JPH0682129A - Refrigerating apparatus - Google Patents

Refrigerating apparatus

Info

Publication number
JPH0682129A
JPH0682129A JP4238210A JP23821092A JPH0682129A JP H0682129 A JPH0682129 A JP H0682129A JP 4238210 A JP4238210 A JP 4238210A JP 23821092 A JP23821092 A JP 23821092A JP H0682129 A JPH0682129 A JP H0682129A
Authority
JP
Japan
Prior art keywords
evaporators
defrosting
during
indoor
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4238210A
Other languages
Japanese (ja)
Inventor
Kohei Koba
浩平 木場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4238210A priority Critical patent/JPH0682129A/en
Publication of JPH0682129A publication Critical patent/JPH0682129A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/021Alternate defrosting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Greenhouses (AREA)

Abstract

PURPOSE:To improve the economics with a simple structure of a refrigerating apparatus by preventing a rise in room temperature during a defrosting to maintain quality of stored article. CONSTITUTION:A refrigerating cycle is formed by a compressor 1, a condenser 2 and two evaporators 4A and 4B. The evaporators 4A and 4B are connected in parallel to allow the stopping of the shunting of refrigerants individually and the shunting of the refrigerants is stopped alternately to perform a defrosting jointly with a cooling operation. On the other hand, a room fan 6 for feeding room air to the evaporators 4A and 4B is always driven both in cooling and defrosting operations.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却運転中に複数の蒸
発器の交互デフロストを行わせるハウス栽培用などに好
適な冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus suitable for greenhouse cultivation, in which a plurality of evaporators are alternately defrosted during a cooling operation.

【0002】[0002]

【従来の技術】図5に、従来の冷凍装置の系統図が、図
6に図1図示の冷凍装置のデフロスト運転のフローチャ
ートが、また、図7に同じく庫内温度経時線図が、それ
ぞれ示される。圧縮機11、凝縮器12、減圧器13お
よび蒸発器14によって形成される冷凍サイクルは、ス
テップm1から運転を開始する。蒸発器14がステップ
n2の冷凍運転中に着霜してくると図示しない着霜検出
器がステップn3で除霜の必要を検出することによっ
て、ステップn4に移行して圧縮機11および室外ファ
ン15が停止され、室内ファン16を運転して、庫内空
気の熱でデフロストするオフサイクル方式のデフロスト
が行われ、ステップn5で除霜終了の指令が出されるこ
とによって、元の冷却運転に戻される。
2. Description of the Related Art FIG. 5 shows a system diagram of a conventional refrigerating apparatus, FIG. 6 shows a flow chart of defrosting operation of the refrigerating apparatus shown in FIG. 1, and FIG. Be done. The refrigeration cycle formed by the compressor 11, the condenser 12, the decompressor 13, and the evaporator 14 starts operation from step m1. When the evaporator 14 is frosted during the freezing operation in step n2, a frosting detector (not shown) detects the need for defrosting in step n3, and the process proceeds to step n4 to move the compressor 11 and the outdoor fan 15 to each other. Is stopped, the indoor fan 16 is operated, defrosting by an off-cycle method of defrosting by the heat of the air in the refrigerator is performed, and the instruction to end the defrosting is issued in step n5, whereby the original cooling operation is restored. .

【0003】[0003]

【発明が解決しようとする課題】オフサイクルデフロス
トは、通常行われる手段であるが、ビニールハウス等、
外部からの入熱が大きい室の冷却に上記冷凍装置を使用
すると、図7に示すようにデフロスト運転中に庫内温度
が上昇して室内設定温度の上限であるオン点を越え、貯
蔵品の品質に悪影響を与える。
Off-cycle defrost is a commonly used means,
When the above refrigeration system is used to cool a room where heat input from the outside is large, the temperature inside the room rises during the defrost operation as shown in FIG. It adversely affects the quality.

【0004】このようなオフサイクルデフロストの短所
を補うものとして、特開昭59−189253号公報に
開示される除霜装置がある。
A defrosting device disclosed in Japanese Patent Laid-Open No. 59-189253 is a device for compensating for such a disadvantage of off-cycle defrost.

【0005】この装置は、除霜時に吐出ガスの殆どを凝
縮器にバイパスさせて一部の蒸発器に流すと同時に圧縮
機用モータをインバータ制御によって減速して冷却能力
を低下させるようにしたものである。しかし、この装置
は、冷媒配管系統が非常に複雑で装置コストの上昇をも
たらす問題があり、ハウス栽培などには適用し難い。
In this apparatus, most of the discharge gas is bypassed to the condenser and flows to a part of the evaporator during defrosting, and at the same time, the compressor motor is decelerated by inverter control to reduce the cooling capacity. Is. However, this device has a problem that the refrigerant piping system is very complicated and raises the cost of the device, and is difficult to apply to greenhouse cultivation and the like.

【0006】本発明の目的は、デフロスト時における室
温上昇を抑えて貯蔵品品質の保持を図るとともに、簡単
な構造の冷凍装置に構成し得ることによる経済性の改善
を果たせる点にある。
An object of the present invention is to prevent the room temperature from rising during defrosting to maintain the quality of stored products and to improve the economical efficiency by being able to construct a refrigerating apparatus having a simple structure.

【0007】[0007]

【課題を解決するための手段】本発明は、圧縮機1、凝
縮器2、減圧器3、複数の蒸発器4A,4Bによって冷
凍サイクルが形成され、複数の蒸発器4A,4Bが、個
別の冷媒分流停止が可能な並列に接続されて、冷凍運転
中に交互に冷媒分流が停止されてデフロスト運転される
一方、各蒸発器4A,4Bに室内空気を流通させる室内
ファン6は、冷凍運転中常時駆動されて、冷却をしなが
ら交互にデフロストが行われることを特徴とする冷凍装
置である。
According to the present invention, a refrigeration cycle is formed by a compressor 1, a condenser 2, a decompressor 3, and a plurality of evaporators 4A and 4B, and the plurality of evaporators 4A and 4B are separated from each other. The refrigerant fans are connected in parallel so that the refrigerant diversion can be stopped, and the refrigerant diversion is alternately stopped during the refrigeration operation to perform the defrost operation, while the indoor fan 6 that circulates the indoor air to each evaporator 4A, 4B is in the refrigeration operation. The refrigerating apparatus is characterized in that it is constantly driven and alternately performs defrosting while cooling.

【0008】本発明はまた、デフロスト運転中圧縮機1
の能力を低下させるアンロード装置が設けられるととも
に、室内ファン6が各蒸発器4A,4Bの上流側に設け
られる冷凍装置である。
The present invention also provides a compressor 1 during defrost operation.
Is a refrigerating device in which an unloading device that reduces the capacity of the above is provided and the indoor fan 6 is provided on the upstream side of each evaporator 4A, 4B.

【0009】本発明はまた、複数の蒸発器4A,4Bに
対応して個別に室内ファン6A,6Bが設けられる冷凍
装置である。
The present invention is also a refrigerating apparatus in which indoor fans 6A and 6B are individually provided corresponding to a plurality of evaporators 4A and 4B.

【0010】本発明はまた複数の蒸発器4A,4Bが、
着霜中の冷却運転およびデフロスト運転のときは、対応
する室内ファン6A,6Bが高風量で駆動され、デフロ
スト後の冷却運転のときは、対応する室内ファン6A,
6Bが標準風量で駆動される冷凍装置である。
The present invention also includes a plurality of evaporators 4A, 4B,
During the cooling operation during defrosting and the defrosting operation, the corresponding indoor fans 6A, 6B are driven with a high air volume, and during the cooling operation after defrosting, the corresponding indoor fan 6A, 6B.
6B is a refrigerating device driven by a standard air volume.

【0011】[0011]

【作用】本発明によれば、デフロスト運転の際には、複
数の蒸発器4A,B4のうちのデフロスト対象となる蒸
発器は冷媒の分流を停止し、その他の蒸発器はそのまま
冷媒を流通させるようにする。その際、室内ファン6は
送風運転を続行させる。冷却運転を続けながら一部の蒸
発器のデフロストを行わせることによって室温の上昇を
抑えて温度変動幅を小さくすることができる。デフロス
トを行っている蒸発器については、室内ファン6によっ
て送風が続けられているので、室内空気によるデフロス
トが効率的に行われ、ハウス栽培など入熱が大きい場所
では、デフロストが短時間に済まされる。
According to the present invention, in the defrosting operation, the evaporator to be defrosted among the plurality of evaporators 4A and B4 stops the split flow of the refrigerant, and the other evaporators pass the refrigerant as it is. To do so. At that time, the indoor fan 6 continues the blowing operation. By causing some of the evaporators to defrost while continuing the cooling operation, it is possible to suppress the rise in room temperature and reduce the temperature fluctuation range. As for the evaporator that is performing defrosting, since the indoor fan 6 continues to blow air, defrosting is efficiently performed by indoor air, and defrosting is completed in a short time in a place where heat input is large such as greenhouse cultivation. .

【0012】その際、圧縮機1の能力を冷却負荷に見合
うようにアンロード装置によって制御することによっ
て、低圧圧力の低下を抑え安定した冷凍運転が可能であ
り、さらに室内ファン6を蒸発器に対し上流側に設ける
ことによって、室内ファン用モータが発生する熱をデフ
ロスト熱源として有効利用できる。
At this time, by controlling the capacity of the compressor 1 by an unloading device so as to match the cooling load, it is possible to suppress a decrease in low-pressure pressure and perform a stable refrigeration operation. Further, the indoor fan 6 is used as an evaporator. On the other hand, by providing it on the upstream side, the heat generated by the indoor fan motor can be effectively used as a defrost heat source.

【0013】また、各蒸発器4A,4Bに対し個別に室
内ファン6A,6Bを設けて、運転状態に応じ各ファン
6A,6Bの送風量を増減することによって、風の偏流
が生じなく、冷却運転とデフロスト運転とをいずれも安
定した状態で持続させることが可能である。
Further, the indoor fans 6A and 6B are individually provided for the respective evaporators 4A and 4B, and the amount of air blown by the fans 6A and 6B is increased or decreased in accordance with the operating state, so that no wind drift occurs and cooling is performed. Both the operation and the defrost operation can be continued in a stable state.

【0014】[0014]

【実施例】図1は、本発明の一実施例の系統図である。
図示の冷凍装置は1基の圧縮機1と、1基の凝縮器2
と、1基のキャピラリチューブで実現される減圧器3
と、複数のたとえば2基の蒸発器4A,4Bとを備え、
各蒸発器4A,4Bは、冷媒入側に電磁弁7A,7Bが
それぞれ直列に接続して設けられるとともに、それら直
列回路相互が並列に接続されて、圧縮機1、凝縮器2、
キャピラリチューブ3、並列関係を成す2基の蒸発器4
A,4Bによって、周知の冷凍サイクルが形成される。
各蒸発器4A,4Bは、電磁弁7A,7Bを開弁するこ
とによって、低圧冷媒が分流されて蒸発器として室内8
の冷却の用に供され、電磁弁7Aまたは7Bを閉弁する
ことによって、冷凍サイクルから離され、冷媒の流通が
断たれる。室外に設けられる凝縮器2には、室外ファン
5が付設され、一方、室内に設けられる蒸発器4A,4
Bには、室内ファン6A,6Bがそれぞれ個別に付設さ
れる。また、圧縮機1は、50%アンロード装置が備え
られて、100%能力と50%能力との2段階調節が可
能である。
FIG. 1 is a system diagram of an embodiment of the present invention.
The illustrated refrigeration system has one compressor 1 and one condenser 2
And a decompressor 3 realized with one capillary tube
And a plurality of, for example, two evaporators 4A and 4B,
Each of the evaporators 4A, 4B is provided with solenoid valves 7A, 7B connected in series on the refrigerant inlet side, and the series circuits thereof are connected in parallel, so that the compressor 1, the condenser 2,
Capillary tube 3, two evaporators 4 in parallel relationship
A well-known refrigeration cycle is formed by A and 4B.
In each of the evaporators 4A and 4B, by opening the solenoid valves 7A and 7B, the low-pressure refrigerant is shunted and the interior of the evaporators 8A and 4B is used.
By cooling the solenoid valve 7A or 7B, the refrigerant is separated from the refrigeration cycle and the refrigerant flow is cut off. An outdoor fan 5 is attached to the condenser 2 provided outdoors, while evaporators 4A and 4A provided indoors are provided.
Indoor fans 6A and 6B are individually attached to B. Further, the compressor 1 is equipped with a 50% unloading device, and is capable of two-stage adjustment of 100% capacity and 50% capacity.

【0015】室内8には、整流板9が設けられる。この
整流板9は、蒸発器4Aと室内ファン6Aとが設けられ
る区域と、蒸発器4Bと室内ファン6Bとが設けられる
区域とを両区域間での気流の干渉が大きくは生じない程
度に区切らせる必要から設けられるものであって、たと
えば室内8がビニールハウスである場合には、天井から
ビニールシートを垂れ幕状に垂れ下げるなどの簡易な構
造のもので良い。
A rectifying plate 9 is provided in the room 8. This straightening plate 9 divides the area where the evaporator 4A and the indoor fan 6A are provided from the area where the evaporator 4B and the indoor fan 6B are provided to such an extent that the air flow interference between both areas does not significantly occur. If the room 8 is a vinyl house, for example, it may have a simple structure such as hanging a vinyl sheet from the ceiling in a curtain shape.

【0016】なお、蒸発器4A,4Bに対して、破線示
のように室内ファン6A,6Bに替えて1基の室内ファ
ン6を共用させて設けるようにしても勿論差支えない。
Of course, it does not matter if the evaporators 4A and 4B are provided with one indoor fan 6 in common instead of the indoor fans 6A and 6B as shown by the broken lines.

【0017】図2は、図1図示の冷凍装置の冷凍運転状
態を表すフローチャート、図3は同じく冷凍運転時の電
磁弁7A,7Bの動作状態を表すタイムチャートであ
る。ステップm1で運転スイッチを投入し運転に入る
と、次のステップm2に移行して、冷凍運転が開始す
る。冷凍運転は、圧縮機1の100%能力運転、室内フ
ァン6A,6Bの標準風量運転、室外ファン5の運転、
電磁弁7A,7Bの開弁の各操作が成されることによっ
て行われる。冷凍運転中に蒸発器4A,4Bに霜が付着
してくるとデフロストを交互に行わせるが、着霜状態が
除霜を必要とする程度に充分生長しているかをたとえば
着霜検出器によって検出することも通常行われる手段で
あり、この実施例は、たとえば冷凍運転時間の経過で着
霜を間接的に検出するタイマ方式を採用しており、3時
間を周期としてステップm3でデフロストが必要かどう
かを判断し、3時間の経過によって次のステップm4に
移行する。
FIG. 2 is a flow chart showing the refrigerating operation state of the refrigerating apparatus shown in FIG. 1, and FIG. 3 is a time chart showing the operating states of the solenoid valves 7A and 7B during the refrigerating operation. When the operation switch is turned on in step m1 to start the operation, the process proceeds to the next step m2 and the freezing operation is started. The refrigeration operation includes 100% capacity operation of the compressor 1, standard air volume operation of the indoor fans 6A and 6B, operation of the outdoor fan 5,
This is performed by performing each operation of opening the solenoid valves 7A and 7B. Defrosting is performed alternately when frost adheres to the evaporators 4A and 4B during the freezing operation, but it is detected by, for example, a frosting detector whether the frosting state has grown sufficiently to require defrosting. This is also a means that is usually carried out. In this embodiment, for example, a timer system that indirectly detects frost formation when the freezing operation time has elapsed is adopted, and whether defrosting is necessary at step m3 with a cycle of 3 hours. It is judged whether or not it has passed, and the process proceeds to the next step m4 after 3 hours.

【0018】ステップm4では、圧縮機1のアンロード
装置を作動させて50%能力に切り換え、電磁弁7Aを
閉弁し、室内ファン6Aを標準風量から高風量に切り換
える。この操作によって、蒸発器4Aでは室内8の空気
の保有熱によるデフロストが行われる。すなわち、蒸発
器4Aは、電磁弁7Aの閉弁によって冷媒の流通が遮断
されるので、室内ファン6Aによる流通空気と伝熱面に
付着している霜との間で熱交換が行われる結果、霜が融
かされる。
In step m4, the unloading device of the compressor 1 is operated to switch to 50% capacity, the solenoid valve 7A is closed, and the indoor fan 6A is switched from standard air volume to high air volume. By this operation, the evaporator 4A is defrosted by the heat of the air in the room 8. That is, in the evaporator 4A, since the circulation of the refrigerant is blocked by the closing of the electromagnetic valve 7A, heat exchange is performed between the circulating air by the indoor fan 6A and the frost adhering to the heat transfer surface. The frost is thawed.

【0019】たとえばビニールハウスの場合は、ビニー
ル壁を通しての入熱が多いので、蒸発器4Aを通る室内
空気が保有する熱によって、霜は速やかに融け、しかも
室内ファン6Aが高風量で、蒸発器4Aの伝熱面を偏流
がなく均一に流通するので、霜はムラなく融かされる。
For example, in the case of a vinyl house, since a large amount of heat is input through the vinyl wall, the frost is quickly melted by the heat of the indoor air passing through the evaporator 4A, and the indoor fan 6A has a high air flow rate. The frost is evenly distributed on the heat transfer surface of 4A without uneven flow, so that the frost is uniformly melted.

【0020】一方、蒸発器4B側においては、今までと
同様の冷凍(冷却)運転が続行される。蒸発器4A側で
のデフロストが進行して、次のステップm5でデフロス
トが終了したことをたとえば10分の時間の経過によっ
て判断すると、ステップm6に移行して、蒸発器4Aの
デフロスト運転を停めて、同時にステップm7におい
て、蒸発器4Bのデフロスト運転を行わせる。すなわ
ち、電磁弁7Aを開弁し、室内ファン6Aを標準風量に
戻すことによって、蒸発器4Aを冷却運転に戻す一方、
電磁弁7Bを閉弁し、室内ファン6Bを高風量運転に切
り換えて、蒸発器4Bのデフロストを行わせる。蒸発器
4Aの場合と同様、10分のデフロスト運転の続行に伴
って、ステップm8でデフロスト終了を判断すると、次
のステップm9に移行して、冷凍装置は冷凍運転に戻さ
れる。すなわち、圧縮機1は50%能力から100%能
力に切り換えられ、電磁弁7Bは開弁され、室内ファン
6Bは標準風量に戻される。
On the other hand, on the side of the evaporator 4B, the same refrigerating operation as before is continued. When defrosting on the side of the evaporator 4A progresses and it is judged in the next step m5 that the defrosting has ended, for example, after a lapse of time of 10 minutes, the process moves to step m6 and the defrosting operation of the evaporator 4A is stopped. At the same time, in step m7, the defrosting operation of the evaporator 4B is performed. That is, by opening the solenoid valve 7A and returning the indoor fan 6A to the standard air volume, the evaporator 4A is returned to the cooling operation,
The electromagnetic valve 7B is closed, the indoor fan 6B is switched to high air volume operation, and the evaporator 4B is defrosted. Similar to the case of the evaporator 4A, when the defrost end is determined in step m8 with the continuation of the defrost operation for 10 minutes, the process proceeds to the next step m9, and the refrigeration system is returned to the refrigeration operation. That is, the compressor 1 is switched from 50% capacity to 100% capacity, the solenoid valve 7B is opened, and the indoor fan 6B is returned to the standard air volume.

【0021】このようにして、3時間を周期として蒸発
器4A,4Bは交互に10分ずつのデフロスト運転が行
われ、この間、デフロストを行わない方の蒸発器は、冷
却運転が併行される。この運転状態は、図3に示され
る。また、デフロスト運転中およびその前後における室
温状態は、図4に示される。この図4に示す通り、デフ
ロスト開始点Aでの室温は、冷却運転のオン点(上限温
度点)とオフ点(下限温度点)との間の値であって、デ
フロスト終了点Bにおいても、一方の蒸発器で冷却運転
が行われているので、室温がオン点を上回るようなこと
はなく、室温の変動幅を小さく保持することが可能であ
る。
In this way, the evaporators 4A and 4B are alternately defrosted for 10 minutes each with a period of 3 hours, and during this period, the evaporator not defrosted is concurrently cooled. This operating state is shown in FIG. In addition, FIG. 4 shows room temperature conditions during and before and after the defrost operation. As shown in FIG. 4, the room temperature at the defrost start point A is a value between the on point (upper limit temperature point) and the off point (lower limit temperature point) of the cooling operation, and also at the defrost end point B, Since the cooling operation is performed in one of the evaporators, the room temperature does not exceed the on-point, and the fluctuation range of the room temperature can be kept small.

【0022】上記実施例では、蒸発器4A,4B毎に専
用の室内ファン6A,6Bを配設しているので、冷却運
転時とデフロスト運転時とで、静圧に大きい差が生じる
のを解消することができ、しかも、運転種別に応じて送
風量を変えることによって風の偏流を解消し、室内の温
度変動を抑えると同時に、確実なデフロストが行われる
利点がある。
In the above embodiment, since the dedicated indoor fans 6A and 6B are provided for each of the evaporators 4A and 4B, it is possible to eliminate a large difference in static pressure between the cooling operation and the defrost operation. In addition, there is an advantage that the drift of the wind is eliminated by changing the air flow rate according to the operation type, the temperature variation in the room is suppressed, and the defrosting is surely performed.

【0023】なお、本発明においては、実施例の構成に
限定されなく、室内ファンは両蒸発器に共用させた1基
であっても勿論差支えなく、また、冷却時とデフロスト
時とで、風量を変えないで等風量とする運転にすること
もできる。
It should be noted that the present invention is not limited to the configuration of the embodiment, and it is of course possible that the number of indoor fans shared by both evaporators is one, and the amount of air flow during cooling and during defrosting is not limited. It is also possible to operate with equal air volume without changing the.

【0024】[0024]

【発明の効果】以上のように、本発明によれば、複数の
蒸発器を交互にデフロスト運転しながら、冷却運転を併
行させているので、室内温度がデフロスト中も大きく変
動することがなく、室温変化を小さく抑えて貯蔵品、栽
培品の品質を良好に維持できる。しかも、デフロスト運
転中は室内ファンを運転したままにすることによって、
デフロスト時間の短縮並びに室内温度分布の均一化が果
たされる。
As described above, according to the present invention, the cooling operation is concurrently performed while the plurality of evaporators are alternately operated in the defrosting mode, so that the room temperature does not greatly change during the defrosting operation. The quality of stored products and cultivated products can be maintained well by suppressing changes in room temperature. Moreover, by keeping the indoor fan running during defrost operation,
The defrost time is shortened and the indoor temperature distribution is made uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である冷凍装置の系統図であ
る。
FIG. 1 is a system diagram of a refrigerating apparatus that is an embodiment of the present invention.

【図2】図1図示の冷凍装置の冷凍運転状態を表すフロ
ーチャートである。
FIG. 2 is a flowchart showing a refrigerating operation state of the refrigerating apparatus shown in FIG.

【図3】図1図示の冷凍装置の冷凍運転時における電磁
弁7A,7Bの動作状態を表すタイムチャートである。
FIG. 3 is a time chart showing the operating states of solenoid valves 7A and 7B during the refrigerating operation of the refrigerating apparatus shown in FIG.

【図4】図1図示の冷凍装置の冷凍運転時における室温
変化状態を表す温度線図である。
FIG. 4 is a temperature diagram showing a room temperature change state during freezing operation of the refrigerating apparatus shown in FIG.

【図5】従来の冷凍装置の系統図である。FIG. 5 is a system diagram of a conventional refrigeration system.

【図6】図5図示の冷凍装置の冷凍運転状態を表すフロ
ーチャートである。
6 is a flowchart showing a refrigerating operation state of the refrigerating apparatus shown in FIG.

【図7】図5図示の冷凍装置の冷凍運転時における室温
変化線図である。
FIG. 7 is a room temperature change diagram during freezing operation of the refrigerating apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 減圧器 4A,4B 蒸発器 5 室外ファン 6A,6B 室内ファン 7A,7B 電磁弁 8 室内 1 Compressor 2 Condenser 3 Pressure reducer 4A, 4B Evaporator 5 Outdoor fan 6A, 6B Indoor fan 7A, 7B Solenoid valve 8 Indoor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機1、凝縮器2、減圧器3、複数の
蒸発器4A,4Bによって冷凍サイクルが形成され、複
数の蒸発器4A,4Bが、個別の冷媒分流停止が可能な
並列に接続されて、冷凍運転中に交互に冷媒分流が停止
されてデフロスト運転される一方、各蒸発器4A,4B
に室内空気を流通させる室内ファン6は、冷凍運転中常
時駆動されて、冷却をしながら交互にデフロストが行わ
れることを特徴とする冷凍装置。
1. A refrigeration cycle is formed by a compressor 1, a condenser 2, a pressure reducer 3, and a plurality of evaporators 4A, 4B, and the plurality of evaporators 4A, 4B are arranged in parallel so that individual refrigerant diversion can be stopped. While connected, the refrigerant splitting is alternately stopped during the refrigeration operation to perform the defrost operation, while the evaporators 4A, 4B
The indoor fan 6 for circulating the indoor air is constantly driven during the freezing operation to alternately perform defrosting while cooling.
【請求項2】 デフロスト運転中圧縮機1の能力を低下
させるアンロード装置が設けられるとともに、室内ファ
ン6が各蒸発器4A,4Bの上流側に設けられる請求項
1記載の冷凍装置。
2. The refrigerating apparatus according to claim 1, wherein an unloading device that reduces the capacity of the compressor 1 during defrost operation is provided, and an indoor fan 6 is provided upstream of each evaporator 4A, 4B.
【請求項3】 複数の蒸発器4A,4Bに対応して個別
に室内ファン6A,6Bが設けられる請求項1または2
に記載の冷凍装置。
3. The indoor fan 6A, 6B is provided individually corresponding to the plurality of evaporators 4A, 4B.
Refrigerating apparatus according to.
【請求項4】 複数の蒸発器4A,4Bが、着霜中の冷
却運転およびデフロスト運転のときは、対応する室内フ
ァン6A,6Bが高風量で駆動され、デフロスト後の冷
却運転のときは、対応する室内ファン6A,6Bが標準
風量で駆動される請求項3記載の冷凍装置。
4. The plurality of evaporators 4A, 4B are driven with a high air volume when the cooling operation during defrosting and the defrosting operation are performed by the corresponding indoor fans 6A, 6B, and during the cooling operation after defrosting, The refrigeration system according to claim 3, wherein the corresponding indoor fans 6A, 6B are driven with a standard air volume.
JP4238210A 1992-09-07 1992-09-07 Refrigerating apparatus Pending JPH0682129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4238210A JPH0682129A (en) 1992-09-07 1992-09-07 Refrigerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4238210A JPH0682129A (en) 1992-09-07 1992-09-07 Refrigerating apparatus

Publications (1)

Publication Number Publication Date
JPH0682129A true JPH0682129A (en) 1994-03-22

Family

ID=17026790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4238210A Pending JPH0682129A (en) 1992-09-07 1992-09-07 Refrigerating apparatus

Country Status (1)

Country Link
JP (1) JPH0682129A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096384A (en) * 2008-10-15 2010-04-30 Panasonic Corp Heat exchange type ventilation device
JP2010181093A (en) * 2009-02-05 2010-08-19 Toyo Eng Works Ltd Defrosting device in carbon dioxide circulation cooling system
JP2010242997A (en) * 2009-04-02 2010-10-28 Panasonic Corp Heat exchange type ventilation device
JP2014066420A (en) * 2012-09-26 2014-04-17 Hitachi Appliances Inc Freezer
JP2014077449A (en) * 2006-07-18 2014-05-01 Atlas Copco Airpower Nv Method for controlling compressed air unit and controller and compressed air unit for using said method
JP2015222145A (en) * 2014-05-23 2015-12-10 株式会社前川製作所 Air cooler, and method for operating the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077449A (en) * 2006-07-18 2014-05-01 Atlas Copco Airpower Nv Method for controlling compressed air unit and controller and compressed air unit for using said method
JP2010096384A (en) * 2008-10-15 2010-04-30 Panasonic Corp Heat exchange type ventilation device
JP2010181093A (en) * 2009-02-05 2010-08-19 Toyo Eng Works Ltd Defrosting device in carbon dioxide circulation cooling system
JP2010242997A (en) * 2009-04-02 2010-10-28 Panasonic Corp Heat exchange type ventilation device
JP2014066420A (en) * 2012-09-26 2014-04-17 Hitachi Appliances Inc Freezer
JP2015222145A (en) * 2014-05-23 2015-12-10 株式会社前川製作所 Air cooler, and method for operating the same

Similar Documents

Publication Publication Date Title
US7137266B2 (en) Time division multi-cycle type cooling apparatus and method for controlling the same
JP2957150B2 (en) Operation control device and method for refrigerator compartment
US20090113904A1 (en) Method for controlling a refrigerator
JP2651341B2 (en) Refrigerator system with fermentation function
JP3136644B2 (en) Off-cycle defrost equipment
JPH0682129A (en) Refrigerating apparatus
KR20190070778A (en) Refrigerator
JPH10170131A (en) Defrosting operation control method for refrigerator
KR100913144B1 (en) Time divided multi-cycle type cooling apparatus
JP2007333298A (en) Refrigerant flow control device
JPH11148759A (en) Refrigerator equipped with two sets of evaporators
US7104083B2 (en) Refrigeration system configuration for air defrost and method
JPH1047827A (en) Freezing refrigerator
JPH1163775A (en) Multi-refrigerator
JP2000283626A (en) Refrigerator
KR100229488B1 (en) Independent cooling type refrigerator and defrost control method thereof
JPH09189460A (en) Refrigerating device
JPS6015861B2 (en) Cooling system
KR100379403B1 (en) defrosting method in the refrigerator with 2 evaporators
JP2002195726A (en) Refrigerator
JPH10160313A (en) Cooler
JPH10188113A (en) Automatic vending machine
JPH04291492A (en) Cooler for vendor
KR20020085765A (en) defrosting method in the refrigerator with 2 evaporators
JP2003272042A (en) Cooling control device for vending machine