JPH0674806B2 - Processing method of ceramic dynamic bearing - Google Patents

Processing method of ceramic dynamic bearing

Info

Publication number
JPH0674806B2
JPH0674806B2 JP2337843A JP33784390A JPH0674806B2 JP H0674806 B2 JPH0674806 B2 JP H0674806B2 JP 2337843 A JP2337843 A JP 2337843A JP 33784390 A JP33784390 A JP 33784390A JP H0674806 B2 JPH0674806 B2 JP H0674806B2
Authority
JP
Japan
Prior art keywords
processing
laser light
base material
yagq
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2337843A
Other languages
Japanese (ja)
Other versions
JPH04203616A (en
Inventor
ゆみ子 野田
一郎 神谷
良一 新荘
学 利光
良雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2337843A priority Critical patent/JPH0674806B2/en
Publication of JPH04203616A publication Critical patent/JPH04203616A/en
Publication of JPH0674806B2 publication Critical patent/JPH0674806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves

Landscapes

  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス製動圧軸受の溝加工方法に関する
ものである。
The present invention relates to a groove processing method for a ceramic dynamic bearing.

〔従来技術〕[Prior art]

従来、セラミックス製動圧軸受の基材に動圧発生用の溝
を形成する方法の一つとして、Qスイッチ付きNd:YAG
(ネオジウム イットリウム アルミニウム ガーネッ
ト)レーザ(以下、単に「YAGQスイッチパルスレーザ」
と記す)光で加工する方法が考案されている。このYAGQ
スイッチパルスレーザ光による加工は、ピーク出力が大
きくとれ、加工性に優れ、また安定性、信頼性の面で多
くの利点を有することから多く利用される。
Nd: YAG with Q switch has been used as one of the conventional methods for forming grooves for generating dynamic pressure on the base material of ceramic dynamic bearings.
(Neodymium yttrium aluminum garnet) laser (hereinafter simply "YAGQ switch pulse laser")
A method of processing with light has been devised. This YAGQ
Processing with a switch pulse laser beam is often used because it has a large peak output, is excellent in processability, and has many advantages in terms of stability and reliability.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

YAGQスイッチパルスレーザ光による加工において、被加
工対象が動圧軸受である場合、例えば、第2図に示すよ
うに、セラミックス製動圧軸受の基材10の表面にYAGQス
イッチパルスレーザ光を軌跡11のように照射して加工す
るが、以下のような問題点があった。
When the object to be processed is a dynamic pressure bearing in the processing with the YAGQ switch pulsed laser light, for example, as shown in FIG. 2, the YAGQ switch pulsed laser light is traced on the surface of the base material 10 of the ceramic dynamic pressure bearing. However, there are the following problems.

(1)レーザ照射時間が経過するにつれ、被加工対象物
内部に熱が蓄積され、熱影響層が増加し、クラック12が
発生、さらにレーザ照射により生成した溶融物或いは蒸
散物が加工表面に堆積し、すぐに固化し溶融凝固物とな
ると同時に強く凝着し、堆積部13を形成し容易に除去で
きなくなる。また、加工面性状が加工の始まり部Aと終
わり部B(第2図参照)において異なる。
(1) As the laser irradiation time elapses, heat is accumulated inside the object to be processed, the heat-affected layer increases, cracks 12 occur, and the melt or transpiration generated by laser irradiation accumulates on the processed surface. Then, it solidifies immediately and becomes a molten solidified product, and at the same time, it strongly adheres to form a deposit 13 and cannot be easily removed. Further, the machined surface properties are different at the beginning A and the end B (see FIG. 2) of the machining.

(2)上記(1)のような堆積部を除去するために再加
工が必要であり、また再加工はラジアル軸受においては
極めて困難な加工である。
(2) Reworking is required to remove the deposited portion as in the above (1), and reworking is extremely difficult in radial bearings.

(3)上記(1)の問題を防ぐ手段の一つとしてレーザ
のピーク出力、パルス幅を制御する方法があるが、加工
中にそれらを随時変更することは困難である。
(3) There is a method of controlling the peak output and pulse width of the laser as one of means for preventing the problem of the above (1), but it is difficult to change them during processing as needed.

本発明は上述の点に鑑みてなされたもので、セラミック
製動圧軸受基材の摺動面に動圧発生溝を高精度で且つ容
易に形成できるセラミックス製動圧軸受の加工方法を提
供することを目的とする。
The present invention has been made in view of the above points, and provides a method for processing a ceramic dynamic pressure bearing, which can easily and accurately form a dynamic pressure generation groove on a sliding surface of a ceramic dynamic pressure bearing base material. The purpose is to

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題を解決するための本発明は、セラミックス製動
圧軸受の基材表面をYAGQスイッチパルスレーザ光を効率
よく吸収する樹脂或いは油材で被覆し、この被覆付き被
加工物にYAGQスイッチパルスレーザ光を該被覆表面から
照射し、該被覆を所定形状に除去すると共に基材表面に
該所定形状の凹部を形成し、しかる後前記被覆の残留部
分を除去することを特徴とする。
The present invention for solving the above-mentioned problems is to coat the base material surface of a ceramic dynamic pressure bearing with a resin or an oil material that efficiently absorbs YAGQ switch pulse laser light, and to this coated work piece, a YAGQ switch pulse laser. It is characterized in that the coating surface is irradiated with light to remove the coating into a predetermined shape and form a recess of the predetermined shape on the surface of the base material, and then the remaining portion of the coating is removed.

〔作用〕[Action]

セラミックス製動圧軸受の加工を上記の如く行うことに
より、セラミックス基材表面に形成された被覆(膜)が
レーザ光を吸収し、除去加工が効率よく行われ、且つ加
工によって発生した熱を効率良く吸収するので、被加工
対象物の熱蓄積が抑えられ、クラックの発生が抑えられ
ると共に、YAGQスイッチパルスレーザの照射により生成
した溶融物或いは蒸発物は被覆表面部分に広く付着し、
また一部が内部に拡散することにより容易に除去するこ
とができる。
By performing processing of the ceramic dynamic pressure bearing as described above, the coating (film) formed on the surface of the ceramic substrate absorbs the laser light, the removal processing is efficiently performed, and the heat generated by the processing is efficiently performed. Since it absorbs well, heat accumulation of the object to be processed is suppressed, the generation of cracks is suppressed, and the melt or vapor generated by the irradiation of the YAGQ switch pulse laser adheres widely to the coating surface portion,
Further, it can be easily removed by partially diffusing inside.

〔実施例〕〔Example〕

以下、本発明の一実例を図面を用いて説明する。 An example of the present invention will be described below with reference to the drawings.

第1図は本発明のセラミックス製動圧軸受の加工方法を
説明するための図である。図示するように、セラミック
ス製動圧軸受の基材10の表面にはYAGQスイッチパルスレ
ーザ光を効率よく吸収する樹脂材又は油の被膜14を形成
する。このように表面に被膜14を形成したセラミックス
製の基材10に軌跡11に沿ってYAGQスイッチパルスレーザ
光を照射することにより、基材10の表面にスベリ軸受の
動圧発生溝等の凹部15を形成する。
FIG. 1 is a view for explaining a method of processing a ceramic dynamic pressure bearing of the present invention. As shown in the figure, a resin material or oil coating 14 that efficiently absorbs the YAGQ switch pulsed laser light is formed on the surface of the base material 10 of the ceramic dynamic pressure bearing. By irradiating the YAGQ switch pulsed laser light along the locus 11 on the ceramic base material 10 having the coating film 14 formed on the surface in this manner, the surface of the base material 10 is depressed 15 such as a dynamic pressure generating groove of a sliding bearing. To form.

被膜14はYAGQスイッチパルスレーザ光を効率よく吸収す
る樹脂材又は油からなるから器材の溝加工が効率よく行
なわれるとともに、被覆14は加工により発生した熱を効
率よく吸収することになり、被加工対象物内部への熱蓄
積を抑える作用を奏する。
Since the coating 14 is made of a resin material or oil that efficiently absorbs the YAGQ switch pulsed laser light, the groove processing of the equipment can be performed efficiently, and the coating 14 efficiently absorbs the heat generated by the processing. This has the effect of suppressing heat accumulation inside the object.

第1図及び第2図はこの凹部15の断面を示す図で、基材
10の表面に被膜14を施さない場合は、レーザ光が基材10
のセラミック材の表面で吸収され、熱エネルギーに変換
され、基材10のレーザ光照射部分に温度上昇を与え、こ
れによりセラミックス材を溶融或いは蒸散させる。この
ような工程を繰り返すことにより、基材10の表面に深さ
d2=3〜20μmで深さと幅の比d2/w=10-4〜10-2の動圧
発生溝となる凹部15を形成するのである。ここでレーザ
光の熱を効率よく吸収する樹脂又は油からなる被膜14を
形成しない場合は、第2図に示すようにレーザ光の照射
初期Sの部分は同図のA部分のように、加工深さが深
く、側壁が急竣であるが、レーザ光を連続して照射して
いくと、生成した溶融物或いは蒸散物がすぐに固化し、
溶融凝固物となり周辺に飛散し、また次の加工面に堆積
し、強く凝着するため、レーザ光がこれに吸収又は反射
され、凹部の深さが徐々に浅くなる。また、連続してレ
ーザを照射していくと、基材10とセラミックス内部に加
工により発生した熱が蓄積し、熱影響層が増加する。そ
の結果加工深さがバラつき、溶融凝固層が多くなり、加
工終点Eの近傍の凹部15以外の部分に堆積部13を形成し
たり、クラック12が発生することは前述の通りである。
これに対して、基材10の表面にレーザ光の熱を効率よく
吸収する樹脂又は油からなる被膜14を形成した場合は、
前述のように被膜14がレーザ光を効率よく吸収するか
ら、基材の溝加工が効率よく行なわれるとともに、基材
10に蓄積される熱の一部或いは大部分を吸収するので、
熱蓄積が減少するから、第1図に示すようにクラックの
発生を抑えると共に、レーザ照射時に蒸発生成した溶融
物或いは蒸散物を被膜14上に広く付着させ、さらにその
一部が内部に拡散し複合層16,17、形成する。この被膜1
4の上に形成された複合層16,17は基材10の表面に直接付
着していないから、後に容易に除去することができる。
FIGS. 1 and 2 are views showing the cross section of the concave portion 15, and the base material
When the coating 14 is not applied to the surface of 10, the laser light is
Is absorbed by the surface of the ceramic material and converted into heat energy, and the temperature of the laser light irradiation portion of the base material 10 is raised, whereby the ceramic material is melted or evaporated. By repeating such steps, the depth of the surface of the substrate 10
The concave portion 15 is formed as a dynamic pressure generating groove having a depth-width ratio of d 2 / w = 10 −4 to 10 −2 with d 2 = 3 to 20 μm. Here, when the coating film 14 made of resin or oil that efficiently absorbs the heat of the laser light is not formed, the portion of the initial stage S of the laser light irradiation is processed as shown in A of FIG. 2 as shown in FIG. The depth is deep and the side wall is completed quickly, but when laser light is continuously irradiated, the generated melt or evaporate solidifies immediately,
It becomes a molten and solidified material and is scattered around, and is deposited on the next processed surface and strongly adheres, so that the laser light is absorbed or reflected by this and the depth of the recess gradually becomes shallow. Further, when the laser is continuously irradiated, heat generated by processing is accumulated inside the base material 10 and the ceramics, and the heat-affected layer increases. As a result, the processing depth varies, the melted and solidified layer increases, and the deposited portion 13 is formed in the portion other than the recess 15 near the processing end point E, and the crack 12 is generated as described above.
On the other hand, when the coating film 14 made of resin or oil that efficiently absorbs the heat of the laser light is formed on the surface of the base material 10,
As described above, the coating film 14 efficiently absorbs the laser light, so that the groove processing of the base material is efficiently performed and the base material is efficiently processed.
It absorbs some or most of the heat stored in 10, so
Since the heat accumulation is reduced, the generation of cracks is suppressed as shown in FIG. 1, and the melt or evaporate generated by evaporation at the time of laser irradiation is widely adhered to the coating film 14, and a part of it diffuses inside. The composite layers 16 and 17 are formed. This film 1
Since the composite layers 16 and 17 formed on the 4 are not directly attached to the surface of the base material 10, they can be easily removed later.

被膜14の材料としては、例えば青色に着色したジメチル
シリコンオイルや黒色に着色した塩化ビニール樹脂塗料
を用い、これらの被膜材料をセラミックス製の基材10の
加工面全面に厚さd1=数10μmで均一に塗布する。第3
図はレーザ加工装置の概略構成を示す図である。上記の
ように表面にジメチルシリコンオイルからなる被膜を形
成したセラミックス製の基材22をXY移動テーブル21の上
に載置し、YAGQスイッチパルスレーザ発振器され構成さ
れるレーザ発振器25からの出力パルスレーザ光が全反射
ミラー24で反射された後、集光レンズ23で集光され、基
材22の被膜14が形成された加工面に照射するようになっ
ている。この状態でXY移動テーブル21を駆動し、基材22
の加工位置をレーザ光の照射位置に合わせ、レーザ発振
器25を稼働し、前記YAGQスイッチパルスレーザ発振器に
よる短いパルスレーザ光を基材22に照射する。この場
合、YAGQスイッチパルスレーザ光の繰り返し周波数は、
例えば0.32kHzとし、XY移動テーブルの移動速度は、例
えば5mm/secとする。このようなパルスレーザ光の照射
を繰り返して、セラミックス製の基材22の加工面に所定
の加工溝を形成する。その後、基材22に残留したジメチ
ルシリコンオイルや塩化ビニール塗料を1.1.1−トリク
ロロエタンにより溶融除去する。なお、上記実施例にお
いては、レーザビームの捜査は、XY移動テーブル21を用
いる例をしめしたが、レーザビームの走査方法はこれに
限定されるものではなく、ガルバノメータ型オプティカ
ルスキャナ方式、光ファイバー方式のいずれでも良く、
マスクを併用することも可能である。
The material of the coating film 14, for example using a vinyl chloride resin paint colored dimethyl silicone oil or black colored in blue, the thickness d 1 = number 10μm these coating materials on the processed surface entire of the substrate 10 made of ceramics Apply evenly. Third
The figure shows a schematic configuration of a laser processing apparatus. A ceramic substrate 22 having a film made of dimethyl silicone oil formed on the surface as described above is placed on the XY moving table 21, and an output pulse laser from a laser oscillator 25 configured as a YAGQ switch pulse laser oscillator. After the light is reflected by the total reflection mirror 24, it is condensed by the condensing lens 23 and irradiates the processed surface of the base material 22 on which the coating film 14 is formed. In this state, the XY moving table 21 is driven and the base material 22
The processing position of is adjusted to the irradiation position of the laser beam, the laser oscillator 25 is operated, and the short pulse laser beam by the YAGQ switch pulse laser oscillator is irradiated to the base material 22. In this case, the repetition frequency of the YAGQ switch pulsed laser light is
For example, 0.32 kHz, and the moving speed of the XY moving table is, for example, 5 mm / sec. By repeating such irradiation of the pulsed laser light, a predetermined processed groove is formed on the processed surface of the ceramic base material 22. Then, the dimethyl silicone oil and the vinyl chloride paint remaining on the substrate 22 are melted and removed with 1.1.1-trichloroethane. In the above embodiment, the laser beam search has shown an example using the XY moving table 21, but the laser beam scanning method is not limited to this, and a galvanometer type optical scanner method or an optical fiber method is used. Whichever you like,
It is also possible to use a mask together.

また、上記実施例においては、被膜14の材料として青色
に着色したジメチルシリコンオイルや黒色に着色した塩
化ビニール塗料を用いたが、YAGレーザ光を効率よく吸
収し、厚さ数10μmの被膜を形成する樹脂,油であれば
どのような樹脂、油でもよく、その着色顔料もYAGレー
ザ光の反射両が少なく効率良く吸収できる顔料であれば
よい。また、この被膜を除去する方法は、上記被膜14を
構成する材料が溶解分解するものであればよく、超音波
洗浄を併用することも効果的である。
Further, in the above-mentioned examples, blue-colored dimethyl silicone oil or black-colored vinyl chloride paint was used as the material of the coating film 14, but the YAG laser light is efficiently absorbed to form a coating film having a thickness of several 10 μm. Any resin or oil may be used as long as it is a resin or oil that can be used, and the coloring pigment may be a pigment that can efficiently absorb the YAG laser light with little reflection. Further, the method for removing the coating film may be any method as long as the material forming the coating film 14 is dissolved and decomposed, and it is also effective to use ultrasonic cleaning together.

また、本発明の加工方法は、セラミックス一般に実現で
きるが、特に軸受として使用頻度の高いSiC、Si2N4、Al
2O3等が有効である。
Further, although the processing method of the present invention can be realized in general ceramics, SiC, Si 2 N 4 , Al which is frequently used as a bearing is particularly used.
2 O 3 etc. are effective.

また、本発明の加工方法は、被加工体、即ちスベリ軸受
の基材の形状及び加工溝の形状等は問わない。
Further, in the processing method of the present invention, the shape of the object to be processed, that is, the shape of the base material of the sliding bearing, the shape of the processed groove, and the like do not matter.

セラミックス製動圧軸受の溝加工を上記のように行なう
ことにより、レーザ加工条件を一度設定すれば、同じ条
件でセラミックス製動圧軸受を大量に生産でき、且つ加
工工程の自動化も簡単に行なうことがでくる。
By grooving ceramic dynamic bearings as described above, once the laser processing conditions are set, a large amount of ceramic dynamic bearings can be produced under the same conditions, and the automation of the machining process can be easily performed. Comes out.

また、マスキング等の前処理の工程が必要なくなるか
ら、前処理のために必要であった洗浄工程も不必要とな
る。
Further, since the pretreatment process such as masking is not required, the washing process required for the pretreatment is also unnecessary.

エネルギー原がYAGQスイッチパルスレーズの励起光ラン
プであり、このランプは長寿命、安価であるから、メン
テナンスが簡単となりランニングコストが安価となる。
The energy source is a YAGQ switch pulse-raised pump light lamp, which has a long life and is inexpensive, so maintenance is simple and running costs are low.

また、上記実施例においては、YAGレーザの走査にXYテ
ーブルを移動させる方法を用いたが、これに替えてガル
バノ鏡によるレーザビームを伝送,走査するガルバメー
タ型オプテカルスキャナ方式、又はレーザビームを導く
光ファイバ先端を走査する光ファイバ方式のいずれでも
よい。
Further, in the above embodiment, the method of moving the XY table was used for scanning the YAG laser, but instead of this, a galvanometer type optical scanner method of transmitting and scanning the laser beam by a galvanometer mirror, or guiding a laser beam Any of the optical fiber methods for scanning the tip of the optical fiber may be used.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、下記のような優れ
た効果が得られる。
As described above, according to the present invention, the following excellent effects can be obtained.

(1)溶融凝固物が加工部分以外に付着するのを防止で
きるので、最終仕上げを必要とせず、高精度で信頼性の
高い加工ができる。
(1) Since the melted and solidified material can be prevented from adhering to other than the processed portion, it is possible to perform highly accurate and highly reliable processing without requiring final finishing.

(2)一度加工条件を設定すれば、大量且つ同一寸法、
精度を持つ品質の高い製品を得ることができる。
(2) Once the processing conditions are set, a large amount of the same size,
It is possible to obtain high quality products with accuracy.

(3)ショットブラストのような機械加工に比べて加工
後のクラックの発生を抑え、使用上に重大な問題となる
パーティクルの発生をなくすることができる。
(3) As compared with mechanical processing such as shot blasting, generation of cracks after processing can be suppressed, and generation of particles, which is a serious problem in use, can be eliminated.

(4)使用実績が多く安定したYAGQスイッチパルスレー
ザ光を使用するので、安定で信頼の高い加工方法とな
る。
(4) A stable and highly reliable processing method is used because it uses stable and stable YAGQ switch pulsed laser light.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のセラミックス製動圧軸受の加工方法及
び加工断面を説明するための図、第2図は従来のセラミ
ックス製動圧軸受の加工方法及び加工断面を説明するた
めの図、第3図はレーザ加工装置の概略構成を示す図で
ある。 図中、10……セラミックス製の動圧軸受の基材、11……
YAGQスイッチパルスレーザ光の走査軌跡、12……クラッ
ク、13……堆積部、14……被膜、15……加工凹部、16,1
7……複合層。
FIG. 1 is a diagram for explaining a machining method and a machining cross section of a ceramic dynamic pressure bearing of the present invention, and FIG. 2 is a diagram for explaining a machining method and a machining cross section of a conventional ceramic dynamic pressure bearing. FIG. 3 is a diagram showing a schematic configuration of the laser processing apparatus. In the figure, 10 ... Base material of ceramic dynamic pressure bearing, 11 ...
YAGQ switch Scanning locus of pulsed laser light, 12 …… crack, 13 …… deposited part, 14 …… coating, 15 …… working recess, 16,1
7 ... Composite layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 利光 学 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 佐藤 良雄 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (56)参考文献 特開 平1−247566(JP,A) 特開 昭62−1886(JP,A) 特開 昭63−238992(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Manabu Toshiko 11-11 Haneda Asahi-cho, Ota-ku, Tokyo EBARA CORPORATION (72) Inventor Yoshio Sato 11-11 Haneda-Asahi-cho, Ota-ku, Tokyo (56) Reference JP-A-1-247566 (JP, A) JP-A-62-1886 (JP, A) JP-A-63-238992 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミックス製動圧軸受の基材表面をYAGQ
スイッチパルスレーザ光を効率よく吸収する樹脂或いは
油材で被覆し、この被覆付き被加工物にYAGQスイッチパ
ルスレーザ光を該被覆表面から照射し、該被覆を所定形
状に除去すると共に基材表面に該所定形状の凹部を形成
し、しかる後前記被覆の残留部分を除去することを特徴
とするセラミックス製動圧軸受の加工方法。
1. The surface of a base material of a ceramic dynamic pressure bearing is YAGQ.
It is coated with a resin or oil material that efficiently absorbs the switch pulsed laser light, and the coated work piece is irradiated with YAGQ switch pulsed laser light from the coating surface to remove the coating into a predetermined shape and also to the substrate surface. A method of processing a ceramic dynamic pressure bearing, characterized in that the concave portion having the predetermined shape is formed, and then the remaining portion of the coating is removed.
JP2337843A 1990-11-30 1990-11-30 Processing method of ceramic dynamic bearing Expired - Lifetime JPH0674806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2337843A JPH0674806B2 (en) 1990-11-30 1990-11-30 Processing method of ceramic dynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2337843A JPH0674806B2 (en) 1990-11-30 1990-11-30 Processing method of ceramic dynamic bearing

Publications (2)

Publication Number Publication Date
JPH04203616A JPH04203616A (en) 1992-07-24
JPH0674806B2 true JPH0674806B2 (en) 1994-09-21

Family

ID=18312496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2337843A Expired - Lifetime JPH0674806B2 (en) 1990-11-30 1990-11-30 Processing method of ceramic dynamic bearing

Country Status (1)

Country Link
JP (1) JPH0674806B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249150A (en) 2004-03-08 2005-09-15 Daido Metal Co Ltd Sliding member, and its manufacturing method and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621886A (en) * 1985-06-25 1987-01-07 Matsushita Electric Ind Co Ltd Fluid bearing shaft
JPS63238992A (en) * 1987-03-27 1988-10-05 Nippon Seiko Kk Method for forming grooves for generating dynamic pressure
JPH01247566A (en) * 1988-03-29 1989-10-03 Mitsubishi Electric Corp Production of fluid bearing

Also Published As

Publication number Publication date
JPH04203616A (en) 1992-07-24

Similar Documents

Publication Publication Date Title
JP3001816B2 (en) Laser scribing on glass using Nd: YAG laser
US4190759A (en) Processing of photomask
EP1586405B1 (en) Method of forming a periodic structure on a material surface
JP2000071086A (en) Method and device for shape processing by laser light
US4716270A (en) Non-contact scribing process for organic maskants on metals or alloys thereof
US20030062126A1 (en) Method and apparatus for assisting laser material processing
US5198637A (en) Method of cutting grooves in hydrodynamic bearing made of ceramic material
US20080124486A1 (en) Method For Enhancing Adhesion Of Thin Film
JPH0674806B2 (en) Processing method of ceramic dynamic bearing
JP2682230B2 (en) Laser processing method
JPH06170563A (en) Working method using pulse laser light
JPS5933091A (en) Laser working method
JPH0674808B2 (en) Grooving method for ceramic dynamic bearings
JPH0674807B2 (en) Grooving method for ceramic dynamic bearings
JPS63215394A (en) Method for processing substrate
JPS61283486A (en) Method and device for piercing by laser
Haehnel et al. Production of microstructures in wide-band-gap and organic materials using pulsed laser ablation at 157 nm wavelength
JP2009045637A (en) Laser beam machining apparatus
US20230121045A1 (en) Aluminum surface treatment method to increase adhesion with polyurethane coating
JPH0428490A (en) Laser beam hole machining method for ceramics
JP2006095546A (en) Laser beam processing method
JPS5937348Y2 (en) Laser processing equipment
Choi et al. Micromachining of Cr Thin Film and Glass Using an Ultrashort Pulsed Laser
JPH07124775A (en) Microfabrication method
JPS5940552B2 (en) Laser processing method