JPH0672266B2 - Method for manufacturing ultra low iron loss unidirectional silicon steel sheet - Google Patents

Method for manufacturing ultra low iron loss unidirectional silicon steel sheet

Info

Publication number
JPH0672266B2
JPH0672266B2 JP62016123A JP1612387A JPH0672266B2 JP H0672266 B2 JPH0672266 B2 JP H0672266B2 JP 62016123 A JP62016123 A JP 62016123A JP 1612387 A JP1612387 A JP 1612387A JP H0672266 B2 JPH0672266 B2 JP H0672266B2
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
annealing
iron loss
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62016123A
Other languages
Japanese (ja)
Other versions
JPS63186826A (en
Inventor
征夫 井口
庸 伊藤
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP62016123A priority Critical patent/JPH0672266B2/en
Priority to US07/095,527 priority patent/US4909864A/en
Priority to DE8787308134T priority patent/DE3785632T2/en
Priority to EP87308134A priority patent/EP0260927B1/en
Publication of JPS63186826A publication Critical patent/JPS63186826A/en
Priority to US07/444,050 priority patent/US4985635A/en
Publication of JPH0672266B2 publication Critical patent/JPH0672266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超低鉄損一方向性珪素鋼板の製造方法、とくに
巻鉄芯トランス材料に供するために行う歪取り焼鈍によ
っても鉄損の劣化しない一方向性珪素鋼板の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a method for producing an ultra-low iron loss unidirectional silicon steel sheet, and in particular, iron loss is deteriorated even by strain relief annealing performed for use as a wound core transformer material. The present invention relates to a method for manufacturing a unidirectional silicon steel sheet.

一方向性珪素鋼板の電気・磁気的特性の改善、なかでも
鉄損の低減に係わる極限的な要請を満たそうとする近年
来の目覚ましい開発努力は、逐次その実を挙げつつあ
る。
Recent striking development efforts to improve the electrical and magnetic properties of unidirectional silicon steel sheets, and particularly to meet the ultimate demand for reducing iron loss, are gradually showing fruit.

さて一方向性珪素鋼板は、よく知られているとおり製品
の2次再結晶粒を{110}〈001〉、すなわちゴス方位
に、高度に集積させたもので、主として変圧器その他の
電気機器の鉄心として使用され電気磁気的特性として製
品の磁束密度(B10値で代表される)が高く、鉄損(W
17/50値で代表される)の低いことが要求される。
As is well known, unidirectional silicon steel sheet is a highly integrated secondary recrystallized grain of the product in {110} <001>, that is, Goss orientation, and is mainly used in transformers and other electrical equipment. It is used as an iron core and has a high magnetic flux density (represented by a B 10 value) as its electromagnetic characteristics, and iron loss (W
17/50 value) is required.

この一方向性珪素鋼板は複雑多岐にわたる工程を経て製
造されるが、今までにおびただしい発明改善が加えら
れ、今日では板厚0.30mmの製品の磁気特性がB10値1.90T
以上、W17/50値1.05W/kg以下、または板厚0.23mmの製品
の磁気特性がB10値1.89T以上、W17/50値0.90W/kg以下の
超低鉄損一方向性珪素鋼板が製造されるようになって来
ている。
This unidirectional silicon steel sheet is manufactured through a variety of complicated processes, but numerous invention improvements have been added so far, and today the magnetic characteristics of products with a plate thickness of 0.30 mm have a B 10 value of 1.90T.
Above, W 17/50 value 1.05 W / kg or less, or magnetic properties of the product of thickness 0.23mm is B 10 value 1.89T or more, W 17/50 value 0.90W / kg or less of ultra-low iron loss grain oriented silicon Steel sheets are being manufactured.

特に最近では省エネの見地から電力損失の低減を至上と
する要求が著しく強まり、欧米では損失の少ない変圧器
を作る場合に鉄損の減少分を金額に換算して変圧器価格
に上積みする「ロス・エバリュエーション」(鉄損評
価)制度が普及している。
Especially in recent years, from the viewpoint of energy saving, the demand to reduce power loss has been remarkably strengthened, and in Europe and the United States, when making a transformer with low loss, the amount of iron loss reduction is converted into a monetary amount and added to the transformer price.・ The “evaluation” (iron loss evaluation) system is widespread.

(従来の技術) このような状況下において最近、一方向性珪素鋼板の仕
上焼鈍後の鋼板表面に圧延方向にほぼ直角方向でのレー
ザー照射により局部微小ひずみを導入して磁区を細分化
し、もって鉄損を低下させることが提案された(特公昭
57-2252号、特公昭57-53419号、特公昭58-26405号及び
特公昭58-26406号公報参照)。
(Prior Art) Under such circumstances, recently, local fine strain is introduced into the surface of a steel sheet after finish annealing of a unidirectional silicon steel sheet by laser irradiation in a direction substantially perpendicular to the rolling direction to subdivide magnetic domains, Proposed to reduce iron loss
57-2252, JP-B-57-53419, JP-B-58-26405 and JP-B-58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向けトランス材料として効果的であるが、ひずみ取り
焼鈍を施す、主として巻鉄心トランス材料にあっては、
レーザー照射によって折角に導入された局部微小ひずみ
が焼鈍処理により開放されて磁区幅が広くなるため、レ
ーザー照射効果がなくなるという欠点がある。
This magnetic domain refinement technology is effective as a transformer material for laminated cores that is not subjected to strain relief annealing, but in the case of mainly wound core transformer materials that are subjected to strain relief annealing,
There is a drawback that the laser irradiation effect is lost because the local minute strains introduced into the corners by the laser irradiation are released by the annealing treatment to widen the magnetic domain width.

一方これより先に特公昭52-24499号公報においては、一
方向性珪素鋼板の仕上げ焼鈍後の鋼板表面を鏡面上げす
るか又はその鏡面仕上げ面上に金属メッキやさらにその
上に絶縁被膜を塗布焼付けすることによる、超低鉄損一
方向性珪素鋼板の製造方法が提案されている。
On the other hand, prior to this, in Japanese Patent Publication No. 52-24499, the surface of the steel sheet after finish annealing of a unidirectional silicon steel sheet is mirror-finished, or metal plating is applied on the mirror-finished surface or an insulating coating is further applied thereon. A method of manufacturing an ultra-low iron loss unidirectional silicon steel sheet by baking has been proposed.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアップになる割に鉄
損低減への寄与が充分でない上、とくに鏡面仕上後に不
可欠な絶縁被膜を塗布焼付した後の密着性に問題がある
ため、現在の製造工程において採用されるに至ってはい
ない。また特公昭56-4150号公報においても鋼板表面を
鏡面仕上げした後、酸化物系セラミックス薄膜を蒸着す
る方法が提案されている。しかしながらこの方法も600
℃以上の高温焼鈍を施すと鋼板とセラミックス層とが剥
離するため、実際の製造工程では採用できない。
However, this method of improving iron loss by mirror finishing is not enough to reduce iron loss in spite of being a significant increase in cost for adopting it in a process, and especially after coating and baking an insulative coating that is indispensable after mirror finishing. However, it has not been adopted in the present manufacturing process due to its poor adhesion. Japanese Patent Publication No. 56-4150 also proposes a method of vapor-depositing an oxide ceramic thin film after mirror-finishing the surface of a steel sheet. However, this method is also 600
This cannot be used in the actual manufacturing process because the steel sheet and the ceramic layer are separated when high-temperature annealing of ℃ or higher is applied.

さらに特開昭59-229419号公報において珪素鋼板表面に
局部的に熱エネルギーを加えることにより熱歪領域を形
成させる方法が提案されている。しかしながらこの局所
熱歪領域の優先形成は600℃以上の高温焼鈍によってそ
の効果がなくなるという欠点を有している。
Further, Japanese Patent Application Laid-Open No. 59-229419 proposes a method of forming a thermal strain region by locally applying thermal energy to the surface of a silicon steel sheet. However, the preferential formation of the local thermal strain region has a drawback that its effect is lost by high temperature annealing at 600 ° C. or higher.

(発明が解決しようとする問題点) そこで、この発明は、高温の歪取り焼鈍を施しても、こ
の焼鈍前に得られた低鉄損が劣化することのない、一方
向性珪素鋼板の製造方法について提案することを目的と
する。
(Problems to be Solved by the Invention) Therefore, the present invention is directed to the production of a unidirectional silicon steel sheet in which the low iron loss obtained before the annealing does not deteriorate even when high-temperature strain relief annealing is performed. The purpose is to suggest a method.

(問題点を解決するための手段) この発明は、仕上焼鈍済みの方向性珪素鋼板上にリン酸
塩とコロイダルシリカを主成分とする絶縁コーティング
被膜を被成した後、該被膜上で圧延方向を横切る向きに
EB照射を施すことを特徴とする超低鉄損一方向性珪素鋼
板の製造方法(第1発明)、またさらに 仕上げ焼鈍済みの方向性珪素鋼板につき、その表面酸化
物を除去し、ついで研磨により鋼板表面を中心線平均粗
さRaで0.4μm以下の鏡面状態に仕上げた後、CVD、イオ
ンプレーティングあるいはイオンインプランテーション
により、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Co,Ni,Al,B,Si
の窒化物及び/又は炭化物並びにAl,Ni,Cu,W,Si及びZn
の酸化物のうちから選ばれた少なくとも1種からなる極
薄張力被膜を被成し、さらにリン酸塩とコロイダルシリ
カを主成分とする絶縁コーティング被膜を被成し、つい
で該被膜上で圧延方向を横切る向きにEB照射を施すこと
を特徴とする超低鉄損一方向性珪素鋼板の製造方法(第
2発明)である。
(Means for Solving Problems) The present invention is to form an insulating coating film containing phosphate and colloidal silica as a main component on a finish-annealed grain-oriented silicon steel sheet, and then roll the sheet in the rolling direction. Across the
A method of manufacturing an ultra-low iron loss unidirectional silicon steel sheet characterized by performing EB irradiation (first invention), and further, with respect to a grain-finished directional silicon steel sheet that has undergone finish annealing, its surface oxides are removed and then polished. After finishing the steel plate surface to a mirror surface state of 0.4 μm or less with a centerline average roughness Ra, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, by CVD, ion plating or ion implantation Mn, Co, Ni, Al, B, Si
And / or carbides of Al and Ni, Cu, W, Si and Zn
An ultrathin tension film made of at least one selected from the oxides mentioned above, an insulating coating film containing phosphate and colloidal silica as main components, and a rolling direction on the film. EB irradiation is carried out in a direction traversing the sheet (2nd invention).

これら発明の成功が導かれた具体的な実験に従って説明
を進める。
The description will proceed according to specific experiments that have led to the success of these inventions.

C:0.046重量%(以下単に%で示す)、Si:3.44%,Mn:0.
068%,Se:0.021%,Sb:0.025%及びMo:0.013%を含有す
る珪素鋼連鋳スラブを1350℃で4時間加熱後熱間圧延し
て2.0mm厚さの熱延板とした。
C: 0.046% by weight (hereinafter simply indicated by%), Si: 3.44%, Mn: 0.
A silicon steel continuous cast slab containing 068%, Se: 0.021%, Sb: 0.025% and Mo: 0.013% was heated at 1350 ° C. for 4 hours and then hot rolled to obtain a hot rolled sheet having a thickness of 2.0 mm.

その後900℃で3分間の均一化焼鈍後、950℃で3分間の
中間焼鈍をはさむ2回の冷間圧延を施して0.23mm厚の最
終冷延板とした。
Then, after uniformized annealing at 900 ° C. for 3 minutes, cold rolling was performed twice with intermediate annealing at 950 ° C. for 3 minutes to obtain a final cold-rolled sheet having a thickness of 0.23 mm.

その後820℃の湿水素雰囲気中で脱炭・一次再結晶焼鈍
を施した後、鋼板表面に不活性Al2O3(75%)とMgO(25
%)から成る焼鈍分離剤を塗布し、ついで850℃で50時
間の2次再結晶焼鈍と、1200℃で5時間乾水素中で鈍化
焼鈍とを施した。
After decarburization and primary recrystallization annealing in a wet hydrogen atmosphere at 820 ° C, the surface of the steel sheet was treated with inert Al 2 O 3 (75%) and MgO (25%).
%), Followed by secondary recrystallization annealing at 850 ° C. for 50 hours and annealing annealing at 1200 ° C. for 5 hours in dry hydrogen.

得られた仕上焼鈍板の一部を次の(a)及び(b)に示
す処理に供した。
A part of the obtained finish annealed plate was subjected to the treatments shown in the following (a) and (b).

(a)仕上焼鈍板表面上に真空中で圧延方向に直角方向
にエレクトロンビーム照射(EB照射、加速電圧:50kV、
加速電流:0.75mA、ビーム径0.1mmφ、ビーム走査間隔:1
0mm)した。
(A) Electron beam irradiation (EB irradiation, accelerating voltage: 50 kV, in the direction perpendicular to the rolling direction in vacuum on the surface of the finished annealed plate.
Acceleration current: 0.75mA, beam diameter 0.1mmφ, beam scanning interval: 1
0 mm).

(b)仕上げ焼鈍板表面上にリン酸塩とコロイダルシリ
カを主成分とする絶縁コーティング被膜を施した後、真
空中で圧延方向の直角方向に上記(a)と同一条件にて
EB照射した。
(B) After applying an insulating coating film containing phosphate and colloidal silica as the main components on the surface of the finish annealed plate, in the same direction as the above (a) in the direction perpendicular to the rolling direction in vacuum.
It was irradiated with EB.

また比較のため(c)EB照射を施さない仕上焼鈍板およ
び(d)仕上焼鈍後に絶縁コーティングを施し、EB照射
は施さない製品板も用意した。
For comparison, (c) a finish annealed plate not subjected to EB irradiation and (d) a product plate to which an insulating coating was applied after finish annealing and not subjected to EB irradiation were also prepared.

さらに残りの仕上焼鈍板はその表面を軽く酸洗(10%の
HCl液中)した後、3%HFとH2O2の液中で化学研磨し鋼
板表面平均粗さ0.03μmの鏡面状態に仕上げた後4群の
試料に分け、それぞれ次の条件で処理した。
Furthermore, the surface of the remaining finished annealed plate is lightly pickled (10%
(In HCl solution), chemically polished in a solution of 3% HF and H 2 O 2 to finish the surface of the steel plate to a mirror finish with an average surface roughness of 0.03 μm, and then divide into 4 groups of samples and treat them under the following conditions. .

(e)鏡面鋼板の上に連続イオンプレーティング装置
(HCD法)によりTiNの1.0μm厚の薄膜を形成させた。
(E) A thin film of TiN having a thickness of 1.0 μm was formed on a mirror-finished steel plate by a continuous ion plating apparatus (HCD method).

(f)鏡面鋼板の上に連続イオンプレーティング装置に
よりTiNの1.0μm厚の薄膜を形成させた後、ひきつづき
真空中で圧延方向に直角方向にEB照射(加速電圧:45KV,
加速電流:0.75mA,ビーム径0.1mm,ビーム走査間隔:10m
m)した。
(F) After forming a thin film of 1.0 μm thick TiN on a mirror-finished steel plate by a continuous ion plating device, continue to EB irradiate in a direction perpendicular to the rolling direction in vacuum (accelerating voltage: 45 KV,
Accelerating current: 0.75mA, beam diameter 0.1mm, beam scanning interval: 10m
m) did.

(g)鏡面鋼板の上に連続イオンプレーティング装置に
よりTiNの1.0μm厚の薄膜を形成させた後、リン酸塩と
コロイダルシリカを主成分とする絶縁コーティング被膜
の被成処理を行った。
(G) After a thin film of TiN having a thickness of 1.0 μm was formed on a mirror-finished steel plate by a continuous ion plating apparatus, an insulating coating film mainly containing phosphate and colloidal silica was applied.

(h)鏡面鋼板上に連続イオンプレーティング処理によ
りTiNの1.0μm厚の薄膜を形成し、ついでリン酸塩とコ
ロイダルシリカを主成分とする絶縁コーティング被膜の
被成処理を施した後、真空中で圧延方向に対して直角方
向に上記(f)と同一条件にてEB照射した。
(H) A thin film of TiN 1.0 μm thick was formed on a mirror-finished steel plate by continuous ion plating, and then an insulating coating film mainly composed of phosphate and colloidal silica was applied. Then, EB irradiation was performed in the direction perpendicular to the rolling direction under the same conditions as in (f) above.

以上の処理を経た各試料の磁気特性値を、第1表にまと
めて示す。
The magnetic property values of the respective samples that have undergone the above processing are summarized in Table 1.

第1表から明らかなように、通常の一方向性珪素鋼仕上
焼鈍板を対象としたEB照射を行った(a)および(b)
の場合の磁気特性はB10値が1.90〜1.91T、W17/50値が0.
82〜0.83W/kgで、EB照射しない(c)および(d)の場
合の磁気特性に比較してW17/50値が0.05〜0.06W/kg向上
している。又仕上げ焼鈍板を研磨処理後イオンプレーテ
ィングによりTiN被膜を形成してからEB照射をした
(f)および(h)の場合の磁気特性は、B10値が1.91
〜1.92T,W17/50値が0.65〜0.66W/kgで、EB照射しない
(e)および(g)の場合の磁気特性値に比較してW
17/50値が0.05〜0.07W/kg向上している。
As is clear from Table 1, EB irradiation was performed on a normal unidirectional finished silicon steel annealed plate (a) and (b).
In the case of, the B 10 value is 1.90 to 1.91T and the W 17/50 value is 0.
At 82 to 0.83 W / kg, the W 17/50 value is improved by 0.05 to 0.06 W / kg compared to the magnetic characteristics in the cases of (c) and (d) without EB irradiation. In addition, the magnetic properties of (f) and (h) where the TiN film was formed by ion plating after polishing treatment of the finish annealed plate and B 10 value was 1.91.
〜1.92T, W 17/50 value is 0.65〜0.66W / kg, and it is W compared with the magnetic characteristic value in case of (e) and (g) without EB irradiation.
The 17/50 value has improved by 0.05 to 0.07 W / kg.

かくして一方向性珪素鋼仕上焼鈍板に絶縁コーティング
処理後EB照射することにより、あるいは一方向性珪素鋼
仕上焼鈍板を鏡面仕上し、その上にTiNの極薄張力被膜
をコーテング処理し、ついで絶縁コーティング処理後、
EB照射することによりきわめて低鉄損を有する製品を得
ることができる。
Thus, the unidirectional silicon steel finish annealed plate is subjected to insulation coating and then irradiated with EB, or the unidirectional silicon steel finish annealed plate is mirror-finished, and a TiN ultra-thin film is coated on the plate, followed by insulation. After the coating process,
By EB irradiation, a product with extremely low iron loss can be obtained.

(作用) 第1図に第1表の(a),(b),(f),(h)の処
理を行った製品に焼鈍を施した後の鉄損特性の変化を示
す。
(Operation) FIG. 1 shows changes in iron loss characteristics after annealing the products treated in (a), (b), (f), and (h) of Table 1.

同図から明らかなように、第1表中の(b)および
(h)の場合はその後に高温の焼鈍処理を施しても鉄損
特性の劣化が起こらない。このように、高温処理を施し
ても鉄損特性が劣化しない理由は完全に解明されたわけ
ではないが、真空中でのEB照射を絶縁被膜上に行った場
合に絶縁被膜の質的変化が起こりEB照射領域と無照射領
域との不均質が起こるため、高温焼鈍を施しても磁区細
分化させることが可能となり、したがって鉄損特性の劣
化が起らないと考えられる。
As is clear from the figure, in the cases of (b) and (h) in Table 1, the iron loss characteristics do not deteriorate even if a high temperature annealing treatment is performed thereafter. Thus, the reason why iron loss characteristics do not deteriorate even after high-temperature treatment has not been completely clarified, but qualitative changes of the insulating coating occur when EB irradiation in vacuum is performed on the insulating coating. Since inhomogeneity between the EB-irradiated region and the non-irradiated region occurs, it is possible to subdivide the magnetic domains even if high-temperature annealing is performed, and thus it is considered that the iron loss characteristics do not deteriorate.

上にのべたように仕上焼鈍板上に絶縁被膜コーティング
を施した後、あるいは鏡面仕上げした鋼板表面上に張力
被膜を形成してさらにその上に絶縁コーティング被膜を
形成させた後、その絶縁被膜上にEB照射を行うことによ
って絶縁被膜の膜質を変化させ磁区細分化を図ることが
でき、高温歪取り焼鈍を施しても鉄損特性の劣化が起こ
らない。
After applying an insulating coating on the finish annealed plate as mentioned above, or forming a tension coating on the mirror-finished steel plate surface and then forming an insulating coating on it, It is possible to change the film quality of the insulating film and to subdivide the magnetic domains by EB irradiation on the surface, and the iron loss characteristics do not deteriorate even when subjected to high temperature strain relief annealing.

次にこの発明による、一方向性珪素鋼板の製造工程につ
いて説明する。
Next, a manufacturing process of the unidirectional silicon steel sheet according to the present invention will be described.

出発素材は従来公知の一方向性珪素鋼素材成分、例えば C:0.01〜0.050%,Si:2.50〜4.5%,Mn:0.01〜0.2%,M
o:0.003〜0.1%,Sb:0.005〜0.2%,SあるいはSeの1種あ
るいは2種合計で、0.005〜0.05%を含有する組成 C:0.01〜0.08%,Si:2.0〜4.0%,S:0.005〜0.05%,Al:
0.005〜0.06%,N:0.001〜0.01%,Sn:0.01〜0.5%,Cu:0.
01〜0.3%,Mn:0.01〜0.2%を含有する組成 C:0.011〜0.06%,Si:2.0〜4.0%,S:0.005〜0.05%,B:
0.0003〜0.0040%,N:0.001〜0.01%,Mn:0.01〜0.2%を
含有する組成 の如きにおいて適用可能である。
The starting material is a conventionally known unidirectional silicon steel material component such as C: 0.01 to 0.050%, Si: 2.50 to 4.5%, Mn: 0.01 to 0.2%, M.
O: 0.003 to 0.1%, Sb: 0.005 to 0.2%, one or two types of S or Se, 0.005 to 0.05% in total C composition: 0.01 to 0.08%, Si: 2.0 to 4.0%, S: 0.005-0.05%, Al:
0.005-0.06%, N: 0.001-0.01%, Sn: 0.01-0.5%, Cu: 0.
Composition containing 01 to 0.3%, Mn: 0.01 to 0.2% C: 0.011 to 0.06%, Si: 2.0 to 4.0%, S: 0.005 to 0.05%, B:
It is applicable to a composition containing 0.0003 to 0.0040%, N: 0.001 to 0.01%, Mn: 0.01 to 0.2%.

次に熱延板は800〜1100℃の均一化焼鈍を経て1回の冷
間圧延で最終板厚とする1回冷延法か又は、通常850℃
から1050℃の中間焼鈍をはさんでさらに冷延する2回冷
延法にて、後者の場合最初の圧下率は50%から80%程
度、最終の圧下率は50%から85%程度で0.15mmから0.35
mmの最終冷延板厚とする。
Next, the hot-rolled sheet is subjected to homogenizing annealing at 800 to 1100 ° C and then cold-rolled once to obtain the final sheet thickness by a single cold-rolling method or usually at 850 ° C.
In the latter case, the initial rolling reduction is about 50% to 80% and the final rolling reduction is about 50% to 85%. mm to 0.35
The final cold-rolled sheet thickness is mm.

最終冷延を終わり製品板厚に仕上げた鋼板は、表面脱脂
後750℃から850℃の湿水素中で脱炭・1次再結晶焼鈍処
理を施す。
The steel sheet that has been finished cold-rolled and finished to the product thickness is subjected to decarburization and primary recrystallization annealing treatment in wet hydrogen at 750 ° C to 850 ° C after surface degreasing.

その後は通常鋼板表面にMgOを主成分とする焼鈍分離材
を塗布する。
After that, an annealing separator containing MgO as a main component is usually applied to the surface of the steel sheet.

この際、一般的には仕上げ焼鈍後フォルステライト被膜
の形成を不可欠とする場合はMgOを主成分とする焼鈍分
離剤を塗布するが、フォルステライトを特に形成させな
い場合、その後の鋼板の鏡面化処理を簡便にするのに有
効であるので、焼鈍分離剤としてAl2O3やZrO2,TiO2の如
きを50%以上でMgOに混入した焼鈍分離剤を使用するの
が好ましい。
At this time, generally, when forming a forsterite film after finish annealing is indispensable, an annealing separator containing MgO as a main component is applied, but when forsterite is not particularly formed, the subsequent mirror finishing treatment of the steel sheet. Since it is effective for simplifying the above, it is preferable to use an annealing separating agent such as Al 2 O 3 , ZrO 2 or TiO 2 mixed with MgO at 50% or more as an annealing separating agent.

その後2次再結晶焼鈍を行うが、この工程は{110}〈0
01〉方位の2次再結晶粒を充分発達させるために施され
るもので、通常箱焼鈍によって直ちに1000℃以上に昇温
し、その温度に保持することによって行われる。
After that, secondary recrystallization annealing is performed. This step is {110} <0
This is performed in order to sufficiently develop the secondary recrystallized grains in the 01> orientation, and is usually performed by immediately raising the temperature to 1000 ° C. or more by box annealing and holding at that temperature.

この場合{110}〈001〉方位に、高度に揃った2次再結
晶粒組織を発達させるためには820℃から900℃の低温で
保定焼鈍する方が有利であり、そのほか例えば0.5〜15
℃/hの昇温速度の徐熱焼鈍でもよい。
In this case, in order to develop a highly aligned secondary recrystallized grain structure in the {110} <001> orientation, it is more advantageous to carry out the retention annealing at a low temperature of 820 ° C to 900 ° C.
Slow heat annealing at a temperature rising rate of ° C / h may be used.

2次再結晶焼鈍後の純化焼鈍は乾水素中で1100℃以上で
1〜20時間焼鈍を行って鋼板の純化を達成することが必
要である。
The purification annealing after the secondary recrystallization annealing requires annealing in dry hydrogen at 1100 ° C. or higher for 1 to 20 hours to achieve the purification of the steel sheet.

その後さらにリン酸塩とコロイダルシリカを主成分とす
る絶縁被膜を形成する。
After that, an insulating film mainly containing phosphate and colloidal silica is formed.

ついでこの絶縁被膜上で圧延方向を横切る方向、好適に
は60〜90°の方向、3〜15mm程度の間隔でEB照射を施
す。このときのEB照射条件は10〜100KVの加速電圧、0.0
05〜10mAの電流、ビーム径は0.005〜1mmを用いて点状あ
るいは線状に施すのが効果的である。
Then, EB irradiation is performed on the insulating coating in a direction transverse to the rolling direction, preferably in the direction of 60 to 90 ° and at intervals of about 3 to 15 mm. The EB irradiation conditions at this time are 10 to 100 KV acceleration voltage, 0.0
It is effective to apply a current of 05 to 10 mA and a beam diameter of 0.005 to 1 mm in a dotted or linear manner.

又純化焼鈍後に鋼板表面の酸化物被膜を硫酸、硝酸又は
弗酸などの強酸によるような酸洗か又は機械的研削、切
削等により除去すると、さらに磁気特性が向上する。
Further, when the oxide film on the surface of the steel sheet is removed by pickling with a strong acid such as sulfuric acid, nitric acid or hydrofluoric acid after mechanical annealing, or by mechanical grinding, cutting, etc., the magnetic properties are further improved.

次に化学研磨および/又は電解研磨など従来から既知の
手法により鋼板表面を鏡面状態つまり中心線平均粗さRa
で0.4μm以下に仕上げる。
Next, the surface of the steel sheet is mirror-finished, that is, the centerline average roughness Ra by a conventionally known method such as chemical polishing and / or electrolytic polishing.
To 0.4 μm or less.

その後CVD、イオンプレーテングあるいはイオンインプ
ランテーションによりTi,Zr,V,Nb,Ta,Cr,Mo,W,Mn,Co,N
i,Al,B,Siの窒化物及び/又は炭化物、Al,Ni,Cu,W,Siお
よびZnの酸化物のうちから選んだ少なくとも1種から成
る0.05〜5μm程度の極薄被膜を形成させる。
After that, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Co, N by CVD, ion plating or ion implantation
Forming an ultra-thin film of about 0.05 to 5 μm composed of at least one selected from i, Al, B, Si nitrides and / or carbides, Al, Ni, Cu, W, Si and Zn oxides. .

ついでその上にリン酸塩とコロイダルシリカを主成分と
する絶縁被膜を形成する。
Then, an insulating film containing phosphate and colloidal silica as main components is formed thereon.

その後この絶縁被膜上に圧延方向を横切る方向、好適に
は60〜90°の方向、3〜15mm程度の間隔でEB照射を施
す。このときのEB照射条件は前述と同様である。
Thereafter, EB irradiation is performed on the insulating coating in a direction transverse to the rolling direction, preferably in the direction of 60 to 90 ° and at intervals of about 3 to 15 mm. The EB irradiation conditions at this time are the same as those described above.

上記のように処理された珪素鋼板は600℃以上の温度で
鉄損特性を劣化させることなく歪み取り、平たん化熱処
理を行うことができる。
The silicon steel sheet treated as described above can be subjected to strain removal and flattening heat treatment at a temperature of 600 ° C. or higher without deteriorating iron loss characteristics.

(実施例) 実施例1 C:0.045%,Si:3.40%,Mn:0.066%,Mo:0.020%,Se:0.020
%,Sb:0.025%を含有する熱延板を、900℃で3分間の均
一化焼鈍後、950℃の中間焼鈍をはさんで2回の冷延圧
延を行って0.23mm厚の最終冷延板とした。
(Example) Example 1 C: 0.045%, Si: 3.40%, Mn: 0.066%, Mo: 0.020%, Se: 0.020
%, Sb: 0.025% of the hot-rolled sheet was homogenized and annealed at 900 ℃ for 3 minutes, and then cold-rolled twice with an intermediate anneal at 950 ℃ to obtain a final cold-rolled sheet with a thickness of 0.23 mm. It was a plate.

その後820℃の湿水素中で脱炭焼鈍後鋼板表面にMgOを主
成分とする焼鈍分離剤を塗布した後850℃で50時間の2
次再結晶焼鈍し、1200℃で8時間乾水素中で純化焼鈍を
行った。
After decarburization annealing in wet hydrogen at 820 ° C, an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, and then 2 hours at 850 ° C for 50 hours.
Subsequent recrystallization annealing was performed, and purification annealing was performed at 1200 ° C. for 8 hours in dry hydrogen.

その後リン酸塩とコロイダルシリカを主成分とする絶縁
被膜を形成した後、圧延方向にほぼ直角方向に7mm間隔
で線上にEB照射(加速電圧:45KV,電流:1.0mA,スポット
直径は0.15mmφ)を行った。その後800℃で3時間窒素
雰囲気中で焼鈍を行ったところ、製品の磁気特性はB10
値が1.91T,W17/50値は0.82W/kgであった。
After that, after forming an insulating film containing phosphate and colloidal silica as the main components, EB irradiation was performed on the wire at an interval of 7 mm in a direction almost perpendicular to the rolling direction (accelerating voltage: 45 KV, current: 1.0 mA, spot diameter 0.15 mmφ). I went. After that, when annealed at 800 ° C for 3 hours in a nitrogen atmosphere, the magnetic properties of the product were B 10
The value was 1.91 T, and the W 17/50 value was 0.82 W / kg.

実施例2 C:0.052%,Si:3.46%,Mn:0.077%,Al:0.024%,S:0.0020
%,Cu:0.1%,Sn:0.06%を含有する熱延板を、1130℃で
3分間の均一化焼鈍後急冷処理を行い、その後300℃の
温間圧延を施して0.20mm厚の最終冷延板とした。
Example 2 C: 0.052%, Si: 3.46%, Mn: 0.077%, Al: 0.024%, S: 0.0020
%, Cu: 0.1%, Sn: 0.06%, hot-rolled sheet containing homogenized annealing at 1130 ℃ for 3 minutes, followed by quenching treatment, and then warm rolling at 300 ℃ to give a final cooling of 0.20mm thickness. It was a rolled sheet.

その後850℃湿水素中で脱炭焼鈍後、表面にAl2O3(80
%)とMgO(15%)とZrO2(5%)を主成分とする焼鈍
分離剤を塗布した後850℃から1150℃まで10℃/hrで昇温
して2次再結晶させた後、1200℃で8時間乾水素中で純
化焼鈍を行った。
After decarburization annealing in 850 ° C wet hydrogen, Al 2 O 3 (80
%), MgO (15%) and ZrO 2 (5%) as the main components, after applying an annealing separator, the temperature is raised from 850 ° C to 1150 ° C at 10 ° C / hr for secondary recrystallization, Purification annealing was performed in dry hydrogen at 1200 ° C. for 8 hours.

その後酸洗により酸化被膜を除去後、3%HFとH2O2液中
で化学研磨して鏡面仕上げした後、CVD、イオンプレー
ティング(HCD法)及びイオンインプランテーションに
より(1)BN,(2)Ti(CN),(3)Si3N4,(4)V
N,(5)ZrN,(6)Cr2N,(7)AIN,(8)HfNの如き
窒化物、(9)ZrC,(10)HfC,(11)SiC,(12)TaC,
(13)ZrC,(14)MnCの如き炭化物および(15)ZnO,(1
6)NiO,(17)SiO2,(18)WO,(19)Al2O3,(20)CuO
の酸化物の薄膜(0.5〜1.9μm厚)を形成させた。その
後リン酸塩とコロイダルシリカを主成分とする絶縁被膜
を形成した。
After that, the oxide film was removed by pickling, and after chemical polishing in 3% HF and H 2 O 2 solution to give a mirror finish, CVD, ion plating (HCD method), and ion implantation (1) BN, ( 2) Ti (CN), (3) Si 3 N 4 , (4) V
N, (5) ZrN, (6) Cr 2 N, (7) AIN, (8) HfN nitrides, (9) ZrC, (10) HfC, (11) SiC, (12) TaC,
Carbides such as (13) ZrC, (14) MnC and (15) ZnO, (1
6) NiO, (17) SiO 2 , (18) WO, (19) Al 2 O 3 , (20) CuO
A thin film of oxide (0.5-1.9 μm thick) was formed. After that, an insulating film mainly containing phosphate and colloidal silica was formed.

ついで圧延方向に直角方向に10mm間隔で線状にEB照射
(EB照射条件:加速電圧60KV,電流0.8mA,ビーム径0.05m
m)を行い、ついで800℃で2時間の歪み取り焼鈍を行っ
た。得られた製品の磁気特性を第2表に示す。
Then, EB irradiation was performed linearly at 10 mm intervals perpendicular to the rolling direction (EB irradiation conditions: accelerating voltage 60 KV, current 0.8 mA, beam diameter 0.05 m
m) and then strain relief annealing at 800 ° C. for 2 hours. The magnetic properties of the resulting product are shown in Table 2.

実施例3 C:0.044%,Si:3.38%,Mn:0.072%,Se:0.020%,Sb:0.026
%,Mo:0.15%を含有する熱延板を、1000℃で1分間の均
一化焼鈍後,950℃で3分間の中間焼鈍をはさんで2回の
冷間圧延を行なって0.18mm厚の最終冷延板とした。その
後820℃湿水素中で脱炭を兼ねる1次再結晶焼鈍を施し
た後、鋼板表面にAl2O3(70%)とMgO(30%)とを主成
分とする焼鈍分離剤を塗布した後850℃で50時間2次再
結晶を施した後、1200℃で10時間乾水素中で純化焼鈍を
行った。
Example 3 C: 0.044%, Si: 3.38%, Mn: 0.072%, Se: 0.020%, Sb: 0.026
%, Mo: 0.15% of the hot-rolled sheet was annealed at 1000 ℃ for 1 minute, then intermediate cold anneal at 950 ℃ for 3 minutes, and then cold-rolled twice to obtain 0.18 mm thickness. The final cold rolled sheet was used. After that, after performing primary recrystallization annealing that also serves as decarburization in wet hydrogen at 820 ° C, an annealing separator containing Al 2 O 3 (70%) and MgO (30%) as main components was applied to the surface of the steel sheet. After secondary recrystallization at 850 ° C. for 50 hours, purification annealing was performed in dry hydrogen at 1200 ° C. for 10 hours.

その後酸洗により酸化被膜を除去後、3%HFとH2O2液中
で化学研磨して鏡面仕上げした後、イオンプレーティン
グ(HCD法)により(1)TiN,(2)NbN,(3)Mo2N,
(4)W2N,(5)CoN,(6)NiN,(7)TiC,(8)Nb
C,(9)Mo2C,(10)WC,(11)CoC,(12)NiC,(13)V
C,(14)CrC,(15)AlCの張力薄膜(目標1.0μm厚)を
形成させた。その後リン酸塩とコロイダルシリカを主成
分とする絶縁被膜を形成した。次に圧延方向の直角方向
に8mm間隔で線状にEB照射(加速電圧50KV,電流0.9mA,ビ
ーム径0.1mm)行って、ついで800℃で2時間窒素中で歪
み取り焼鈍を行った。
After that, the oxide film was removed by pickling, and after chemical polishing in 3% HF and H 2 O 2 solution to give a mirror finish, (1) TiN, (2) NbN, (3 ) Mo 2 N,
(4) W 2 N, (5) CoN, (6) NiN, (7) TiC, (8) Nb
C, (9) Mo 2 C, (10) WC, (11) CoC, (12) NiC, (13) V
C, (14) CrC, (15) AlC tension thin films (target thickness 1.0 μm) were formed. After that, an insulating film mainly containing phosphate and colloidal silica was formed. Next, EB irradiation (accelerating voltage 50 KV, current 0.9 mA, beam diameter 0.1 mm) was performed linearly at intervals of 8 mm in the direction perpendicular to the rolling direction, and then strain relief annealing was performed at 800 ° C. for 2 hours in nitrogen.

得られた製品の磁気特性を第3表に示す。The magnetic properties of the obtained product are shown in Table 3.

(発明の効果) この発明によれば、歪取り焼鈍によっても鉄損の劣化を
まねくことがないため、とくに巻鉄芯トランス材料にお
いても低鉄損化を有利に実現できる。また、第2発明に
よって、さらなる低鉄損化をはかることが可能である。
(Effect of the Invention) According to the present invention, since iron loss is not deteriorated even by strain relief annealing, it is possible to advantageously realize a low iron loss particularly in a wound iron core transformer material. Further, the second invention can further reduce the iron loss.

【図面の簡単な説明】[Brief description of drawings]

第1図はEB処理材に焼鈍を施した際の磁気特性を示すグ
ラフである。
FIG. 1 is a graph showing magnetic characteristics when an EB treated material is annealed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】仕上焼鈍済みの方向性珪素鋼板上にリン酸
塩とコロイダルシリカを主成分とする絶縁コーティング
被膜を被成した後、該被膜上で圧延方向を横切る向きに
EB照射を施すことを特徴とする超低鉄損一方向性珪素鋼
板の製造方法
1. A finish-annealed grain-oriented silicon steel sheet is coated with an insulating coating film containing phosphate and colloidal silica as main components, and then the film is oriented in a direction transverse to the rolling direction.
Method for producing ultra low iron loss unidirectional silicon steel sheet characterized by performing EB irradiation
【請求項2】仕上げ焼鈍済みの方向性珪素鋼板につき、
その表面酸化物を除去し、ついで研磨により鋼板表面を
中心線平均粗さRaで0.4μm以下の鏡面状態に仕上げた
後、CVD、イオンプレーティングあるいはイオンインプ
ランテーションにより、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,
Co,Ni,Al,B,Siの窒化物及び/又は炭化物並びにAl,Ni,C
u,W,Si及びZnの酸化物のうちから選ばれた少なくとも1
種からなる極薄張力被膜を被成し、さらにリン酸塩とコ
ロイダルシリカを主成分とする絶縁コーティング被膜を
被成し、ついで該被膜上で圧延方向を横切る向きにEB照
射を施すことを特徴とする超低鉄損一方向性珪素鋼板の
製造方法。
2. A finish-annealed grain-oriented silicon steel sheet,
After removing the surface oxide, and then polishing the surface of the steel plate to a mirror surface with a centerline average roughness Ra of 0.4 μm or less, Ti, Zr, Hf, V are deposited by CVD, ion plating or ion implantation. , Nb, Ta, Cr, Mo, W, Mn,
Co, Ni, Al, B, Si nitrides and / or carbides, and Al, Ni, C
At least 1 selected from oxides of u, W, Si and Zn
Characterized by forming an ultra-thin tension film consisting of seeds, further forming an insulating coating film containing phosphate and colloidal silica as the main components, and then applying EB irradiation in a direction transverse to the rolling direction on the film. And a method for producing an ultra low iron loss unidirectional silicon steel sheet.
JP62016123A 1986-09-16 1987-01-28 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet Expired - Lifetime JPH0672266B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62016123A JPH0672266B2 (en) 1987-01-28 1987-01-28 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
US07/095,527 US4909864A (en) 1986-09-16 1987-09-10 Method of producing extra-low iron loss grain oriented silicon steel sheets
DE8787308134T DE3785632T2 (en) 1986-09-16 1987-09-15 METHOD FOR PRODUCING CORNORIENTED SILICON STEEL SHEETS WITH VERY LOW ROLL LOSS.
EP87308134A EP0260927B1 (en) 1986-09-16 1987-09-15 Method of producing extra-low iron loss grain oriented silicon steel sheets
US07/444,050 US4985635A (en) 1986-09-16 1989-11-30 Method of producing extra-low iron loss grain oriented silicon steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62016123A JPH0672266B2 (en) 1987-01-28 1987-01-28 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS63186826A JPS63186826A (en) 1988-08-02
JPH0672266B2 true JPH0672266B2 (en) 1994-09-14

Family

ID=11907731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62016123A Expired - Lifetime JPH0672266B2 (en) 1986-09-16 1987-01-28 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0672266B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017693A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
WO2012017671A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Directional magnetic steel plate
WO2012017655A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Oriented electromagnetic steel plate and production method for same
WO2012017670A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
WO2012017654A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented electrical steel sheet, and method for producing same
WO2013099160A1 (en) 2011-12-26 2013-07-04 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
WO2013099272A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and manufacturing method therefor
WO2013099219A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 Device for improving core loss in grain-oriented electrical steel sheet
WO2013099258A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 Grain-oriented electrical steel sheet
WO2013099274A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and method for ameliorating iron losses therein
WO2014203464A1 (en) 2013-06-19 2014-12-24 Jfeスチール株式会社 Oriented magnetic steel sheet and transformer core using same
WO2015111434A1 (en) 2014-01-23 2015-07-30 Jfeスチール株式会社 Directional magnetic steel plate and production method therefor
US9514868B2 (en) 2010-06-29 2016-12-06 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
US9799432B2 (en) 2010-08-06 2017-10-24 Jfe Steel Corporation Grain oriented electrical steel sheet
WO2019151401A1 (en) 2018-01-31 2019-08-08 Jfeスチール株式会社 Grain-oriented electrical steel sheet, transformer stacked core using same, and method for producing stacked core
US10629346B2 (en) 2012-04-26 2020-04-21 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
WO2020158893A1 (en) 2019-01-31 2020-08-06 Jfeスチール株式会社 Grain-oriented electrical steel sheet and iron core using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919733A (en) * 1988-03-03 1990-04-24 Allegheny Ludlum Corporation Method for refining magnetic domains of electrical steels to reduce core loss
US4915750A (en) * 1988-03-03 1990-04-10 Allegheny Ludlum Corporation Method for providing heat resistant domain refinement of electrical steels to reduce core loss
JP2638180B2 (en) * 1988-10-26 1997-08-06 川崎製鉄株式会社 Low iron loss unidirectional silicon steel sheet and method for producing the same
JPH0347975A (en) * 1989-07-13 1991-02-28 Kawasaki Steel Corp Low-iron loss grain-oriented silicon steel sheet
JP5621392B2 (en) * 2010-08-05 2014-11-12 Jfeスチール株式会社 Electron beam irradiation method
EP3913088B1 (en) * 2019-01-16 2024-05-22 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144424A (en) * 1982-02-19 1983-08-27 Kawasaki Steel Corp Manufacture of directional electromagnetic steel sheet having low iron loss
JPS6046325A (en) * 1984-05-07 1985-03-13 Nippon Steel Corp Treatment of electromagnetic steel plate
JPS61235514A (en) * 1985-04-10 1986-10-20 Kawasaki Steel Corp Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9514868B2 (en) 2010-06-29 2016-12-06 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
US9183984B2 (en) 2010-08-06 2015-11-10 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
WO2012017671A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Directional magnetic steel plate
WO2012017655A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Oriented electromagnetic steel plate and production method for same
WO2012017670A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
WO2012017654A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented electrical steel sheet, and method for producing same
EP3778930A1 (en) 2010-08-06 2021-02-17 Jfe Steel Corporation Method for manufacturing the grain oriented electrical steel sheet
WO2012017693A1 (en) 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
US9799432B2 (en) 2010-08-06 2017-10-24 Jfe Steel Corporation Grain oriented electrical steel sheet
US9536658B2 (en) 2010-08-06 2017-01-03 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
US9240266B2 (en) 2010-08-06 2016-01-19 Jfe Steel Corporation Grain oriented electrical steel sheet
US9875832B2 (en) 2011-12-26 2018-01-23 Jfe Steel Corporation Grain-oriented electrical steel sheet
WO2013099160A1 (en) 2011-12-26 2013-07-04 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
WO2013099258A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 Grain-oriented electrical steel sheet
WO2013099219A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 Device for improving core loss in grain-oriented electrical steel sheet
WO2013099272A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and manufacturing method therefor
WO2013099274A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and method for ameliorating iron losses therein
EP3037568A1 (en) 2011-12-28 2016-06-29 JFE Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
US10395806B2 (en) 2011-12-28 2019-08-27 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing the same
US10629346B2 (en) 2012-04-26 2020-04-21 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
US10559410B2 (en) 2013-06-19 2020-02-11 Jfe Steel Corporation Grain-oriented electrical steel sheet and transformer iron core using same
WO2014203464A1 (en) 2013-06-19 2014-12-24 Jfeスチール株式会社 Oriented magnetic steel sheet and transformer core using same
WO2015111434A1 (en) 2014-01-23 2015-07-30 Jfeスチール株式会社 Directional magnetic steel plate and production method therefor
WO2019151401A1 (en) 2018-01-31 2019-08-08 Jfeスチール株式会社 Grain-oriented electrical steel sheet, transformer stacked core using same, and method for producing stacked core
US11495378B2 (en) 2018-01-31 2022-11-08 Jfe Steel Corporation Grain-oriented electrical steel sheet, stacked transformer core using the same, and method for producing stacked core
WO2020158893A1 (en) 2019-01-31 2020-08-06 Jfeスチール株式会社 Grain-oriented electrical steel sheet and iron core using same
US11959149B2 (en) 2019-01-31 2024-04-16 Jfe Steel Corporation Grain-oriented electrical steel sheet and iron core using same

Also Published As

Publication number Publication date
JPS63186826A (en) 1988-08-02

Similar Documents

Publication Publication Date Title
JPH0672266B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
US4985635A (en) Method of producing extra-low iron loss grain oriented silicon steel sheets
JPS6335684B2 (en)
JPH01147074A (en) Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing
JPH0619113B2 (en) Method for producing grain-oriented electrical steel sheet with extremely low iron loss
JPH0327633B2 (en)
JPH0335377B2 (en)
JPS6335685B2 (en)
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPH0699823B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPH067527B2 (en) Ultra-low iron loss grain-oriented silicon steel sheet and method for producing the same
JPH0663034B2 (en) Method for producing grain-oriented silicon steel sheet with extremely low iron loss
JPH075973B2 (en) Manufacturing method of ultra-low iron loss unidirectional silicon steel sheet
JPH0374488B2 (en)
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS6335687B2 (en)
JPH0619115B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPH0699822B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPH0327632B2 (en)
JPH0327631B2 (en)
JPS6222407A (en) Manufacture of ultra-low iron loss unidirectional silicon steel plate
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPS63278209A (en) Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties