号公報には、反応中に塩素ガスを供給
する方法が記載されているが、水素を含んだ原料が塩素
化されるので適用するのは困難である。
[Problems to be Solved by the Invention] Japanese Patent Publication No. 52-33604 describes a method of supplying chlorine gas during the reaction. However, since a raw material containing hydrogen is chlorinated, it is applicable. Have difficulty.

また、特公昭56−23407号公報には、酸素ガスを共存さ
せてフッ素化する方法が記載されているが、この方法を
含水素原料に適用した場合、特許請求の範囲に記載され
た程度の酸素ガス供給量では、効果が全く認められず、
また、特許請求の範囲に記載の量より多く用いると触媒
活性持続効果が認められるもの、オキシクロリーシヨン
反応により先程と同様に塩素化反応が生じて選択率が低
下する欠点がある(後述の比較例1および比較例2を参
照されたい。)。更に、上記公報の比較例には、四塩化
炭素のフッ素化において触媒活性低下時にに原料の供給
を停止して酸素ガスによる処理を行っても、触媒活性は
充分に回復しないと記載されている。
Further, Japanese Patent Publication No. 56-23407 describes a method of fluorinating coexistence of oxygen gas. However, when this method is applied to a hydrogen-containing raw material, it has the same extent as described in the claims. With oxygen gas supply, no effect was observed,
Further, when the amount used is more than the amount described in the claims, a catalytic activity sustaining effect is recognized, but there is a drawback that the chlorination reaction occurs due to the oxychlorination reaction and the selectivity is lowered (see the following). See Comparative Example 1 and Comparative Example 2). Further, in the comparative example of the above publication, it is described that the catalytic activity is not sufficiently recovered even when the supply of the raw material is stopped and the treatment with oxygen gas is performed when the catalytic activity is lowered in the fluorination of carbon tetrachloride. .

また、特公昭52−30477号公報には触媒活性の低下時に
フッ化水素ガスで処理する方法が記載されているが、効
果は認められなかった。
In addition, Japanese Patent Publication No. 52-30477 discloses a method of treating with hydrogen fluoride gas when the catalytic activity is lowered, but the effect was not recognized.

[課題を解決するための手段] 上記課題は、含水素ハロゲン化炭化水素のフッ素化反応
において、フッ素化触媒を賦活するに際し、反応過程で
フッ素化触媒の活性低下が認められた時点で、原料の供
給を停止して酸素含有ガスを反応系に供給し、賦活後、
酸素含有ガスの供給を停止して、原料の供給を再開する
ことを特徴とする触媒賦活方法により解決されることが
見出された。
[Means for Solving the Problems] In the fluorination reaction of hydrogen-containing halogenated hydrocarbons, the above-mentioned problem is that when the activity of the fluorination catalyst is decreased in the reaction process when activating the fluorination catalyst, Supply of oxygen to supply the oxygen-containing gas to the reaction system, after activation,
It has been found to be solved by a catalyst activation method characterized by stopping the supply of oxygen-containing gas and restarting the supply of raw materials.

本発明の触媒賦活方法を適用する場合、原料に含まれる
水素原子に影響を与えず、触媒の活性が完全に回復す
る。
When the catalyst activation method of the present invention is applied, the hydrogen atoms contained in the raw material are not affected and the catalyst activity is completely restored.

本発明の触媒賦活方法は、含水素ハロゲン化炭化水素、
例えばCCl2=CHCl、CF2Cl−CHCl2、CF3−CHCl2、CF3−C
H2ClもしくはCF3−CH3またはこれらの混合物を、クロム
系触媒、典型的には3価のクロム化合物、例えば酸化ク
ロム(Cr2O3)およびCrF3を酸素ガスで処理したクロミ
ウムオキシフルオライドなどを主成分とする触媒を用い
てフッ化水素によりフッ素化する場合に適用できる。
The catalyst activation method of the present invention is a hydrogen-containing halogenated hydrocarbon,
For example CCl 2 = CHCl, CF 2 Cl -CHCl 2, CF 3 -CHCl 2, CF 3 -C
Chromium oxyfluoride obtained by treating H 2 Cl or CF 3 —CH 3 or a mixture thereof with a chromium-based catalyst, typically a trivalent chromium compound such as chromium oxide (Cr 2 O 3 ) and CrF 3 with oxygen gas. It can be applied to the case of fluorinating with hydrogen fluoride using a catalyst whose main component is ride.

フッ素化反応過程で触媒活性が低下する兆候が認められ
た時点で、原料の供給を停止し、場合により、反応系を
窒素ガスでパージした後、酸素含有ガスを反応系に供給
することにより触媒の賦活処理を行う。
At the time when there was a sign that the catalyst activity decreased in the fluorination reaction process, the supply of raw materials was stopped, the reaction system was purged with nitrogen gas in some cases, and then an oxygen-containing gas was supplied to the reaction system. The activation process is performed.

賦活処理に使用する酸素含有ガスは、酸素濃度が0.1〜1
00体積%、好ましくは1〜30体積%の活性ガス、例えば
窒素であるのが好ましく、従って、空気をそのまま使用
することも可能である。
The oxygen-containing gas used for activation has an oxygen concentration of 0.1-1.
It is preferably 00% by volume, preferably 1 to 30% by volume of an active gas, for example nitrogen, so that it is also possible to use air as it is.

賦活処理温度は、通常200〜450℃の範囲が適当である
が、フッ素化反応の温度と同じ温度で処理するのが生産
性の面からも好ましい。
The activation treatment temperature is usually appropriate in the range of 200 to 450 ° C., but it is preferable to perform the activation treatment at the same temperature as the temperature of the fluorination reaction from the viewpoint of productivity.

通常触媒床にホットスポットが存在するため、触媒床温
度が30℃以上上昇しないような酸素供給速度で酸素を供
給するのが好ましい。
Since there are usually hot spots in the catalyst bed, it is preferable to supply oxygen at an oxygen supply rate such that the catalyst bed temperature does not rise above 30 ° C.

賦活処理時間は、ホットスポットが触媒床を完全に通過
し終わる迄であるが、通常4時間程度で充分である。
The activation treatment time is until the hot spot completely passes through the catalyst bed, but about 4 hours is usually sufficient.

賦活処理圧力は特に限定されず、通常は常圧であってよ
いが、加圧下、例えば数Kg/cm2で賦活処理を実施しても
問題ない。
The activation treatment pressure is not particularly limited and may be normal pressure, but there is no problem even if the activation treatment is carried out under pressure, for example, several Kg / cm 2 .

原料の供給を停止して酸素ガスによりフッ素化クロム系
触媒を賦活処理する本発明の方法により、触媒の寿命が
短いという欠点を克服することが可能である。
By the method of the present invention in which the supply of the raw materials is stopped and the fluorinated chromium-based catalyst is activated by oxygen gas, it is possible to overcome the disadvantage that the life of the catalyst is short.

以下、実施例により本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 硝酸クロム水溶液およびアンモニア水から調製した水酸
化クロムを濾別、水洗し、100℃で乾燥し、直径4mm、厚
さ4mmの円筒状に打錠した。この触媒40ccを内径18mm、
長さ400mmのハステロイC製の反応管に充填し、窒素気
流下、400℃で1時間熱保持した。その後、温度を320℃
に下げ、無水フッ化水素を400cc/分で供給して1時間処
理した。次いで、ガス化したトリクレンを80cc/分で供
給してフッ素化反応を実施した。
Example 1 Chromium hydroxide prepared from an aqueous solution of chromium nitrate and aqueous ammonia was filtered, washed with water, dried at 100 ° C., and compressed into a cylinder with a diameter of 4 mm and a thickness of 4 mm. This catalyst 40cc has an inner diameter of 18mm,
It was filled in a Hastelloy C reaction tube having a length of 400 mm, and kept at 400 ° C. for 1 hour under a nitrogen stream. After that, the temperature is 320 ℃
Then, anhydrous hydrogen fluoride was supplied at 400 cc / min and treated for 1 hour. Then, gasified trichlene was supplied at 80 cc / min to carry out the fluorination reaction.

300時間経過後、トリクレンおよびフッ化水素の供給を
停止し、空気を400cc/分で反応管に供給した。内温は34
0℃迄上昇した。3時間後、320℃に戻った時点で、再び
原料を供給してフッ素化反応を開始した。更に400時間
経過後、再び上記と同様に空気による酸素処理を行っ
た。この結果を第1表に示す。
After 300 hours, the supply of trichlene and hydrogen fluoride was stopped, and air was supplied to the reaction tube at 400 cc / min. Inner temperature is 34
It rose to 0 ° C. After returning to 320 ° C. after 3 hours, the raw materials were supplied again to start the fluorination reaction. After a lapse of 400 hours, oxygen treatment with air was performed again in the same manner as above. The results are shown in Table 1.

この結果より、本発明の酸素による触媒の賦活処理によ
り、触媒活性が充分に回復しているのは明白である。
From this result, it is apparent that the catalytic activity is sufficiently recovered by the activation treatment of the catalyst with oxygen of the present invention.

実施例2 トリクレンの代わりにCF3−CH2Clを使用した以外は、実
施例1と同じ触媒および装置を使用してフッ素化を実施
した。
Except for using CF 3 -CH 2 Cl in place of Example 2 trichlorethylene was carried out fluorination using the same catalyst and apparatus as in Example 1.

反応温度は400℃であり、CF3−CH2Clを175cc/分で、フ
ッ化水素を525cc/分で連続的に供給した。
The reaction temperature was 400 ° C., CF 3 —CH 2 Cl was continuously supplied at 175 cc / min, and hydrogen fluoride was continuously supplied at 525 cc / min.

160時間後、原料の供給を停止して空気を400cc/分で供
給して触媒を賦活処理した。4時間後、反応を再開し
た。
After 160 hours, the supply of raw materials was stopped and air was supplied at 400 cc / min to activate the catalyst. After 4 hours, the reaction was restarted.

その後、更に同様の操作を実施した。Then, the same operation was further performed.

この一連の実験結果を第2表に示す。The results of this series of experiments are shown in Table 2.

実施例3 市販のCrF3・3H2Oを直径4mm、厚さ4mmのペレットに成形
して内径18mm、長さ400mmのハステロイ製反応管に400cc
充填した。
Example 3 Commercially available CrF 3 · 3H 2 O to diameter 4mm, 400 cc was molded to a thickness of 4mm pellets internal diameter 18 mm, Hastelloy reaction tube length 400mm
Filled.

この触媒床に空気を500cc/分で供給して400℃で5時間
保持した。温度を500℃に上げて更に3時間保持し、そ
の後、温度を300℃に下げて実施例1と同様にしてトリ
クレンのフッ素化を行った。
Air was supplied to the catalyst bed at 500 cc / min and the temperature was kept at 400 ° C. for 5 hours. The temperature was raised to 500 ° C. and kept for another 3 hours, then the temperature was lowered to 300 ° C. and fluorination of trichlene was carried out in the same manner as in Example 1.

この一連の結果を第3表に示す。The series of results are shown in Table 3.

実施例4 特公昭62−44973号公報に記載されている方法によりフ
ッ化アルミニウムに担持させたクロム触媒を調製した。
Example 4 A chromium catalyst supported on aluminum fluoride was prepared by the method described in JP-B-62-44973.

得られた触媒を使用して実施例2と同様の装置および条
件でフッ素化反応を実施した。
Using the obtained catalyst, the fluorination reaction was carried out in the same apparatus and conditions as in Example 2.

得られた結果を第4表に示す。The results obtained are shown in Table 4.

比較例1 実施例2において、CF3−CH2Clおよびフッ化水素に加え
て酸素ガスを0.75cc/分で供給しながら反応を実施し
た。
Comparative Example 1 In Example 2, the reaction was carried out while supplying oxygen gas at 0.75 cc / min in addition to CF 3 —CH 2 Cl and hydrogen fluoride.

この結果を第5表に示す。The results are shown in Table 5.

本比較例では、ハロゲン化炭化水素に対する酸素の量
は、1モル%であり、特公昭56−23407号公報の特許請
求の範囲に記載されている酸素の量の最大値であるが、
触媒活性維持の効果は認められない。
In this comparative example, the amount of oxygen with respect to the halogenated hydrocarbon is 1 mol%, which is the maximum value of the amount of oxygen described in the claims of Japanese Patent Publication No. 56-23407.
No effect of maintaining catalytic activity is observed.

比較例2 酸素ガスの供給速度を7.5cc/分に増やした以外は比較例
1と同様にフッ素化を実施した。
Comparative Example 2 Fluorination was carried out in the same manner as in Comparative Example 1 except that the supply rate of oxygen gas was increased to 7.5 cc / min.

結果を以下の第6表に示す。The results are shown in Table 6 below.

この結果から、水素が塩素に置換した化合物(第6表中
の*印を付した化合物)が生成して目的物の選択率が低
下するので、酸素の供給量を増やすのは好ましくないこ
とが判る。
From this result, it is not preferable to increase the supply amount of oxygen because a compound in which hydrogen is replaced by chlorine (a compound marked with * in Table 6) is generated and the selectivity of the target is lowered. I understand.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 19/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area C07C 19/08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】含水素ハロゲン化炭化水素のフッ素化水素
によるフッ素化反応において、クロム系フッ素化触媒を
賦活するに際し、反応過程で触媒の活性低下が認められ
た時点で、原料の供給を停止して酸素含有ガスを反応系
に供給し、賦活後、酸素含有ガスの供給を停止して、原
料の供給を再開することを特徴とする触媒賦活方法。
1. When activating a chromium-based fluorination catalyst in a fluorination reaction of a hydrogen-containing halogenated hydrocarbon with hydrogen fluoride, the supply of raw materials is stopped when a decrease in the activity of the catalyst is observed in the reaction process. Then, the oxygen-containing gas is supplied to the reaction system, and after the activation, the supply of the oxygen-containing gas is stopped and the supply of the raw material is restarted.
【請求項2】含水素ハロゲン化炭化水素は、CCl2=CHC
l、CF2Cl−CHCl2、CF3−CHCl2、CF3−CH2ClもしくはCF3
−CH3またはこれらの混合物である特許請求の範囲第1
項記載の賦活方法。
2. A hydrogen-containing halogenated hydrocarbon is CCl 2 = CHC.
l, CF 2 Cl-CHCl 2 , CF 3 -CHCl 2, CF 3 -CH 2 Cl or CF 3
-CH 3 or a mixture thereof.
The activation method described in the item.
【請求項3】クロム系触媒は、3価のクロム化合物、例
えば酸化クロムまたはクロミウムオキシフルオライドを
主成分とする触媒である特許請求の範囲第1項または第
2項記載の賦活方法。
3. The activation method according to claim 1 or 2, wherein the chromium-based catalyst is a catalyst containing a trivalent chromium compound such as chromium oxide or chromium oxyfluoride as a main component.
【請求項4】酸素含有ガスは、1〜30体積%の酸素を含
む不活性ガスである特許請求の範囲第1〜3項のいずれ
かに記載の賦活方法。
4. The activation method according to claim 1, wherein the oxygen-containing gas is an inert gas containing 1 to 30% by volume of oxygen.
JP63092377A 1988-04-13 1988-04-13 Method for activating chromium-based fluorination catalyst Expired - Fee Related JPH0685878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092377A JPH0685878B2 (en) 1988-04-13 1988-04-13 Method for activating chromium-based fluorination catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092377A JPH0685878B2 (en) 1988-04-13 1988-04-13 Method for activating chromium-based fluorination catalyst

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9359510A Division JP2850907B2 (en) 1997-12-26 1997-12-26 Method for producing fluorinated compound

Publications (2)

Publication Number Publication Date
JPH01262946A JPH01262946A (en) 1989-10-19
JPH0685878B2 true JPH0685878B2 (en) 1994-11-02

Family

ID=14052736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092377A Expired - Fee Related JPH0685878B2 (en) 1988-04-13 1988-04-13 Method for activating chromium-based fluorination catalyst

Country Status (1)

Country Link
JP (1) JPH0685878B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2661504B2 (en) * 1990-03-13 1997-10-08 ダイキン工業株式会社 Method for producing 1,1,1-trifluorochloroethane
JP3233310B2 (en) * 1990-03-13 2001-11-26 ダイキン工業株式会社 Method for producing 1,1,1,2-tetrafluoroethane
EP0641598B1 (en) * 1993-09-07 1999-01-07 Showa Denko Kabushiki Kaisha Chromium-based fluorination catalyst, process for producing the catalyst, and fluorination process using the catalyst
FR2736050B1 (en) 1995-06-29 1997-08-01 Atochem Elf Sa PROCESS FOR PRODUCING DIFLUOROMETHANE
FR2746674B1 (en) * 1996-03-29 1998-04-24 Atochem Elf Sa REGENERATION OF GAS PHASE FLUORATION CATALYSTS
JP4378779B2 (en) * 1998-07-17 2009-12-09 ダイキン工業株式会社 Method for producing fluorine-containing ethane
CN103313960B (en) * 2011-01-21 2016-06-08 阿克马法国公司 Catalyzed gas fluoride
FR3023286B1 (en) * 2014-07-02 2018-02-16 Arkema France PROCESS FOR THE PRODUCTION OF TETRAFLUOROPROPENE
JP7353013B2 (en) * 2019-08-29 2023-09-29 フジアン ヨンジン テクノロジー カンパニー リミテッド Manufacturing process of fluorobenzene and its catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2745886A (en) * 1955-01-31 1956-05-15 Dow Chemical Co Process for fluorinating aliphatic halohydrocarbons with a chromium fluoride catalyst and process for preparing the catalyst
JPS50101305A (en) * 1974-01-25 1975-08-11
JPS5182206A (en) * 1975-01-16 1976-07-19 Asahi Glass Co Ltd Futsusokashokubaino katsuseiijihoho
JPS53105404A (en) * 1977-02-17 1978-09-13 Ici Ltd Process for preparing 1*1*1*22tetrafluoroethane
JPS5633039A (en) * 1979-08-24 1981-04-03 Daikin Ind Ltd Catalyst for fluorination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2745886A (en) * 1955-01-31 1956-05-15 Dow Chemical Co Process for fluorinating aliphatic halohydrocarbons with a chromium fluoride catalyst and process for preparing the catalyst
JPS50101305A (en) * 1974-01-25 1975-08-11
JPS5182206A (en) * 1975-01-16 1976-07-19 Asahi Glass Co Ltd Futsusokashokubaino katsuseiijihoho
JPS53105404A (en) * 1977-02-17 1978-09-13 Ici Ltd Process for preparing 1*1*1*22tetrafluoroethane
JPS5633039A (en) * 1979-08-24 1981-04-03 Daikin Ind Ltd Catalyst for fluorination

Also Published As

Publication number Publication date
JPH01262946A (en) 1989-10-19

Similar Documents

Publication Publication Date Title
US10059646B1 (en) Catalytic gas phase fluorination
KR101435407B1 (en) High pressure catalyst activation method and catalyst produced thereby
US9758449B2 (en) Catalytic gas phase fluorination
EP2164824B1 (en) Preparation of 2,3,3,3-tetrafluoropropene by dehydrochlorination of 1,1,1,2-tetrafluoro-2-chloropropane
US6111150A (en) Method for producing 1,1,1,3,3,-pentafluoropropane
US5155082A (en) Catalyst for the manufacture of chlorofluorocarbons, hydrochlorofluorocarbons and hydrofluorocarbons
AU626349B2 (en) Purification of saturated halocarbons
CA2897992C (en) Activation and regeneration of fluorination catalysts
KR20100040880A (en) Two step process for the manufacture of hydrofluoroolefins
JP3982909B2 (en) Method for fluorination of catalytic halogenated organic compounds
EP0682001A1 (en) Process for producing 1,1,1,4,4,4-hexafluoro-2-butenes and 1,1,1,4,4,4-hexafluorobutane
JPH0685878B2 (en) Method for activating chromium-based fluorination catalyst
JPH0588690B2 (en)
EP0494162B1 (en) Regeneration or activation of noble metal catalysts using fluorohalocarbons or fluorohalohydrocarbons
EP1110936B1 (en) Process for producing fluoroethane
US5739070A (en) Process for regenerating a fluorination catalyst
JPH0967281A (en) Production of 1,1,1,3,3-pentafluoropropene and production of 1,1,1,3,3-pentafluoropropane
JPH05507028A (en) Activation of noble metal catalysts for use in the hydrodehalogenation of halogen-substituted hydrocarbons containing fluorine and at least one other halogen
US6291729B1 (en) Halofluorocarbon hydrogenolysis
JP2850907B2 (en) Method for producing fluorinated compound
JPH03275149A (en) Method for regenerating catalyst for production of unsaturated diester
JP3413198B2 (en) Catalyst treatment method
JP3862316B2 (en) Method for purifying pentafluoroethane
JPH1015400A (en) Method for regenerating catalyst for gas phase fluorination
JPH11559A (en) Regenerating method of catalyst for decomposition of aliphatic halide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees