JPH0673387B2 - Piezoelectric displacement element - Google Patents

Piezoelectric displacement element

Info

Publication number
JPH0673387B2
JPH0673387B2 JP60273944A JP27394485A JPH0673387B2 JP H0673387 B2 JPH0673387 B2 JP H0673387B2 JP 60273944 A JP60273944 A JP 60273944A JP 27394485 A JP27394485 A JP 27394485A JP H0673387 B2 JPH0673387 B2 JP H0673387B2
Authority
JP
Japan
Prior art keywords
electrode layer
displacement element
piezoelectric displacement
ceramic
zircon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60273944A
Other languages
Japanese (ja)
Other versions
JPS62132381A (en
Inventor
貞行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60273944A priority Critical patent/JPH0673387B2/en
Publication of JPS62132381A publication Critical patent/JPS62132381A/en
Publication of JPH0673387B2 publication Critical patent/JPH0673387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は積層型圧電変位素子の内部電極に関するもの
である。
TECHNICAL FIELD The present invention relates to an internal electrode of a laminated piezoelectric displacement element.

(従来の技術) 従来、積層型圧電変位素子において内部電極となる金属
材料に圧電変位素子の主成分セラミックスや主成分に近
い組成のセラミックスあるいはガラス質材料等を少量含
有せしめて、金属電極層とセラミックスとの接合強度を
高める方法が採られていた。
(Prior Art) Conventionally, a small amount of a main component ceramic of a piezoelectric displacement element, a ceramic having a composition close to the main component, a glassy material, or the like is contained in a metal material to be an internal electrode in a laminated piezoelectric displacement element to form a metal electrode layer. A method of increasing the bonding strength with ceramics has been adopted.

(発明が解決しようとする問題点) 上記の方法に従えば純粋な金属層を電極として使用する
場合と比較してセラミックスと電極層との接合強度が高
まる。しかし、この接合強度はセラミックス自体の機械
的破壊強度より劣るため実用上充分とはいえない。例え
ば圧電変位素子に大きな引張り力が加わると素子は電極
層とセラミックスとの境界で破壊する。
(Problems to be Solved by the Invention) According to the above method, the bonding strength between the ceramic and the electrode layer is increased as compared with the case where a pure metal layer is used as an electrode. However, this bonding strength is inferior to the mechanical fracture strength of the ceramic itself, so it cannot be said to be practically sufficient. For example, when a large tensile force is applied to the piezoelectric displacement element, the element breaks at the boundary between the electrode layer and the ceramic.

本発明の目的はこの問題点を解決するための電極材料を
提供することにある。
An object of the present invention is to provide an electrode material that solves this problem.

(問題点を解決するための手段) 本発明の要旨とするところは、圧電変位素子において圧
電材料にはさまれる金属電極層にジルコニアを含有せし
める事である。
(Means for Solving the Problems) The gist of the present invention is to include zirconia in the metal electrode layer sandwiched between the piezoelectric materials in the piezoelectric displacement element.

(作用) 金属電極層にジルコニアを含有させると、これが金属電
極層の一部を突き破り電極層の両側に存在する圧電セラ
ミックスをブリッジする効果が期待できる。そして、ジ
ルコニア自体の機械的破壊強度は極めて高いため素子に
大きな応力が働らいた場合にも素子が電極層付近から破
壊することを防ぐ効果が期待できる。
(Function) When zirconia is contained in the metal electrode layer, it is expected that this will break through a part of the metal electrode layer and bridge the piezoelectric ceramics existing on both sides of the electrode layer. Since the mechanical fracture strength of zirconia itself is extremely high, an effect of preventing the element from breaking from the vicinity of the electrode layer can be expected even when a large stress acts on the element.

(実施例) 以下実施例に基ずいて本発明の詳細な説明を行なう。(Examples) The present invention will be described in detail below based on examples.

本実施例では圧電セラミック材料としてジルコン・チタ
ン酸鉛Pb(Zr0.52 Ti0.48)O3が用いられた。まず、ジル
コン・チタン酸鉛の予焼粉末に多少の有機バインダ、可
塑剤、分散剤等を加え有機溶媒中に分散させ泥漿を得
る。この泥漿を用いてドクターブレード法で厚さ数10ミ
クロンの薄層を形成する。
In this example, zircon / lead titanate Pb (Zr 0.52 Ti 0.48 ) O 3 was used as the piezoelectric ceramic material. First, a small amount of an organic binder, a plasticizer, a dispersant, etc. are added to a pre-calcined powder of zircon / lead titanate and dispersed in an organic solvent to obtain a slurry. Using this slurry, a thin layer with a thickness of several tens of microns is formed by the doctor blade method.

一方、有機溶剤中に白金の微粉を分散させたペーストを
準備し、これにジルコニア粉末を混合した。
On the other hand, a paste in which fine platinum powder was dispersed in an organic solvent was prepared, and zirconia powder was mixed therein.

上記ジルコン・チタン酸鉛セラミックスの薄層上にジル
コニア粉末の混合された白金ペーストを印刷法で塗布し
た。この様にして得られたジルコン・チタン酸鉛薄層を
数100枚積み重ね、圧着した後400℃に10時間程度加熱し
て有機物を分解した。その後1290℃で1時間焼成した。
A platinum paste mixed with zirconia powder was applied onto the thin layer of zircon / lead titanate ceramics by a printing method. Several hundred thin layers of zircon / lead titanate obtained in this manner were stacked, pressed and heated to 400 ° C. for about 10 hours to decompose organic substances. Then, it was baked at 1290 ° C. for 1 hour.

この様にして得られた内部に多数の電極層を含む積層型
圧電セラミックス素子20×5×0.5mmの寸法に切断し、
3点曲げ試験法で機械的破壊強度を試験した。
The laminated piezoelectric ceramic element including a large number of electrode layers thus obtained is cut into a size of 20 × 5 × 0.5 mm,
The mechanical breaking strength was tested by the 3-point bending test method.

第1図は破壊強度試験に使用した積層体の構造を示すも
ので、ジルコン・チタン酸鉛セラミックス11の内部にジ
ルコニアを含有する白金電極膜12が約100ミクロンの間
隔で層状に形成されている。
FIG. 1 shows the structure of the laminated body used for the fracture strength test. Platinum electrode films 12 containing zirconia are formed in layers inside zircon / lead titanate ceramics 11 at intervals of about 100 microns. .

第2図は3点曲げ破壊試験の方法を示すもので、ジルコ
ン・チタン酸鉛セラミックス11と電極層12から構成され
た積層体試験片21を金属台22を用いて2点で線支持し、
試験庁の中央部に荷重チップ23で線荷重を加える。
FIG. 2 shows a method of a three-point bending fracture test, in which a laminated body test piece 21 composed of a zircon / lead titanate ceramics 11 and an electrode layer 12 is line-supported at two points using a metal base 22.
A line load is applied by the load tip 23 to the center of the testing office.

この様な方法で破壊試験を行なった。結果をまとめて第
1表に示した。
A destructive test was conducted by such a method. The results are summarized in Table 1.

なお第1表には白金ペーストにジルコン・チタン酸鉛粉
末及びガラス質粉末を混合した場合についても同時に示
されている。表から明らかな様に白金ペーストのみを使
用した場合には抗折強度は100Kg/cm2以下と低く、また
電極層の部分から破壊した。しかし、ジルコニア粉末を
含ませた白金ペーストを使用するとジルコニア粉末の含
有量が増すに従って抗折強度は増大する。そして含有量
が25重量%を越えるとセラミック単体の抗折強度にほぼ
一致した。しかし、30%を越える含有率になると抗折強
度は高いが電極層が本来の電極の役割を果さない。
Table 1 also shows the case where the zircon / lead titanate powder and the vitreous powder were mixed with the platinum paste. As is clear from the table, when only the platinum paste was used, the bending strength was as low as 100 Kg / cm 2 or less, and the electrode layer was broken. However, when a platinum paste containing zirconia powder is used, the bending strength increases as the content of zirconia powder increases. When the content exceeds 25% by weight, it is almost the same as the bending strength of the ceramic alone. However, when the content exceeds 30%, the bending strength is high, but the electrode layer does not function as the original electrode.

ジルコン・チタン酸鉛粉末やガラス質材料粉末を白金ペ
ーストに含ませてもセラミックスと電極層との接合強度
は高まるが、ジルコニアの方が少ない含有量でより接合
強度を高める事は表から明らかである。
Even if the platinum paste contains zircon / lead titanate powder or vitreous material powder, the bonding strength between the ceramic and the electrode layer increases, but it is clear from the table that zirconia increases the bonding strength with a smaller content. is there.

(発明の効果) この様に本発明の積層型圧電変位素子では電極層とセラ
ミックスとの接合強度極めて強くなり、従来の素子より
改善される事がわかる。
(Effects of the Invention) As described above, it can be seen that in the laminated piezoelectric displacement element of the present invention, the bonding strength between the electrode layer and the ceramic becomes extremely strong, which is an improvement over conventional elements.

この発明はこの様に金属電極層とセラミックスとの接合
強度をセラミックス本来の強度まで高めることが出来る
様にしたものであり、大きな応力の生じる様な圧電変位
素子の用途に関してその活用が期待されるものである。
The present invention is capable of increasing the bonding strength between the metal electrode layer and the ceramics to the original strength of the ceramics in this manner, and is expected to be utilized for applications of piezoelectric displacement elements that generate large stress. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

第1図は抗折強度試験に使用した積層型圧電変位素子の
試験片を示す図、第2図は抗折強度の3点曲げ試験法を
示す図。 図中11はジルコン・チタン酸鉛圧電セラミックス、12は
金属電極層、21は試験片、22は試験片を2点で支える金
属台、そして23は荷重を加えるためのチップを示してい
る。
FIG. 1 is a diagram showing a test piece of a laminated piezoelectric displacement element used for a bending strength test, and FIG. 2 is a diagram showing a bending strength three-point bending test method. In the figure, 11 is a zircon / lead titanate piezoelectric ceramics, 12 is a metal electrode layer, 21 is a test piece, 22 is a metal base that supports the test piece at two points, and 23 is a chip for applying a load.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧電材料と金属電極層が積層されて形成さ
れる圧電変位素子において、当該電極層中にジルコニア
粉末が3〜30重量%の割合で混合されている事を特徴と
する圧電変位素子。
1. A piezoelectric displacement element formed by laminating a piezoelectric material and a metal electrode layer, wherein zirconia powder is mixed in the electrode layer at a ratio of 3 to 30% by weight. element.
JP60273944A 1985-12-04 1985-12-04 Piezoelectric displacement element Expired - Lifetime JPH0673387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60273944A JPH0673387B2 (en) 1985-12-04 1985-12-04 Piezoelectric displacement element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60273944A JPH0673387B2 (en) 1985-12-04 1985-12-04 Piezoelectric displacement element

Publications (2)

Publication Number Publication Date
JPS62132381A JPS62132381A (en) 1987-06-15
JPH0673387B2 true JPH0673387B2 (en) 1994-09-14

Family

ID=17534743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60273944A Expired - Lifetime JPH0673387B2 (en) 1985-12-04 1985-12-04 Piezoelectric displacement element

Country Status (1)

Country Link
JP (1) JPH0673387B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299588A (en) * 1991-03-28 1992-10-22 Nec Corp Electrostriction effect element
DE10006352A1 (en) * 2000-02-12 2001-08-30 Bosch Gmbh Robert Piezoelectric ceramic body with silver-containing internal electrodes
DE102004039672B3 (en) * 2004-08-16 2006-03-16 Siemens Ag Method for testing the adhesion between a piezoceramic layer and an inner electrode
CN112391594B (en) * 2020-09-30 2023-04-18 科立视材料科技有限公司 Platinum channel with zirconia protective coating and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196069A (en) * 1982-05-12 1983-11-15 Nec Corp Electrostrictive effect element
JPS58218183A (en) * 1982-06-14 1983-12-19 Nippon Soken Inc Manufacture of electrostrictive actuator

Also Published As

Publication number Publication date
JPS62132381A (en) 1987-06-15

Similar Documents

Publication Publication Date Title
US5196757A (en) Multilayer piezoelectric ceramic actuator
JPH01161709A (en) Laminated ceramic component
EP1930962A1 (en) Layered piezoelectric element and injection device using the same
JP6617268B2 (en) Piezoelectric element and method for manufacturing the same
JP2002100819A (en) Piezoelectric element and its manufacturing method
JPH0992896A (en) Piezoelectric/electrostrictive film device and manufacture thereof
JP2001267646A (en) Stacked piezoelectriic actuator
JPWO2019093092A1 (en) Piezo components, sensors and actuators
JPH0364979A (en) Electrostrictive effect element
US7737611B2 (en) Piezoelectric/electrostrictive ceramics and piezoelectric/electrostrictive device
JPH0673387B2 (en) Piezoelectric displacement element
JP5289322B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, INJECTION DEVICE USING THE SAME, AND METHOD FOR MANUFACTURING LAMINATED piezoelectric element
JP2994492B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JPH11121820A (en) Laminated piezoelectric actuator
JP2002217464A (en) Piezoelectric element and method of manufacturing the same
JP2001250994A (en) Laminated piezoelectric element
JPH03283581A (en) Laminated piezoelectric actuator element
Tandon et al. Low temperature sintering of PZT ceramics using a glass additive
JP3207315B2 (en) Piezoelectric / electrostrictive film type element
JP2004241590A (en) Laminated piezoelectric element
JP2666758B2 (en) Multilayer piezoelectric element
JP3043387B2 (en) Stacked displacement element
JP2001302349A (en) Piezoelectric ceramic composition
JP2003174206A (en) Laminated piezoelectric element
JP2000049398A (en) Piezoelectric/electrostrictive film actuator