JPH0676641B2 - Shape memory alloy - Google Patents

Shape memory alloy

Info

Publication number
JPH0676641B2
JPH0676641B2 JP62022193A JP2219387A JPH0676641B2 JP H0676641 B2 JPH0676641 B2 JP H0676641B2 JP 62022193 A JP62022193 A JP 62022193A JP 2219387 A JP2219387 A JP 2219387A JP H0676641 B2 JPH0676641 B2 JP H0676641B2
Authority
JP
Japan
Prior art keywords
shape memory
alloy
memory alloy
present
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62022193A
Other languages
Japanese (ja)
Other versions
JPS63190130A (en
Inventor
茂樹 白谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62022193A priority Critical patent/JPH0676641B2/en
Publication of JPS63190130A publication Critical patent/JPS63190130A/en
Publication of JPH0676641B2 publication Critical patent/JPH0676641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、二方向又は全方位性の形状記憶効果を容易に
発現させることのできるTiNi系形状記憶合金に関するも
のである。
TECHNICAL FIELD The present invention relates to a TiNi-based shape memory alloy capable of easily exhibiting a bidirectional or omnidirectional shape memory effect.

(従来の技術) 通常のNiTi合金の組成はTi−50原子%Ni近傍であり、こ
の組成域の合金に二方向性の形状記憶効果を与える方法
としては、一般に (イ)低温相を強加工する、(ロ)拘束加熱する、
(ハ)冷熱サイクルを加えトレーニングする三つ の方法がある。また、全方位性の形状記憶合金は一般に
Niの含有量が51〜52原子%の組成であり、従来のものと
比較して、Niが過剰でありこれを拘束時効する(「NIKK
EL MECANICAL」)1984,3.26 P 109〜112,日本金属学会
会報Vol24,No.1,1985P21,特開昭61−177360号公報)。
(Prior Art) The composition of a normal NiTi alloy is around Ti-50 atomic% Ni, and as a method of giving a bidirectional shape memory effect to an alloy in this composition range, (a) a low temperature phase is strongly worked. Yes, (b) Restraint heating,
(C) There are three methods of training by adding a thermal cycle. Also, omnidirectional shape memory alloys are generally
The composition of Ni content is 51 to 52 atomic%, and Ni is excessive compared with the conventional one, and this is restrained and aged (“NIKK
EL MECANICAL ") 1984, 3.26 P 109-112, Bulletin of the Japan Institute of Metals, Vol 24, No. 1, 1985 P21, JP-A-61-177360).

(発明が解決しようとする問題点) しかしながら、Ti−50原子%Niの組成域の合金に上記
(イ)(ロ)(ハ)等の形状記憶効果を与える加工を加
えても、二方向性を示さなかつたり、その作動が不安定
であつたりして実用的なものは得られていない。また、
Niの含有量が51〜52原子%の組成域のTi−Ni合金は第3
図に示すように記憶熱処理温度に対して変態点の変化が
大きく、また作動温度が低温側である。
(Problems to be solved by the invention) However, even if the alloy having the composition range of Ti-50 atomic% Ni is processed to give the shape memory effect such as the above (a), (b) and (c), the bidirectional property is obtained. However, no practical product has been obtained because the operation is unstable. Also,
The Ti-Ni alloy with a composition range of Ni content of 51 to 52 atomic% is the third
As shown in the figure, the change in transformation point is large with respect to the memory heat treatment temperature, and the operating temperature is on the low temperature side.

本発明は、上記した従来技術の問題点に鑑みてなされた
ものであり、二方向または全方位の形状記憶効果が容易
に発現でき、かつその作動精度が向上した形状記憶合金
を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned problems of the conventional art, and provides a shape memory alloy in which a shape memory effect in two directions or all directions can be easily expressed, and its operation accuracy is improved. It is intended.

(問題点を解決するための手段) 即ち、本発明の形状記憶合金はTiNi合金中に、セラミッ
クスの微粒子を添加分散させたことを特徴とする。
(Means for Solving Problems) That is, the shape memory alloy of the present invention is characterized in that fine particles of ceramics are added and dispersed in a TiNi alloy.

本発明で使用されるTiNi合金は、Niの原子%が49.5〜5
0.5で残部がTiであるものが好ましい。TiNi合金中に添
加・分散させる高融点で安定な微粒子としては、SiC,Al
2O3等の微粒子が好ましい。
The TiNi alloy used in the present invention has an atomic percentage of Ni of 49.5 to 5
It is preferably 0.5 and the balance is Ti. As high-melting point and stable fine particles to be added and dispersed in TiNi alloy, SiC, Al
Fine particles such as 2 O 3 are preferred.

該微粒子は粒径が1〜5μm程度の範囲内のものが採用
され、TiNi合金に対して、約10〜30%の体積率で使用さ
れる。
The fine particles have a particle diameter in the range of about 1 to 5 μm and are used at a volume ratio of about 10 to 30% with respect to the TiNi alloy.

(作用) セラミックスの微粒子を添加・分散させたTiNi合金は、
通常の方法で成形加工、記憶熱処理後、i)低温相に強
加工を与える、ii)拘束加熱を行なう等の2次処理を加
えることにより、微粒子のまわりに応力場が形成され、
二方向または全方位の形状記憶が発現する。そして、組
成の規制も受けず、安定した内部応力場が形成され易い
ので、二方向または全方向の記憶を発現し易くかつ作動
が安定である。
(Function) The TiNi alloy in which fine particles of ceramics are added and dispersed is
A stress field is formed around the fine particles by secondary processing such as i) applying strong working to the low temperature phase, ii) performing constraint heating after forming processing and memory heat treatment by a normal method,
Bidirectional or omnidirectional shape memory is developed. Further, since the stable internal stress field is easily formed without being restricted by the composition, it is easy to express the memory in two directions or all directions and the operation is stable.

(実施例) 以下、本発明の実施例について説明する。(Example) Hereinafter, the Example of this invention is described.

TiNi合金として、Niの原子%が49.5〜50.5%で残部がTi
である組成のものを、また添加微粒子としては、SiCは
平均粒径が3μmのものを20%の体積率で、またAl2O3
は平均粒径が3μmのものを15%の体積率で使用した。
微粒子を添加分散させた合金は、線径1mmのワイヤに成
形され、該ワイヤについて、 (イ)450℃で60分記憶処理後、低温で180°の強曲げ加
工をした。
As a TiNi alloy, the atomic% of Ni is 49.5-50.5% and the balance is Ti.
In addition, as the fine particles to be added, SiC having an average particle size of 3 μm is added at a volume ratio of 20% and Al 2 O 3
Used an average particle size of 3 μm at a volume ratio of 15%.
The alloy in which the fine particles were added and dispersed was formed into a wire having a wire diameter of 1 mm, and the wire was subjected to (b) a storage treatment at 450 ° C. for 60 minutes and then a strong bending work at a low temperature of 180 °.

(ロ)360°曲げた後、450℃で60分記憶処理し、逆向き
に360°曲げ拘束し、130℃で20分間保持した。
(B) After being bent at 360 °, it was subjected to a memory treatment at 450 ° C for 60 minutes, and was then bent and restrained in the opposite direction at 360 ° and held at 130 ° C for 20 minutes.

(ハ)450℃,500℃,550℃で60分記憶処理後変態点を測
定した。
(C) The transformation point was measured after a memory treatment at 450 ° C, 500 ° C, and 550 ° C for 60 minutes.

第1図は上記(イ)の処理を行なつた本発明の形状記憶
合金と従来の形状記憶合金(微粒子を添加しないもの)
の変位−温度特性を示すグラフである。該グラフから、
本発明の形状記憶合金の方が降温時の変形量が大で180
°強曲げ加工時の変形量に近いことがわかる。
FIG. 1 shows the shape memory alloy of the present invention which has been subjected to the treatment (a) above and the conventional shape memory alloy (without addition of fine particles).
5 is a graph showing the displacement-temperature characteristics of the. From the graph,
The shape memory alloy of the present invention has a large deformation amount at the time of temperature decrease
° It can be seen that it is close to the amount of deformation during strong bending.

また、第2図は上記(ロ)の処理を行なつた本発明の形
状記憶合金の温度に対する変形の様子を模式的に示した
ものであり、本発明の形状記憶合金は、ある程度全方位
的な作動を示す。
Further, FIG. 2 schematically shows a state of deformation of the shape memory alloy of the present invention, which has been subjected to the treatment (b), with respect to temperature. The shape memory alloy of the present invention is omnidirectional to some extent. Shows the proper operation.

また、第3図のグラフは上記(ハ)の処理を行なつた本
発明の形状記憶合金の記憶処理温度による変態点の変化
を、全方位の作動を示す従来の形状記憶合金と比較して
示したものである。本発明の形状記憶合金の方が変態点
の変化が小さいことがわかる。
In addition, the graph of FIG. 3 shows the change in the transformation point of the shape memory alloy of the present invention, which has been subjected to the above-mentioned treatment (c), due to the memory treatment temperature, compared with that of the conventional shape memory alloy exhibiting omnidirectional operation. It is shown. It can be seen that the shape memory alloy of the present invention has a smaller change in transformation point.

(発明の効果) 本発明の形状記憶合金は、組成の制約を受けずに、安定
した内部応力場が形成され易いので、二方向または全方
向の記憶を発現し易く、かつ作動が安定している。
(Effects of the Invention) The shape memory alloy of the present invention is not subject to compositional restrictions and is likely to form a stable internal stress field. Therefore, it is easy to develop bidirectional or omnidirectional memory, and its operation is stable. There is.

また、添加したセラミックスの微粒子による分散強化で
すべりの発生応力が上昇するから、合金の耐久性が向上
し、更に添加するセラミックの微粒子は非常に硬く、耐
摩耗性があるから合金の耐摩耗性が向上する。
In addition, dispersion strengthening due to the addition of fine particles of ceramics increases the stress that causes slippage, which improves the durability of the alloy. Furthermore, the fine particles of ceramics that are added are extremely hard and have wear resistance, so the wear resistance of the alloy is high. Is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の形状記憶合金と従来材との変位−温
度特性を示すグラフ、第2図は、本発明の形状記憶合金
の温度に対する変形の様子を示す模式図、第3図は、本
発明の形状記憶合金と従来材との記憶熱処理温度による
変態点の変化を示すグラフである。
FIG. 1 is a graph showing the displacement-temperature characteristics of the shape memory alloy of the present invention and a conventional material, FIG. 2 is a schematic diagram showing the state of deformation of the shape memory alloy of the present invention with respect to temperature, and FIG. FIG. 4 is a graph showing changes in transformation point of the shape memory alloy of the present invention and a conventional material depending on the memory heat treatment temperature.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミックスの微粒子を添加分散させたTi
Ni系形状記憶合金。
1. Ti containing fine particles of ceramics added and dispersed therein
Ni-based shape memory alloy.
JP62022193A 1987-02-02 1987-02-02 Shape memory alloy Expired - Fee Related JPH0676641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62022193A JPH0676641B2 (en) 1987-02-02 1987-02-02 Shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62022193A JPH0676641B2 (en) 1987-02-02 1987-02-02 Shape memory alloy

Publications (2)

Publication Number Publication Date
JPS63190130A JPS63190130A (en) 1988-08-05
JPH0676641B2 true JPH0676641B2 (en) 1994-09-28

Family

ID=12075961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62022193A Expired - Fee Related JPH0676641B2 (en) 1987-02-02 1987-02-02 Shape memory alloy

Country Status (1)

Country Link
JP (1) JPH0676641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742417U (en) * 1993-12-27 1995-08-04 帝国ピストンリング株式会社 Combination of piston and piston ring

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060225A1 (en) * 2010-11-01 2012-05-10 テルモ株式会社 Composite
WO2012160956A1 (en) * 2011-05-26 2012-11-29 テルモ株式会社 Composite material for medical devices and method for producing same
CN102952980A (en) * 2012-11-20 2013-03-06 无锡常安通用金属制品有限公司 Wide-temperature range memory alloy and preparation method thereof
EP3513490A4 (en) * 2016-09-14 2020-05-13 Smarter Alloys Inc. Shape memory alloy actuator with strain gauge sensor and position estimation and method for manufacturing same
CN115927911B (en) * 2022-12-26 2024-04-02 西部金属材料股份有限公司 High-hardness titanium alloy and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220852A (en) * 1985-07-19 1987-01-29 Daido Steel Co Ltd Pin material for dot printer
JPS6220851A (en) * 1985-07-19 1987-01-29 Daido Steel Co Ltd Pin material for dot printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742417U (en) * 1993-12-27 1995-08-04 帝国ピストンリング株式会社 Combination of piston and piston ring

Also Published As

Publication number Publication date
JPS63190130A (en) 1988-08-05

Similar Documents

Publication Publication Date Title
Pereira et al. Physical and mechanical properties of a thermomechanically treated NiTi wire used in the manufacture of rotary endodontic instruments
Hou et al. Phase transformation behaviour and bending property of twisted nickel–titanium endodontic instruments
Watts et al. Superplasticity in Al-Cu-Zr alloys. I- Material preparation and properties. II- Microstructural study
TWI670377B (en) Precipitation strengthened high-entropy superalloy
Plotino et al. Fatigue resistance of rotary instruments manufactured using different nickel–titanium alloys: a comparative study
JP5535426B2 (en) Method for processing nickel-titanium shape memory alloy
JP2010209468A (en) Alloy
Hamdy et al. Evaluation of flexibility, microstructure and elemental analysis of some contemporary nickel-titanium rotary instruments
JPH0676641B2 (en) Shape memory alloy
JP2789759B2 (en) Ti alloy engine valve
TW476796B (en) Copper base alloy casting, and methods for producing casting and forging empolying copper base alloy casting
JP4327952B2 (en) Al alloy with excellent vibration absorption performance
JP6156865B2 (en) Super elastic alloy
Angerman et al. Swelling of uranium by mechanical cavitation
WO1987001395A1 (en) Nickel-base cast alloy for high-temperature forging die
Bowen The Debye temperature of AuCu3 as a function of long-range order parameter
JP3332615B2 (en) TiAl-based intermetallic compound-based alloy and method for producing the same
Langdon Strengthening and weakening in the processing of ultrafine-grained metals
Shi et al. Effects of aging on martensitic transformation of Ti50Ni25Cu25 shape memory alloy
Lotkov et al. The influence of palladium on the martensitic transformation of the intermetallic compound TiNi
Baldan et al. Aging of a new niobium-modified MAR-M247 nickel-based superalloy
US2189571A (en) Alloys
JPH0364436A (en) Manufacture of high purity ni material
US3793009A (en) Impact antispark alloy for machine parts
JP2979420B2 (en) Orthodontic appliance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees