JPH0673474A - Copper alloy excellent in strength, electric conductivity and migration resistance - Google Patents

Copper alloy excellent in strength, electric conductivity and migration resistance

Info

Publication number
JPH0673474A
JPH0673474A JP22845692A JP22845692A JPH0673474A JP H0673474 A JPH0673474 A JP H0673474A JP 22845692 A JP22845692 A JP 22845692A JP 22845692 A JP22845692 A JP 22845692A JP H0673474 A JPH0673474 A JP H0673474A
Authority
JP
Japan
Prior art keywords
copper alloy
weight
strength
conductivity
migration resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22845692A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
元久 宮藤
Tetsuzo Ogura
哲造 小倉
Hiroshi Arai
浩史 荒井
Riichi Tsuno
理一 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22845692A priority Critical patent/JPH0673474A/en
Publication of JPH0673474A publication Critical patent/JPH0673474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Abstract

PURPOSE:To provide a copper alloy excellent in strength, spring critical value, migration resistance and electric conductivity and suitable as the materials for semiconductor parts, switch parts, mechanism parts such as a bus bar, terminal and connector and electrical and electronic parts such as a printed circuit board or the like. CONSTITUTION:This copper allay is the one having a compsn. contg., by weight, 0.15 to 0.50% Fe, >0.10 to 0.35% P, 0.05 to 0.30% Mg and 0.3 to 3.0% Zn and contg., at need, 0.01 to 1.0% Sn, and the balance Cu with inevitable impurities, and in which the content ratio (wt.% ratio) of the contained Fe, P and Mg is regulated to Fe:P:Mg=(5.5 to 6.5): (4.5 to 5.5): (3.5 to 4.5) and further Fe2P and Mg3P2 are precipitated into the mother phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強度、ばね限界値、耐
マイグレーション性及び導電率が優れ、半導体部品、開
閉器部品、ブスバー、端子及びコネクタ等の機構部品並
びにプリント配線板等の電気電子部品の材料として好適
の強度、導電率及び耐マイグレーション性が優れた銅合
金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is excellent in strength, spring limit value, migration resistance and electrical conductivity, and is used in electric parts such as semiconductor parts, switch parts, bus bars, mechanical parts such as terminals and connectors, and printed wiring boards. The present invention relates to a copper alloy excellent in strength, conductivity and migration resistance suitable as a material for parts.

【0002】[0002]

【従来の技術】近年、クーラー、TV及びVTR等の家
電製品、産業用電子機器並びに自動車等に搭載される電
気電子部品は急速に小型化及び高密度実装化が進んでお
り、これらの電気電子部品を実装する配線回路(プリン
ト配線板及びブスバー板等)もその影響を受けて、高密
度化及び多層化が促進されている。また、これらの配線
回路の電極間距離も近接化される傾向がある。
2. Description of the Related Art In recent years, electric and electronic parts mounted on home appliances such as coolers, TVs and VTRs, industrial electronic devices and automobiles have been rapidly miniaturized and mounted at high density. Wiring circuits (printed wiring boards, bus bar boards, etc.) on which components are mounted are also affected by the influence, and the densification and multilayering are promoted. Further, the distance between the electrodes of these wiring circuits tends to be closer.

【0003】このため、配線回路及び電極部は塵埃(塵
埃は水を吸収しやすい)及び電界の影響を受けやすくな
り、従来の材料(純銅又は黄銅)を使用した電気電子部
品では、金属の電気化学的なマイグレーションが生じや
すく、絶縁性が低下しやすい。
For this reason, the wiring circuit and the electrodes are easily affected by dust (dust easily absorbs water) and electric field, and in the electric / electronic parts using the conventional material (pure copper or brass), the metal electric Chemical migration is likely to occur and the insulating property is likely to deteriorate.

【0004】なお、マイグレーションとは、電極間に結
露等が起こると金属元素がイオン化し、このイオン化し
た金属元素がクーロン力により陰極に析出して、めっき
(電析)の場合と同様に、陰極から金属結合が樹枝状に
成長し陽極までに到達して、電気的に短絡することをい
う。マイグレーションは、乾燥及び結露等の環境に応じ
て金属結晶中及び表面に酸化物を伴うことが多く、マイ
グレーション化した物質は、プラスチック、ガラス及び
セラミックス等の絶縁物の表面上を極めて薄い膜状に分
布し、その先端では複数本に枝分かれすることが多い。
また、このマイグレーションは印加電圧が数ボルトから
数十ボルトであり、電流が数アンペアから数十アンペア
の場合に発生しやすく、一般的には部材が銀の場合に発
生しやすいといわれていたが、最近の電気電子部品の配
線回路の高密度実装化及び多層化の促進に伴って、銅又
は銅合金の場合にも発生する虞れがあることが判明し
た。
The term "migration" means that the metal element is ionized when dew condensation occurs between the electrodes, and the ionized metal element is deposited on the cathode by the Coulomb force, which is similar to plating (electrodeposition). It means that the metal bond grows in a dendritic form to reach the anode and is electrically short-circuited. Migration often accompanies oxides in and on the metal crystals depending on the environment such as drying and dew condensation, and the migrated substance forms an extremely thin film on the surface of insulators such as plastic, glass and ceramics. It is distributed, and its tip is often branched into multiple branches.
Further, this migration is likely to occur when the applied voltage is several volts to several tens of volts and the current is several amps to several tens of amps, and it is generally said that the migration is likely to occur when the member is silver. It has been found that there is a possibility that copper or copper alloy may also occur with the recent trend toward higher density mounting of wiring circuits of electric and electronic parts and promotion of multi-layering.

【0005】また、従来、銅又は銅合金からなる高導電
性の端子材料は、オス端子として使用されており、ばね
としての弾性を要求されることは殆どなかったが、近
年、メス端子への適用も要望されるようになった。この
ため、所謂圧接型端子として使用した場合のばね限界値
が高い銅合金が要望されている。
Further, conventionally, a highly conductive terminal material made of copper or a copper alloy has been used as a male terminal, and elasticity as a spring was hardly required, but in recent years, it has been used as a female terminal. Application has come to be requested. Therefore, there is a demand for a copper alloy having a high spring limit value when used as a so-called pressure contact type terminal.

【0006】更に、電気電子部品においては、電流容量
の増大に伴う発熱又は短期間での応力緩和による接圧力
の低下に伴う接合部の接触抵抗の増加等の点から、小型
化及び高密度実装化が阻害されているという問題点もあ
る。
Further, in electric and electronic parts, from the viewpoints of heat generation due to an increase in current capacity or an increase in contact resistance of a joint part due to a decrease in contact pressure due to stress relaxation in a short period, miniaturization and high-density mounting. There is also a problem that it has been blocked.

【0007】本願発明者等は、これらの問題点を解消す
べく、耐マイグレーション性が優れ、高導電率であると
共にばね限界値が高い銅合金として、所定量のSn、F
e、P、Zn及びMgを含有する銅合金を提案した(特
開平3-97816 号)。
In order to solve these problems, the inventors of the present invention selected a predetermined amount of Sn, F as a copper alloy having excellent migration resistance, high conductivity and high spring limit value.
A copper alloy containing e, P, Zn and Mg has been proposed (JP-A-3-97816).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、近年の
軽薄短小化の要求に伴い、電気電子部品のより一層の小
型化及び高密度化が要望されている。このため、従来に
比して強度及び導電率がより一層高く、ばね限界値が優
れた銅合金の開発が要望されている。即ち、電極間で結
露したとしても、電析物の成長を抑制できて、マイグレ
ーションが発生しにくいと共に、少なくとも60%IACS以
上の導電率を有し電流容量の向上にも対応できて、且
つ、機械的性質及び耐熱性が純銅に比して優れた銅合金
が要望されている。
However, with the recent demand for lighter, thinner, shorter, and smaller devices, there is a demand for further miniaturization and higher density of electric and electronic parts. For this reason, there is a demand for the development of a copper alloy having higher strength and conductivity than ever before and an excellent spring limit value. That is, even if dew condensation occurs between the electrodes, it is possible to suppress the growth of electrodeposits, migration is less likely to occur, at least have a conductivity of 60% IACS or more and can also cope with the improvement of the current capacity, and There is a demand for a copper alloy having excellent mechanical properties and heat resistance as compared with pure copper.

【0009】本発明はかかる問題点に鑑みてなされたも
のであって、強度、ばね限界値、耐マイグレーション性
及び導電率が優れ、半導体部品、開閉器部品、ブスバ
ー、端子及びコネクタ等の機構部品並びにプリント配線
板等の電気電子部品の材料として好適の強度、導電率及
び耐マイグレーション性が優れた銅合金を提供すること
を目的とする。
The present invention has been made in view of the above problems, and has excellent strength, spring limit value, migration resistance and conductivity, and mechanical parts such as semiconductor parts, switch parts, bus bars, terminals and connectors. Another object of the present invention is to provide a copper alloy excellent in strength, conductivity and migration resistance, which is suitable as a material for electric and electronic parts such as printed wiring boards.

【0010】[0010]

【課題を解決するための手段】本発明に係る強度、導電
率及び耐マイグレーション性が優れた銅合金は、0.15乃
至0.50重量%のFe、0.10乃至0.35重量%(但し、0.10
重量%を含まず)のP、0.05乃至0.30重量%のMg及び
0.3乃至3.0 重量%のZnを含有し、残部がCu及び不
可避的不純物からなり、前記Fe、P及びMgの含有量
比(重量%比)がFe:P:Mg=( 5.5乃至6.5 ):
( 4.5乃至5.5 ):( 3.5乃至4.5 )であると共に、母
相中にFe2 P及びMg32 が析出していることを特
徴とする。
The copper alloy excellent in strength, conductivity and migration resistance according to the present invention is 0.15 to 0.50% by weight of Fe, 0.10 to 0.35% by weight (however, 0.10 to 0.35% by weight).
P, 0.05 to 0.30 wt% Mg and
The content of Zn is 0.3 to 3.0% by weight, the balance is Cu and inevitable impurities, and the content ratio of Fe, P and Mg (% by weight) is Fe: P: Mg = (5.5 to 6.5):
(4.5 to 5.5): (3.5 to 4.5) and Fe 2 P and Mg 3 P 2 are precipitated in the matrix.

【0011】[0011]

【作用】本願発明者等は、従来に比して強度及び導電率
がより一層優れていると共に、耐マイグレーション性が
良好な銅合金を得るべく、種々実験研究を行なった。そ
の結果、Fe2 P及びMg32 を母相中に析出させ、
且つ、Fe:P:Mgの含有量比(重量%比)をFe:
P:Mg=( 5.5乃至6.5 ):( 4.5乃至5.5 ):(3.
5 乃至4.5 )とすることにより、強度、導電率及び耐マ
イグレーション性が優れた銅合金を得ることができると
の知見を得た。本発明は、これらの実験に基づいてなさ
れたものである。なお、Fe、P及びMgの含有量比
(重量%比)のより好ましい比率は、Fe:P:Mg=
6:5:4である。
The present inventors have conducted various experimental studies in order to obtain a copper alloy that is more excellent in strength and conductivity than conventional ones and has good migration resistance. As a result, Fe 2 P and Mg 3 P 2 are precipitated in the mother phase,
In addition, the content ratio (weight% ratio) of Fe: P: Mg is Fe:
P: Mg = (5.5 to 6.5) :( 4.5 to 5.5) :( 3.
It was found that a copper alloy excellent in strength, conductivity and migration resistance can be obtained by setting the ratio to 5 to 4.5). The present invention is based on these experiments. A more preferable ratio of the content ratios (% by weight) of Fe, P and Mg is Fe: P: Mg =
It is 6: 5: 4.

【0012】次に、本発明の銅合金における各成分の添
加理由及びその組成限定理由について説明する。
Next, the reason for adding each component and the reason for limiting the composition of the copper alloy of the present invention will be explained.

【0013】Fe(鉄) FeはPと共に添加することにより、母相中にリン化鉄
を形成して銅合金の強度向上に寄与する。Fe含有量が
0.15重量%未満では、後述するようにPを0.01乃至0.35
重量%(但し、0.10重量%を含まず)添加した場合に、
リン化鉄の形成に関与しない余剰のPが母相に固溶し
て、銅合金の導電率を低下させてしまう。また、Fe含
有量が0.50重量%を超えると、Pを0.35重量%含有させ
ても、リン化鉄を形成しきれないFeが母相中に固溶
し、銅合金の導電率が低下してしまう。このためFe含
有量は0.15乃至0.50重量%とする。
Fe (iron) When Fe is added together with P, iron phosphide is formed in the matrix to contribute to the improvement of the strength of the copper alloy. Fe content is
If it is less than 0.15% by weight, P is 0.01 to 0.35 as described later.
When added by weight% (excluding 0.10% by weight),
Excess P, which is not involved in the formation of iron phosphide, forms a solid solution in the mother phase and reduces the conductivity of the copper alloy. Further, when the Fe content exceeds 0.50% by weight, even if P is contained in an amount of 0.35% by weight, Fe, which cannot form iron phosphide, forms a solid solution in the matrix phase, and the conductivity of the copper alloy decreases. I will end up. Therefore, the Fe content is 0.15 to 0.50% by weight.

【0014】Mg(マグネシウム) Mgは、Pと共に添加することによって、母相中にリン
化マグネシウムを形成して、銅合金の強度を向上させる
効果がある。また、Mgは、電圧が印加された端子及び
コネクタ等の電極間に水が侵入したり又は結露等が生じ
た場合にCuのマイグレーションの形成を抑制する効果
があり、漏洩電流を抑制するために必須の元素である。
しかし、Mg含有量が0.05重量%未満の場合は、強度向
上の効果及びマイグレーションの抑制効果を十分に得る
ことができない。また、Mg含有量が 0.3重量%を超え
る場合は、造塊時の湯流れ性が低下すると共に、導電率
が低下する。このため、Mg含有量は0.05乃至0.3 重量
%とする。
Mg (magnesium) Mg, together with P, forms magnesium phosphide in the parent phase, and has the effect of improving the strength of the copper alloy. Further, Mg has an effect of suppressing the formation of Cu migration when water invades between electrodes to which a voltage is applied and electrodes such as a connector, or when dew condensation occurs, and in order to suppress leakage current. It is an essential element.
However, if the Mg content is less than 0.05% by weight, the effect of improving the strength and the effect of suppressing migration cannot be sufficiently obtained. On the other hand, when the Mg content exceeds 0.3% by weight, the flowability of molten metal at the time of ingot is lowered and the conductivity is lowered. Therefore, the Mg content is 0.05 to 0.3% by weight.

【0015】P(リン) Pは、Fe及びMgと反応してリン化合物(Fe2 P及
びMg32 )を形成し、銅合金の強度、ばね限界値、
導電率及び耐熱性を向上させる効果がある。
P (phosphorus) P reacts with Fe and Mg to form phosphorus compounds (Fe 2 P and Mg 3 P 2 ), strength of copper alloy, spring limit value,
It has an effect of improving conductivity and heat resistance.

【0016】銅合金中にFe2 Pを析出させるために
は、FeとPとの含有比は原子%でFe:P=2:1の
比率に近い割合で含有させることが好ましい。この比率
から大きく外れると、Fe2 Pの析出量が減少し、強度
及び導電率の向上効果が小さくなる。また、銅合金中に
Mg32 を析出させるためには、MgとPとの含有比
は原子%でMg:P=3:2の比率に近い割合で含有さ
せることが好ましい。この比率から大きく外れると、M
32 の析出量が減少し、強度、導電率及びマイグレ
ーションの抑制効果が小さくなる。
In order to precipitate Fe 2 P in the copper alloy, it is preferable that the content ratio of Fe and P be atomic% and be close to the ratio of Fe: P = 2: 1. If it deviates significantly from this ratio, the amount of Fe 2 P deposited will decrease, and the effect of improving strength and conductivity will decrease. Further, in order to precipitate Mg 3 P 2 in the copper alloy, it is preferable that the content ratio of Mg and P is atomic% and that the content is close to the ratio of Mg: P = 3: 2. If it deviates significantly from this ratio, M
The amount of g 3 P 2 deposited is reduced, and the effect of suppressing strength, conductivity and migration is reduced.

【0017】本願発明者等は、このような概念に基づい
て種々実験を行なった結果、以下のことが判明した。即
ち、Fe、P及びMgを含有する銅合金材を冷間圧延し
た後に所定の条件(温度が 500±50℃、処理時間が2時
間以上)で時効処理を行うと、母相中にFe2 P及びM
32 が析出する。このとき、Fe、P及びMgの含
有量を重量%比でFe:P:Mg=6:5:4とする
と、Fe2 P及びMg32 の析出が最も多く、銅合金
の強度及び導電率の向上等に最も効果がある。
The inventors of the present application conducted various experiments based on such a concept, and as a result, found the following. That is, when a copper alloy material containing Fe, P and Mg is cold-rolled and then subjected to an aging treatment under predetermined conditions (temperature is 500 ± 50 ° C., treatment time is 2 hours or more), Fe 2 is contained in the matrix. P and M
g 3 P 2 is deposited. At this time, if the content of Fe, P and Mg is set to be Fe: P: Mg = 6: 5: 4 in a weight% ratio, the precipitation of Fe 2 P and Mg 3 P 2 is the largest, and the strength and conductivity of the copper alloy are high. Most effective in improving the rate.

【0018】従って、Fe2 P及びMg32 を同一銅
合金中に析出させて銅合金の強度及び導電率を向上させ
るためには、P含有量は総量で0.10乃至0.45重量%(但
し、0.10重量%を含まず)とすることが必要である。し
かし、Pを多量に添加し、Pが母相に固溶して残留する
ようにすると、銅合金の導電性の低下及び腐食割れを生
じやすくなり、且つ、Pを0.35重量%を超えて添加する
と、鋳造及び熱間圧延時に割れを生じやすくなる。従っ
て、Pの添加量は0.10乃至0.35重量%(但し、0.10重量
%を含まず)とする。
Therefore, in order to precipitate Fe 2 P and Mg 3 P 2 in the same copper alloy to improve the strength and conductivity of the copper alloy, the total P content is 0.10 to 0.45% by weight (however, 0.10% by weight is not included). However, if P is added in a large amount and P is left as a solid solution in the mother phase, the conductivity of the copper alloy is likely to deteriorate and corrosion cracking is likely to occur, and P is added in an amount of more than 0.35% by weight. Then, cracking is likely to occur during casting and hot rolling. Therefore, the amount of P added is 0.10 to 0.35% by weight (however, 0.10% by weight is not included).

【0019】Zn(亜鉛) Znは、電圧が印加された端子又はコネクタの間に水が
侵入した場合のCuのマイグレーションの形成を抑制す
る効果があり、漏洩電流を抑制するために必須の元素で
ある。Zn含有量が 0.3重量%未満の場合は、従来電気
電子機器に使用されている黄銅に比して耐マイグレーシ
ョン性が劣る。また、Zn含有量が 3.0重量%を超える
と、マイグレーションの形成を抑えて漏洩電流を抑制す
る効果は大きいものの、導電率が低下すると共に、応力
腐食割れを生じやすくなる等の不都合が発生する。従っ
て、Zn含有量は 0.3乃至3.0 重量%とする。
Zn (Zinc) Zn has the effect of suppressing the formation of Cu migration when water enters between terminals or connectors to which a voltage is applied, and is an essential element for suppressing leakage current. is there. If the Zn content is less than 0.3% by weight, the migration resistance is inferior to that of brass conventionally used in electric and electronic devices. On the other hand, if the Zn content exceeds 3.0% by weight, the effect of suppressing the formation of migration and suppressing the leakage current is great, but the electrical conductivity decreases and stress corrosion cracking easily occurs. Therefore, the Zn content is 0.3 to 3.0% by weight.

【0020】Sn(スズ) Snは、Cu中に固溶することによって強度及びばね限
界値をより一層向上させる元素である。Sn含有量が0.
01重量%未満では、これらの効果を十分に得ることがで
きない。また、Sn含有量が 1.0重量%を超えると、導
電率が低下してしまう。このため、Snを含有する場合
は、その含有量を0.01乃至1.0 重量%とすることが好ま
しい。
Sn (Tin) Sn is an element that further improves the strength and the spring limit value by forming a solid solution in Cu. Sn content is 0.
If it is less than 01% by weight, these effects cannot be sufficiently obtained. Further, if the Sn content exceeds 1.0% by weight, the conductivity will decrease. Therefore, when Sn is contained, its content is preferably 0.01 to 1.0% by weight.

【0021】なお、不可避的不純物として、B、Be、
Al、Si、Ti、Cr、Mn、Ni、Co、Zr、A
g、In、Pb及びSbからなる群から選択された1種
又は2種以上の元素を、導電率で60%IACS以上となる範
囲で含有しても、本発明に係る銅合金の各種特性が失わ
れることはない。
As inevitable impurities, B, Be,
Al, Si, Ti, Cr, Mn, Ni, Co, Zr, A
Even if one or more elements selected from the group consisting of g, In, Pb and Sb are contained in a range of 60% IACS or more in electric conductivity, various characteristics of the copper alloy according to the present invention will be obtained. It will not be lost.

【0022】[0022]

【実施例】次に、本発明の実施例についてその比較例と
比較して説明する。
EXAMPLES Next, examples of the present invention will be described in comparison with comparative examples.

【0023】先ず、下記表1に示す組成の銅合金を小型
電気炉で大気中において木炭皮膜下で溶解し、厚さが50
mm、幅が80mm、長さが 180mmの鋳塊を溶製した。但し、
比較例10は、従来電気電子部品の材料として使用され
ている黄銅である。また、Mg含有量が多い比較例7
は、造塊時に巨大晶出物及びピンホール等の内部欠陥が
多発したため、以後の操作を中止した。
First, a copper alloy having the composition shown in Table 1 below was melted under a charcoal film in the atmosphere in a small electric furnace to a thickness of 50.
mm, width 80 mm, length 180 mm were ingot. However,
Comparative Example 10 is brass that has been conventionally used as a material for electric and electronic parts. In addition, Comparative Example 7 having a high Mg content
Since many internal defects such as giant crystallized substances and pinholes occurred during the ingot formation, the subsequent operations were stopped.

【0024】[0024]

【表1】 [Table 1]

【0025】次に、これらの鋳塊の表面及び裏面を各 2
mmづつ面削し、比較例10においては 740℃の温度で、
それ以外の銅合金においては 850℃の温度で熱間圧延を
行って、厚さが15mmの板材を得た。なお、この熱間圧延
工程において、P含有量が多い比較例6は割れが発生し
たため、以後の操作を中止した。
Next, each of the front and back surfaces of these ingots is
mm was chamfered, and in Comparative Example 10, at a temperature of 740 ° C.,
Other copper alloys were hot-rolled at a temperature of 850 ° C to obtain a plate material having a thickness of 15 mm. In this hot rolling step, Comparative Example 6 containing a large amount of P had cracks, so the subsequent operations were stopped.

【0026】次に、これらの熱間圧延材の表面の酸化ス
ケールを濃度が20体積%の硫酸水を用いて除去した。そ
の後、これらの熱間圧延材に対し冷間圧延加工を施し、
実施例1乃至6及び比較例1乃至9(但し、比較例6,
7を除く)については 500℃の温度で2時間の条件で焼
鈍し、比較例10については 430℃の温度で2時間の条
件で焼鈍して、厚さが0.64mmの冷間圧延材を得た。更
に、ばね限界値を向上させるために、実施例1乃至6及
び比較例1乃至9(但し、比較例6,7を除く)につい
ては 250℃の温度で1時間の条件で、比較例10につい
ては 180℃の温度で1時間の条件で、低温焼鈍を施し
た。
Next, the oxide scale on the surface of each of these hot rolled materials was removed using sulfuric acid water having a concentration of 20% by volume. After that, cold rolling is applied to these hot rolled materials,
Examples 1 to 6 and Comparative Examples 1 to 9 (however, Comparative Example 6,
No. 7) was annealed at a temperature of 500 ° C. for 2 hours, and Comparative Example 10 was annealed at a temperature of 430 ° C. for 2 hours to obtain a cold-rolled material having a thickness of 0.64 mm. It was Further, in order to improve the spring limit value, Examples 1 to 6 and Comparative Examples 1 to 9 (excluding Comparative Examples 6 and 7) were heated at a temperature of 250 ° C. for 1 hour, and Comparative Example 10 was used. Was subjected to low temperature annealing at a temperature of 180 ° C. for 1 hour.

【0027】これらの実施例及び比較例の各板材からそ
の長手方向を圧延方向に平行としてJIS 13号B 試験片を
形成し、これらの試験片の引張強さ及び伸びを測定し
た。また、これらの実施例及び比較例の導電率を JIS H
0505 に基づいて測定した。更に、これらの実施例及び
比較例の耐マイグレーション性を調べた。
JIS No. 13B test pieces were formed from the plate materials of these Examples and Comparative Examples with the longitudinal direction parallel to the rolling direction, and the tensile strength and elongation of these test pieces were measured. In addition, the electrical conductivity of these examples and comparative examples is JIS H
0505. Furthermore, the migration resistance of these examples and comparative examples was investigated.

【0028】但し、耐マイグレーション性は、以下に示
すようにして評価した。即ち、図1に示すように、厚さ
が0.64mm、幅が 3.0mm、長さが80mmの試験片1,2をポ
リスチレン(ABS)樹脂製の板3上に 1.0mmの間隔で
相互に平行に配置した。この板3には、幅Wが 1.0mm、
高さHが 0.8mmの突起3aが設けられており、この突起
3aを挟んで試験片1,2を配置した。そして、この試
験片1,2の端部に蓄電池4(電圧:14V)、電流計
5及び可変抵抗器7の直流回路を接続すると共に、試験
片1,2間に電圧計6を接続した。
However, the migration resistance was evaluated as follows. That is, as shown in FIG. 1, test pieces 1 and 2 having a thickness of 0.64 mm, a width of 3.0 mm and a length of 80 mm are parallel to each other on a plate 3 made of polystyrene (ABS) resin at an interval of 1.0 mm. Placed in. This plate 3 has a width W of 1.0 mm,
A protrusion 3a having a height H of 0.8 mm was provided, and the test pieces 1 and 2 were arranged with the protrusion 3a sandwiched therebetween. Then, the storage battery 4 (voltage: 14 V), the ammeter 5 and the DC circuit of the variable resistor 7 were connected to the ends of the test pieces 1 and 2, and the voltmeter 6 was connected between the test pieces 1 and 2.

【0029】そして、図2に示すように、ビニルテープ
10及び絶縁材11により試験片1,2を板3に固定
し、試験片1,2間に直流電圧を印加した状態で板3を
水道水8が装入された容器9中に浸漬した。水道水8中
に5分間浸漬した後、10分間乾燥する乾湿繰り返し試験
を50サイクル繰り返し、その間の最大漏洩電流値を高感
度レコーダで測定して、耐マイグレーション性を評価し
た。
Then, as shown in FIG. 2, the test pieces 1 and 2 are fixed to the plate 3 by the vinyl tape 10 and the insulating material 11, and the plate 3 is tapped with a direct current voltage applied between the test pieces 1 and 2. It was immersed in a container 9 charged with water 8. The wet and dry repeated test of immersing in tap water 8 for 5 minutes and then drying for 10 minutes was repeated 50 cycles, and the maximum leakage current value during that time was measured with a high sensitivity recorder to evaluate migration resistance.

【0030】これらの試験結果を、下記表2にまとめて
示す。
The results of these tests are summarized in Table 2 below.

【0031】[0031]

【表2】 [Table 2]

【0032】この表2から明らかなように、実施例1
は、Fe,P,Mgからなる化合物、Fe2 P及びMg
32 が十分に析出しているため引張強さ及び導電率が
優れ、且つ、耐マイグレーション性が比較例10(黄
銅)と同程度と良好である。また、0.01乃至1.0 重量%
のSnを含有する実施例2乃至6は、実施例1に比し
て、引張強さ及び導電率等の特性が略同等か又はそれ以
上であり、且つ、ばね限界値が40.8kgf/mm2 以上と極め
て優れている。
As is clear from Table 2, Example 1
Is a compound consisting of Fe, P and Mg, Fe 2 P and Mg
Since 3 P 2 is sufficiently precipitated, the tensile strength and the conductivity are excellent, and the migration resistance is as good as Comparative Example 10 (brass). Also, 0.01 to 1.0% by weight
In Examples 2 to 6 containing Sn, the properties such as tensile strength and conductivity are substantially equal to or higher than those of Example 1, and the spring limit value is 40.8 kgf / mm 2. It is extremely excellent as above.

【0033】一方、Mg含有量が少ない比較例1は、単
体のPが母相中に固溶した結果、導電率が低下してい
る。また、応力腐食割れ感受性も高くなっている。P含
有比率が低い比較例2は、P化合物であるFe2 P及び
Mg32 が十分に形成析出されないためにFe及びM
gが母相中に固溶し、その結果、導電率が低下してい
る。また、P及びMg含有量が低い比較例3並びにFe
及びZn含有量が低い比較例4は、いずれも実施例1乃
至6に比して、引張強さ、ばね限界値及び耐マイグレー
ション性が劣っている。更に、Fe含有量が多い比較例
5及びSn含有量が多い比較例8は、いずれも導電率が
劣っているものであった。更にまた、Zn含有量が多い
比較例9は、導電率が低いと共に応力腐食割れ感受性が
高いものであった。
On the other hand, in Comparative Example 1 in which the Mg content is low, the conductivity is lowered as a result of the solid solution of P in the parent phase. Also, the susceptibility to stress corrosion cracking is high. In Comparative Example 2 in which the P content ratio is low, Fe 2 M and Mg 3 P 2 which are P compounds are not sufficiently formed and deposited, so that Fe and M
g is solid-dissolved in the mother phase, and as a result, the conductivity is lowered. In addition, Comparative Example 3 with low P and Mg contents and Fe
And Comparative Example 4 having a low Zn content are inferior to Examples 1 to 6 in tensile strength, spring limit value and migration resistance. Further, in Comparative Example 5 having a large Fe content and Comparative Example 8 having a large Sn content, the conductivity was inferior. Furthermore, in Comparative Example 9 in which the Zn content was high, the conductivity was low and the stress corrosion cracking susceptibility was high.

【0034】[0034]

【発明の効果】以上説明したように本発明に係る銅合金
は、所定量のFe、P、Mg及びZnを含有し、且つ、
Fe、P及びMgの含有量比(重量%)が所定の範囲で
あると共に、Fe2 P及びMg32 が母相中に析出し
ているから、強度、ばね限界値、耐マイグレーション性
及び導電率が優れており、電極間距離を小さくしても短
絡を防止できると共に、電流密度の増大による発熱及び
焼損等を抑制することができる。従って、本発明に係る
銅合金は、半導体部品、開閉器部品、ブスバー、端子及
びコネクタ等の機構部品並びにプリント配線板等の電気
電子部品の材料として好適であり、これらの部品の製品
コストを低減することができる。
As described above, the copper alloy according to the present invention contains a predetermined amount of Fe, P, Mg and Zn, and
The content ratio (% by weight) of Fe, P and Mg is within the predetermined range, and Fe 2 P and Mg 3 P 2 are precipitated in the matrix, so that strength, spring limit value, migration resistance and The conductivity is excellent, short-circuits can be prevented even if the distance between the electrodes is reduced, and heat generation and burnout due to an increase in current density can be suppressed. Therefore, the copper alloy according to the present invention is suitable as a material for semiconductor parts, switch parts, busbars, mechanical parts such as terminals and connectors, and electric / electronic parts such as printed wiring boards, and reduces the product cost of these parts. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】耐マイグレーション性の試験に用いた試料を示
す斜視図である。
FIG. 1 is a perspective view showing a sample used for a migration resistance test.

【図2】耐マイグレーション性の試験方法を示す模式図
である。
FIG. 2 is a schematic diagram showing a method of testing migration resistance.

【符号の説明】[Explanation of symbols]

1,2;試料片 3;板 4;蓄電池 5;電流計 6;電圧計 7;可変抵抗器 1, 2; sample piece 3; plate 4; storage battery 5; ammeter 6; voltmeter 7; variable resistor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津野 理一 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Riichi Tsuno 14-1 Nagafu Minatomachi, Shimonoseki City, Yamaguchi Prefecture Kobe Steel Works, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 0.15乃至0.50重量%のFe、0.10乃至0.
35重量%(但し、0.10重量%を含まず)のP、0.05乃至
0.30重量%のMg及び 0.3乃至3.0 重量%のZnを含有
し、残部がCu及び不可避的不純物からなり、前記F
e、P及びMgの含有量比(重量%比)がFe:P:M
g=( 5.5乃至6.5 ):( 4.5乃至5.5):( 3.5乃至
4.5 )であると共に、母相中にFe2 P及びMg32
が析出していることを特徴とする強度、導電率及び耐マ
イグレーション性が優れた銅合金。
1. 0.15 to 0.50% by weight Fe, 0.10 to 0.
35% by weight (excluding 0.10% by weight) of P, 0.05 to
It contains 0.30% by weight of Mg and 0.3 to 3.0% by weight of Zn, and the balance is Cu and inevitable impurities.
The content ratio (weight% ratio) of e, P and Mg is Fe: P: M
g = (5.5 to 6.5): (4.5 to 5.5): (3.5 to
4.5) and Fe 2 P and Mg 3 P 2 in the matrix
A copper alloy having excellent strength, electrical conductivity, and migration resistance, which is characterized by being precipitated.
【請求項2】 0.01乃至1.0 %のSnを更に含有するこ
とを特徴とする請求項1に記載の強度、導電率及び耐マ
イグレーション性が優れた銅合金。
2. The copper alloy excellent in strength, conductivity and migration resistance according to claim 1, further comprising 0.01 to 1.0% of Sn.
JP22845692A 1992-08-27 1992-08-27 Copper alloy excellent in strength, electric conductivity and migration resistance Pending JPH0673474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22845692A JPH0673474A (en) 1992-08-27 1992-08-27 Copper alloy excellent in strength, electric conductivity and migration resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22845692A JPH0673474A (en) 1992-08-27 1992-08-27 Copper alloy excellent in strength, electric conductivity and migration resistance

Publications (1)

Publication Number Publication Date
JPH0673474A true JPH0673474A (en) 1994-03-15

Family

ID=16876776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22845692A Pending JPH0673474A (en) 1992-08-27 1992-08-27 Copper alloy excellent in strength, electric conductivity and migration resistance

Country Status (1)

Country Link
JP (1) JPH0673474A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841408A2 (en) * 1996-11-07 1998-05-13 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US5814168A (en) * 1995-10-06 1998-09-29 Dowa Mining Co., Ltd. Process for producing high-strength, high-electroconductivity copper-base alloys
US5865910A (en) * 1996-11-07 1999-02-02 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US6241831B1 (en) 1999-06-07 2001-06-05 Waterbury Rolling Mills, Inc. Copper alloy
US6436206B1 (en) 1999-04-01 2002-08-20 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US6471792B1 (en) 1998-11-16 2002-10-29 Olin Corporation Stress relaxation resistant brass
US6679956B2 (en) 1997-09-16 2004-01-20 Waterbury Rolling Mills, Inc. Process for making copper-tin-zinc alloys
US6695934B1 (en) 1997-09-16 2004-02-24 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
EP1482063A1 (en) * 2003-05-27 2004-12-01 Fisk Alloy Wire, Inc. Processing copper-magnesium alloys and improved copper alloy wire
EP1674587A1 (en) * 2004-12-24 2006-06-28 Kabushiki Kaisha Kobe Seiko Sho Copper alloy having bendability and stress relaxation property
KR100716322B1 (en) * 2004-11-02 2007-05-11 가부시키가이샤 고베 세이코쇼 Copper alloy thin films, copper alloy sputtering targets and flat panel displays
CN100439530C (en) * 2004-12-24 2008-12-03 株式会社神户制钢所 Copper alloy having bendability and stress relaxation property
JP2014234534A (en) * 2013-05-31 2014-12-15 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and deflection coefficient

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814168A (en) * 1995-10-06 1998-09-29 Dowa Mining Co., Ltd. Process for producing high-strength, high-electroconductivity copper-base alloys
US6132529A (en) * 1995-10-09 2000-10-17 Dowa Mining Co., Ltd. Leadframe made of a high-strength, high-electroconductivity copper alloy
EP0841408A2 (en) * 1996-11-07 1998-05-13 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
WO1998020176A1 (en) * 1996-11-07 1998-05-14 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US5820701A (en) * 1996-11-07 1998-10-13 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US5865910A (en) * 1996-11-07 1999-02-02 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
EP0841408A3 (en) * 1996-11-07 1999-03-03 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US6695934B1 (en) 1997-09-16 2004-02-24 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US6679956B2 (en) 1997-09-16 2004-01-20 Waterbury Rolling Mills, Inc. Process for making copper-tin-zinc alloys
US6471792B1 (en) 1998-11-16 2002-10-29 Olin Corporation Stress relaxation resistant brass
US6436206B1 (en) 1999-04-01 2002-08-20 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US6689232B2 (en) 1999-06-07 2004-02-10 Waterbury Rolling Mills Inc Copper alloy
US6241831B1 (en) 1999-06-07 2001-06-05 Waterbury Rolling Mills, Inc. Copper alloy
EP1482063A1 (en) * 2003-05-27 2004-12-01 Fisk Alloy Wire, Inc. Processing copper-magnesium alloys and improved copper alloy wire
KR100716322B1 (en) * 2004-11-02 2007-05-11 가부시키가이샤 고베 세이코쇼 Copper alloy thin films, copper alloy sputtering targets and flat panel displays
EP1674587A1 (en) * 2004-12-24 2006-06-28 Kabushiki Kaisha Kobe Seiko Sho Copper alloy having bendability and stress relaxation property
CN100439530C (en) * 2004-12-24 2008-12-03 株式会社神户制钢所 Copper alloy having bendability and stress relaxation property
JP2014234534A (en) * 2013-05-31 2014-12-15 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and deflection coefficient

Similar Documents

Publication Publication Date Title
EP0222406B1 (en) Copper alloy excellent in migration resistance
JPH0673474A (en) Copper alloy excellent in strength, electric conductivity and migration resistance
JPH0559468A (en) Copper alloy for conductive spring
JP2722401B2 (en) Highly conductive copper alloy for electrical and electronic component wiring with excellent migration resistance
JPH04311544A (en) Electrically conductive material
JPH03226536A (en) Migration-resistant copper alloy for terminal and connector excellent in spring properties, strength and electrical conductivity
JPH04180531A (en) Electrically conductive material
JPS64451B2 (en)
JPH04231443A (en) Electrifying material
JPH04231430A (en) Electrifying material
JPS62199741A (en) Copper alloy for terminal and connector having superior migration resistance
JPH04231447A (en) Conductive material
JPH04231432A (en) Electrifying material
JP2977839B2 (en) Highly conductive copper alloy for electrical and electronic components with excellent migration resistance
JPH04231433A (en) Electrifying material
JPS62146231A (en) High conductivity copper alloy superior in migration resistance
JPH04231446A (en) Conductive material
JPH04231444A (en) Production of electrifying material
JPS63310935A (en) High electroconductive copper alloy having excellent migration resistance
JPH0499839A (en) Conductive material
JPH04231445A (en) Production of electrifying material
JPS62136539A (en) Copper alloy having high electric conductivity and superior migration resistance
JPH01168830A (en) Electric conductive material
JPS6311417B2 (en)
JPH01168831A (en) Electric conductive material