JPH0677588B2 - Ultrasonic measuring device - Google Patents

Ultrasonic measuring device

Info

Publication number
JPH0677588B2
JPH0677588B2 JP61071542A JP7154286A JPH0677588B2 JP H0677588 B2 JPH0677588 B2 JP H0677588B2 JP 61071542 A JP61071542 A JP 61071542A JP 7154286 A JP7154286 A JP 7154286A JP H0677588 B2 JPH0677588 B2 JP H0677588B2
Authority
JP
Japan
Prior art keywords
ultrasonic
subject
change
ultrasonic transducer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61071542A
Other languages
Japanese (ja)
Other versions
JPS62227333A (en
Inventor
博 福喜多
進一郎 植野
勉 屋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61071542A priority Critical patent/JPH0677588B2/en
Priority to DE86309693T priority patent/DE3688702T2/en
Priority to US06/941,221 priority patent/US4817615A/en
Priority to EP86309693A priority patent/EP0226466B1/en
Priority to EP90115644A priority patent/EP0406915A1/en
Publication of JPS62227333A publication Critical patent/JPS62227333A/en
Publication of JPH0677588B2 publication Critical patent/JPH0677588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、生体内組織の音響特性変動、とりわけ温熱療
法加温時の温度上昇に伴う音響特性変動を検出する超音
波計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic measuring device for detecting acoustic characteristic fluctuations of tissues in a living body, particularly acoustic characteristic fluctuations accompanying temperature rise during hyperthermia heating.

従来の技術 最近、生体内の温度計測は癌の温熱療法の温度モニタと
して必要であるため注目されている。生体内組織の種々
音響特性は温度依存性を有するため極めて重要な測定項
目となっている。その一つのパラメータである音速の温
度依存特性を利用して逆に温度変化を求める方法が超音
波医学会研究発表会講演論文集(45号、21〜22頁、198
4)等に記載されている交差ビーム法として知られてい
る。以下、第3図を参照して交差ビーム法について説明
する。
2. Description of the Related Art Recently, in-vivo temperature measurement has been attracting attention because it is necessary as a temperature monitor for hyperthermia treatment of cancer. Since various acoustic characteristics of tissues in the living body have temperature dependence, they are extremely important measurement items. The method of inversely finding the temperature change using the temperature-dependent characteristic of the speed of sound, which is one of the parameters, is a collection of lectures by the Society of Ultrasonics Medicine (No. 45, pp. 21-22, 198).
It is known as the crossed beam method described in 4). The cross beam method will be described below with reference to FIG.

第3図において、1,2はそれぞれ超音波の送受信を行う
超音波変換器、3は超音波変換器1,2を所定の角度、間
隔で固定する保持器、4は被検体、5は超音波変換器1
のビーム方向、6は超音波変換器2のビーム方向、Pは
ビーム方向5とビーム方向6が交差する点である。
In FIG. 3, 1 and 2 are ultrasonic transducers for transmitting and receiving ultrasonic waves, 3 is a holder for fixing the ultrasonic transducers 1 and 2 at predetermined angles and intervals, 4 is a subject, and 5 is an ultrasonic wave. Sound wave transducer 1
Is the beam direction of the ultrasonic transducer 2, 6 is the beam direction of the ultrasonic transducer 2, and P is the intersection of the beam direction 5 and the beam direction 6.

以上のような構成において、以下その動作について説明
する。
The operation of the above configuration will be described below.

まず超音波変換器1において駆動パルスが加えられ、被
検体4内へ超音波パルスが照射される。超音波パルスは
ビーム方向5に沿って被検体4である生体組織により散
乱されながら進行する。その後、超音波パルスは点Pに
到達し、そこで散乱された超音波パルスの一部はビーム
方向6を逆行して超音波変換器2に到達する。ビーム方
向5,6に沿った超音波パルスの伝搬距離は、超音波変換
器1,2と保持器3の寸法により決まるから、超音波パル
スの伝搬時間を計測することにより生体内の音速を求め
ることが可能である。
First, a drive pulse is applied in the ultrasonic transducer 1 to irradiate the subject 4 with the ultrasonic pulse. The ultrasonic pulse travels along the beam direction 5 while being scattered by the biological tissue that is the subject 4. After that, the ultrasonic pulse reaches the point P, and a part of the ultrasonic pulse scattered there goes backward in the beam direction 6 and reaches the ultrasonic transducer 2. Since the propagation distance of the ultrasonic pulse along the beam directions 5 and 6 is determined by the dimensions of the ultrasonic transducers 1 and 2 and the holder 3, the sound velocity in the living body is obtained by measuring the propagation time of the ultrasonic pulse. It is possible.

発明が解決しようとする問題点 しかし、以上のような構成は生体内組織の音速があらゆ
る場所で一定であるという前提のもとで音速測定が可能
であり、実際の生体のように組織に依存して音速が変化
する場合には音波ビームは複雑に屈折し、直線で伝播経
路を近似して音速を求めるという手法は誤差が多く意味
がない。これは加温による音速の変化が1度Cにつき0.
1%程度のわずかな量であり、精度の高い音速測定が要
求されるという理由による。又、得られた音速は超音波
の伝播経路上の平均値に対応するものであり、局所的な
温度上昇にもとづく局所的な音速変化も正確に得られな
いという問題があった。
Problems to be Solved by the Invention However, the structure as described above can measure the speed of sound on the assumption that the speed of sound of the in-vivo tissue is constant in all places, and depends on the tissue like the actual living body. Then, when the sound velocity changes, the sound wave beam is complicatedly refracted, and the method of approximating the propagation path with a straight line to obtain the sound velocity has many errors and is meaningless. This is because the change in sound velocity due to heating is 0 per degree C.
This is a small amount of about 1%, which is because accurate sound velocity measurement is required. Further, the obtained sound velocity corresponds to the average value on the propagation path of the ultrasonic wave, and there is a problem that a local change in sound velocity due to a local temperature rise cannot be accurately obtained.

本発明は従来技術の以上のような問題点を解決するもの
で、生体のように組織に対応して音速が変化する場合に
も任意の部位における温度上昇を検出することを目的と
するものである。
The present invention is to solve the above problems of the prior art, and an object thereof is to detect a temperature rise at an arbitrary site even when the speed of sound changes corresponding to a tissue like a living body. is there.

問題点を解決するための手段 本発明は、被検体に対する複数の異なる、周波数および
パルス長の超音波発生手段と、これらの複数の発生手段
の交互動作に連動した反射信号の経時変化率計測手段に
より上記目的を達成するものである。
Means for Solving the Problems The present invention is directed to a plurality of ultrasonic wave generators of different frequencies and pulse lengths for a subject, and means for measuring the rate of change of a reflected signal with time linked to the alternating operation of the plurality of generators. This achieves the above object.

作用 本発明は上記構成により、超音波を照射された被検体内
の散乱体の整列効果等により被検体内の音波反射特性が
変化し、かつその変化の仕方が被検体内の温度に依存す
ることを利用し、逆に被検体内の温度を推定するように
したものである。
Action The present invention has the above-mentioned configuration, in which the acoustic wave reflection characteristics in the subject change due to the alignment effect of the scatterers in the subject irradiated with ultrasonic waves, and the manner of change depends on the temperature in the subject. This is used to estimate the temperature inside the subject.

実施例 以下、図面を参照しながら本発明の実施例について説明
する。
Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例における超音波計測装置
の機能ブロック図である。
FIG. 1 is a functional block diagram of an ultrasonic measurement device according to the first embodiment of the present invention.

第1図において、10は低周波側の超音波変換器、11は超
音波変換器10を駆動する長パルス駆動器、12は高周波側
の超音波変換器、13は超音波変換器12を駆動する短パル
ス駆動器であり、長パルス駆動器11のパルス幅、出力振
幅、短パルス駆動器13の動作タイミング等は駆動制御部
14に制御される。超音波変換器10と長パルス駆動器11で
長パルス発生手段、超音波変換器12と短パルス駆動器13
で短パルス発生手段を構成する。15は高周波側の超音波
変換器12からの受信信号を増幅する増幅器、16は増幅器
15の出力を包路線検波する検波器、17は検波器16の出力
をデジタル信号に変換するA/D変換器、18はA/D変換器17
の出力を記憶するメモリ、19はメモリ18に記憶されたデ
ータ同士の除算を行う演算器、20は演算器19の出力を記
憶するメモリ、21は被検体30の異なる温度でメモリ20に
記憶されたデータ同士の除算を行う演算器、22は演算器
21の出力を表示する表示部、30は被検体である。
In FIG. 1, 10 is an ultrasonic transducer on the low frequency side, 11 is a long pulse driver for driving the ultrasonic transducer 10, 12 is an ultrasonic transducer on the high frequency side, and 13 is an ultrasonic transducer 12. Is a short pulse driver, and the pulse width and output amplitude of the long pulse driver 11 and the operation timing of the short pulse driver 13 are controlled by the drive controller.
Controlled to 14. Ultrasonic transducer 10 and long pulse driver 11 for long pulse generation means, ultrasonic transducer 12 and short pulse driver 13
Constitutes a short pulse generating means. 15 is an amplifier for amplifying the received signal from the ultrasonic transducer 12 on the high frequency side, 16 is an amplifier
A detector for envelope detection of the output of 15; 17 is an A / D converter for converting the output of the detector 16 into a digital signal; 18 is an A / D converter 17
, A memory for storing the output of 19; a computing unit for dividing the data stored in the memory 18; a memory for storing the output of the computing unit 19; a memory 21 for storing the output of the subject 30 at different temperatures 22 is a calculator that divides the data
A display unit that displays the output of 21 and 30 is a subject.

以上のような構成において以下その動作を説明する。The operation of the above arrangement will be described below.

まず長パルス駆動器11は、例えば500KHzバースト長さ1
秒程度の長いRFパルスを低周波側の超音波変換器10へ印
加する。長パルス駆動器11の動作停止後、短パルス駆動
器13は、例えば3.5MHz2サイクルの短いRFパルスを高周
波側の超音波変換器12へ印加する。短いRFパルスは例え
ば4KHz程度の繰返し周期で数秒間継続するものとする。
長パルス駆動器11、短パルス駆動器13の以上の動作例は
第2図(a),(b)に示される。低周波側の超音波変
換器10の動作により被検体30内の散乱体は1秒程度超音
波に照射され、これらの散乱体の位置は平衡状態からシ
フトし、整列等の現象を示す。この整列という現象を応
用した例としては例えばP.N.T.WELLS著バイオメディカ
ル ウルトラソロニクスアカデミック プレス出版:BIO
MEDICAL ULTRASONICS,Academic Press出版1977,93頁に
説明されているポールマンセルという超音波検出器があ
る。このポールマンセルは液体中に浮遊せしめた直径20
ミクロン、厚さ1.5ミクロン程度の金属片が超音波照射
によりその片の向きを整列させ、光学的な見え方を変化
させるという原理を用いるものである。具体的には超音
波強度0.1mw/cm2の場合、1〜5秒の後に50%程度の明
るさが変化するとしている。
First, the long pulse driver 11 is, for example, 500 KHz burst length 1
A long RF pulse of about a second is applied to the ultrasonic transducer 10 on the low frequency side. After the operation of the long pulse driver 11 is stopped, the short pulse driver 13 applies a short RF pulse of, for example, 3.5 MHz2 cycles to the ultrasonic transducer 12 on the high frequency side. The short RF pulse is assumed to continue for several seconds with a repetition cycle of, for example, about 4 KHz.
The above operation examples of the long pulse driver 11 and the short pulse driver 13 are shown in FIGS. 2 (a) and 2 (b). Due to the operation of the ultrasonic transducer 10 on the low frequency side, the scatterers in the subject 30 are irradiated with ultrasonic waves for about 1 second, and the positions of these scatterers are shifted from the equilibrium state and show phenomena such as alignment. An example of applying this phenomenon of alignment is, for example, PNTWELLS Biomedical Ultrasonics Academic Press Publishing: BIO
There is an ultrasonic detector called Paul Munsell described in MEDICAL ULTRASONICS, Academic Press, 1977, p. 93. This Paul Munsell has a diameter of 20 suspended in a liquid.
The principle is that a metal piece with a thickness of about 1.5 microns is aligned with the direction of the piece by ultrasonic irradiation and the optical appearance is changed. Specifically, when the ultrasonic intensity is 0.1 mw / cm 2 , the brightness changes by about 50% after 1 to 5 seconds.

以上のような現象にもとづき被検体30内の散乱体の位置
は平衡状態からシフトし、長パルス駆動器11の動作停上
の後再び平衡状態へその位置を戻す。この散乱***置の
平衡状態からのシフトは超音波の反射特性の変化として
検出される。長パルス駆動器11の動作停止後の反射特性
の時間的変化は高周波側の超音波変換器12により短パル
ス駆動器13の駆動毎の受信信号レベルの変化として検出
される。このように変化する受信信号は増幅器15で増幅
され検波器16で包路線検波され、A/D変換器17でデジタ
ル信号に変換された後、メモリ18へ記憶される。被検体
30内の散乱体の位置が平衡位置へ戻る迄の時間は緩和的
な現象として理解することは妥当であり、その時間が被
検体内の温度に依存する。従って、短パルス駆動器13の
駆動タイミングに同期してメモリ18へ記憶された反射信
号のデータDの中の被検体30内の特定の深さxに対応す
るデータについてその経時変化率を調べることにより、
その部位の温度に関する情報を得ることが可能である。
この経時変化率Rは例えば次式のように表わせる。
Based on the above phenomenon, the position of the scatterer in the subject 30 is shifted from the equilibrium state, and after the operation of the long pulse driver 11 is stopped, the position is returned to the equilibrium state again. The shift of the scatterer position from the equilibrium state is detected as a change in the reflection characteristic of ultrasonic waves. The temporal change in the reflection characteristic after the operation of the long pulse driver 11 is stopped is detected by the ultrasonic transducer 12 on the high frequency side as a change in the received signal level each time the short pulse driver 13 is driven. The received signal thus changing is amplified by the amplifier 15, subjected to envelope detection by the detector 16, converted into a digital signal by the A / D converter 17, and then stored in the memory 18. Subject
It is reasonable to understand that the time required for the position of the scatterer in 30 to return to the equilibrium position is a relaxation phenomenon, and the time depends on the temperature in the subject. Therefore, the temporal change rate of the data corresponding to a specific depth x in the subject 30 in the reflection signal data D stored in the memory 18 in synchronization with the driving timing of the short pulse driver 13 is examined. Due to
It is possible to obtain information about the temperature at that site.
This rate of change R with time can be expressed, for example, by the following equation.

ここでnは正の整数、Δtは短パルス駆動器12の駆動の
時間間隔である。経時変化率Rの値が被検体を加温する
前後での温度変化率Vを次式のように表わせる。
Here, n is a positive integer, and Δt is a time interval for driving the short pulse driver 12. The rate of change in temperature V before and after the subject is heated can be expressed by the following equation.

温度変化率Vの温度依存が、被検体30に関して既知であ
れば、逆に、このVの値から被検体内の温度変化を推測
することが可能である。
If the temperature dependence of the temperature change rate V is known for the subject 30, conversely, it is possible to infer the temperature change in the subject from the value of V.

以上本実施例によれば、被検体の特定の深さからの反射
信号の経時変化を得ることにより、被検体内の温度変化
に関する情報が得られ、被検体内を伝播する超音波の径
路が複雑に屈折するような場合にも正確な温度変化に関
する情報が得られる。
As described above, according to the present embodiment, by obtaining the change with time of the reflection signal from the specific depth of the subject, information about the temperature change in the subject is obtained, and the path of the ultrasonic wave propagating in the subject is determined. Even in the case of complex refraction, accurate information on temperature change can be obtained.

なお以上の説明では反射信号の経時変化率Rを(1)式
で定義したが別の定義も可能である。例えば、被検体30
内の散乱体が平衡状態位置にある場合の散乱係数をDS
(x)とするとき次式で定義する経時変化率Rを用いて
もよい。
In the above description, the rate of change R of the reflected signal with time is defined by the equation (1), but another definition is possible. For example, the subject 30
The scattering coefficient when the scatterer in the equilibrium position is DS
When using (x), the rate of change with time R defined by the following equation may be used.

DS(x)は長パルス駆動器11の動作前、あるいは動作停
止後の1秒程度の時間において、短パルス駆動器13を動
作したときの受信信号に対応するA/D変換器17の出力で
あり、メモリ18に記憶することにより得られる。(2)
式における減算は演算器19の減算により実行すれば良
い。
DS (x) is the output of the A / D converter 17 corresponding to the received signal when the short pulse driver 13 is operated before the long pulse driver 11 is operated or about 1 second after the operation is stopped. Yes, and can be obtained by storing in the memory 18. (2)
The subtraction in the formula may be executed by the subtraction of the arithmetic unit 19.

発明の効果 以上のように本発明は、長パルス駆動器により駆動され
た超音波変換器による被検体内反射体の照射による散乱
***置のシフトを、短パルス駆動器により駆動された超
音波変換器による受信信号の経時変化としてメモリに記
憶し、この経時変化率の温度依存を計測することによ
り、被検体内の温度に関する情報を得ることができ、そ
の効果は大きい。
EFFECTS OF THE INVENTION As described above, according to the present invention, the shift of the scatterer position due to the irradiation of the intra-subject reflector by the ultrasonic transducer driven by the long pulse driver is performed by the ultrasonic conversion driven by the short pulse driver. Information about the temperature in the subject can be obtained by storing the time-dependent change in the signal received by the instrument in the memory and measuring the temperature dependence of the time-dependent change rate, which is a great effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における超音波計測装置を示
す機能ブロック図、第2図(a),(b)は、第1図に
おける超音波変換器の動作タイミングを示すタイミング
図、第3図は従来の超音波計測装置のブロック図であ
る。 10,12…超音波変換器、11,13…パルス駆動器、19,21…
演算器。
FIG. 1 is a functional block diagram showing an ultrasonic measuring device according to an embodiment of the present invention, and FIGS. 2 (a) and 2 (b) are timing diagrams showing operation timings of the ultrasonic transducer in FIG. FIG. 3 is a block diagram of a conventional ultrasonic measuring device. 10,12 ... Ultrasonic transducer, 11,13 ... Pulse driver, 19,21 ...
Calculator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】長超音波パルス発生手段と、前記長超音波
パルスにより照射された被検部位に対して短超音波パル
スを送信する超音波変換器と、前記超音波変換器からの
受信信号の被検体内における特定深さにおける経時変化
率を得る手段とを具備することを特徴とする超音波計測
装置。
1. A long ultrasonic pulse generating means, an ultrasonic transducer for transmitting a short ultrasonic pulse to a test site irradiated with the long ultrasonic pulse, and a received signal from the ultrasonic transducer. And a means for obtaining a temporal change rate at a specific depth in the subject.
JP61071542A 1985-12-13 1986-03-28 Ultrasonic measuring device Expired - Fee Related JPH0677588B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61071542A JPH0677588B2 (en) 1986-03-28 1986-03-28 Ultrasonic measuring device
DE86309693T DE3688702T2 (en) 1985-12-13 1986-12-12 Ultrasound diagnostic device based on changes in an acoustic property.
US06/941,221 US4817615A (en) 1985-12-13 1986-12-12 Ultrasonic temperature measurement apparatus
EP86309693A EP0226466B1 (en) 1985-12-13 1986-12-12 Ultrasonic diagnostic apparatus based on variations of acoustic characteristic
EP90115644A EP0406915A1 (en) 1985-12-13 1986-12-12 Ultrasonic diagnostic apparatus based on variations of acoustic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071542A JPH0677588B2 (en) 1986-03-28 1986-03-28 Ultrasonic measuring device

Publications (2)

Publication Number Publication Date
JPS62227333A JPS62227333A (en) 1987-10-06
JPH0677588B2 true JPH0677588B2 (en) 1994-10-05

Family

ID=13463732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071542A Expired - Fee Related JPH0677588B2 (en) 1985-12-13 1986-03-28 Ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JPH0677588B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470465A (en) * 1987-09-10 1989-03-15 Agency Ind Science Techn Production of 3-ethylpyridine
JPH02264647A (en) * 1988-11-24 1990-10-29 Agency Of Ind Science & Technol Method and device for measuring acoustic characteristic and measuring temperature
JP5399192B2 (en) * 2009-09-30 2014-01-29 富士フイルム株式会社 Ultrasonic diagnostic apparatus and method for operating ultrasonic diagnostic apparatus

Also Published As

Publication number Publication date
JPS62227333A (en) 1987-10-06

Similar Documents

Publication Publication Date Title
US4754760A (en) Ultrasonic pulse temperature determination method and apparatus
JP4104456B2 (en) Photoacoustic investigation and imaging system
US20050085725A1 (en) Photoacoustic assay and imaging system
US20090056453A1 (en) Shear modulus estimation by application of spatially modulated impulse acoustic radiation force approximation
JPH0428375B2 (en)
US20030191399A1 (en) Circulation dynamics measuring apparatus, circulation dynamics measuring method, blood pressure measuring method and circulation dynamics sensor
Li et al. Blood flow imaging and volume flow quantitation with intravascular ultrasound
Barannik et al. Doppler ultrasound detection of shear waves remotely induced in tissue phantoms and tissue in vitro
US11439367B2 (en) Hybrid elastography Method, probe and device for hybrid elastography
Collin et al. Quantitative observations of cavitation activity in a viscoelastic medium
JP4739945B2 (en) Blood viscosity measuring device
JPH0677588B2 (en) Ultrasonic measuring device
ES2316834T3 (en) METHOD AND APPARATUS FOR NON-INVASIVE MEASUREMENT OF A CHANGE OF TEMPERATURE WITHIN A LIVING BODY.
JP2000088742A (en) Light-measuring device
JP2008183414A (en) Apparatus for measuring circulation movement, method for circulation movement, blood pressure measurement method, and sensor for circulation movement
CN110831505A (en) Method for measuring ultrasound attenuation parameters guided by harmonic elastography, probe and device for implementing the method
RU2794039C2 (en) Hybrid elastography method, probe and device for hybrid elastography
JPH0789088B2 (en) Ultrasonic measuring device
JPH0564059B2 (en)
JPS63240829A (en) Ultrasonic thermometric apparatus
Chang et al. Single-beam phase shift tracker with continuous musical palpations for mobile elastography
Olusanya General Principles of Ultrasound
JPH0696013B2 (en) Ultrasonic measuring device
JPH0636794B2 (en) Ultrasonic tissue diagnostic device
JPS62227332A (en) Ultrasonic measuring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees