JPH0670885B2 - Dielectric material - Google Patents

Dielectric material

Info

Publication number
JPH0670885B2
JPH0670885B2 JP62262465A JP26246587A JPH0670885B2 JP H0670885 B2 JPH0670885 B2 JP H0670885B2 JP 62262465 A JP62262465 A JP 62262465A JP 26246587 A JP26246587 A JP 26246587A JP H0670885 B2 JPH0670885 B2 JP H0670885B2
Authority
JP
Japan
Prior art keywords
dielectric material
ion
dielectric
ions
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62262465A
Other languages
Japanese (ja)
Other versions
JPH01105404A (en
Inventor
邦生 土地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Co Ltd
Original Assignee
Nikko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Co Ltd filed Critical Nikko Co Ltd
Priority to JP62262465A priority Critical patent/JPH0670885B2/en
Publication of JPH01105404A publication Critical patent/JPH01105404A/en
Publication of JPH0670885B2 publication Critical patent/JPH0670885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、誘電体材料、特にマイクロ波帯の周波数域
において優れた誘電特性を有する誘電体材料に関する。
Description: TECHNICAL FIELD The present invention relates to a dielectric material, particularly a dielectric material having excellent dielectric properties in a microwave frequency range.

〔背景技術〕 近年、衛生放送、自動車無線、パーソナル無線等のよう
なマイクロ波帯を利用した通信システムの利用が盛んで
ある。これらのシステムに用いられる通信機器のフィル
タや周波数安定化用共振器等の共振回路系には、もっぱ
ら誘電体共振器が使われる。共振器用の誘電体材料に
は、当然、マイクロ波帯において高い比誘電率と低い誘
電損失をもつことが要求される。
BACKGROUND ART In recent years, communication systems using microwave bands such as satellite broadcasting, car radio, personal radio, etc. have been actively used. A dielectric resonator is exclusively used for a resonant circuit system such as a filter of a communication device or a frequency stabilizing resonator used in these systems. The dielectric material for the resonator is naturally required to have a high relative permittivity and a low dielectric loss in the microwave band.

比誘電率に関しては、普通、この材料を誘電体共振器と
して用いたときの大きさが利用する周波数帯で取り扱い
易い寸法となるように選定する必要もあり、一義的には
定まらないのではあるが、10GHz帯では20〜40程度がよ
いとされている。ただ、最近ますます必要性の増す小型
化適性という観点からは、比誘電率はやはり大きい方が
好ましい。
Regarding the relative permittivity, it is usually necessary to select the size when this material is used as a dielectric resonator so that it can be easily handled in the frequency band to be used, and it is not uniquely determined. However, it is said that 20-40 is good in the 10 GHz band. However, from the viewpoint of suitability for miniaturization, which is increasingly needed recently, it is still preferable that the relative permittivity is large.

一方、誘電損失(tanδ=1/Q)は小さいほどよく、
例えば、用いる周波数帯で1/10000程度は必要とされ
る。
On the other hand, the smaller the dielectric loss (tan δ = 1 / Q), the better,
For example, about 1/10000 is required in the frequency band used.

マイクロ波帯に使われる誘電体材料として、従来、BaTi
4O9、Ba2Ti9O20、あるいはBa(Zn1/3Ta2/3)O3等が一般的
に知られている。
Conventionally, BaTi has been used as a dielectric material used in the microwave band.
4 O 9 , Ba 2 Ti 9 O 20 , Ba (Zn 1/3 Ta 2/3 ) O 3, etc. are generally known.

ところで、共振回路系の性能向上のために、誘電損失を
いっそう低くすることが求められている。極低誘電損失
の誘電体材料は、低位相雑音発振器や高電力用フィルタ
ー・分波器等にも利用可能となり、用途が広い。
By the way, in order to improve the performance of the resonance circuit system, it is required to further reduce the dielectric loss. Dielectric materials with extremely low dielectric loss can be used for low phase noise oscillators, high power filters, duplexers, etc., and have wide applications.

〔発明の目的〕[Object of the Invention]

この発明は、前記事情に鑑み、マイクロ波帯において、
実用的かつ小型化適性のある範囲の比誘電率を保持し、
低誘電損失特性を有するなど優れた誘電体材料を提供す
ることを目的とする。
In view of the above circumstances, the present invention provides a microwave band,
Holds the relative permittivity in a range that is practical and suitable for miniaturization,
It is an object to provide an excellent dielectric material having a low dielectric loss characteristic.

〔発明の開示〕[Disclosure of Invention]

前記目的を達成するため、発明者は、様々な角度から検
討を行った。そして、多数の誘電体材料のうちから、組
成式:Ba(A1/3B2/3)O3(但し、Aは2価イオン、Bは5
価イオン)であらわされ、複合ペロブスカイト系結晶構
造を有する誘電体材料に着目した。この誘電体材料は、
多数の元素からなる複雑な結晶構造を有しており、誘電
損失等の誘電特性の機構の解明が十分されておらず、改
善できる可能性が大きいとみたのである。
In order to achieve the above-mentioned object, the inventor has studied from various angles. The composition formula: Ba (A 1/3 B 2/3 ) O 3 (where A is a divalent ion and B is 5
We paid attention to a dielectric material that is expressed by valence ions and has a complex perovskite crystal structure. This dielectric material is
It has a complicated crystal structure composed of many elements, and the mechanism of dielectric properties such as dielectric loss has not been fully clarified, and it is considered that there is a great possibility of improvement.

複合ペロプスカイト系結晶構造を有する誘電体材料で
は、そのマイクロ波領域の誘電特性に対してはイオン分
極が支配的である。この場合、以下に述べるように、赤
外活性な基準振動モードのTO(Transverse Optical Mod
e)モードの周波数と古典分散理論からマイクロ波領域
での比誘電率ε′(ε=ε′−jε″)および誘電損
失(tanδ=1/Q)を推定することができる。
In a dielectric material having a composite perovskite crystal structure, ionic polarization is dominant in the dielectric properties in the microwave region. In this case, as described below, the TO (Transverse Optical Modulation) of the infrared-active reference vibration mode is performed.
e) The relative permittivity ε r ′ (ε = ε′−jε ″) and the dielectric loss (tan δ = 1 / Q) in the microwave region can be estimated from the frequency of the mode and the classical dispersion theory.

1.5tera〜300teraHz(50〜1000cm-1)の範囲の赤外線ス
ペクトルの測定結果をクラマース−クローニッヒ〔Cram
ers−Kroning〕の関係式に適用し、赤外領域における各
TOモードの周波数(通常、複数のTOモードがある)とそ
れぞれの周波数におけるε″の値、すなわち周波数(赤
外領域)−複素誘電率の虚数部ε″の誘電分散を求め
る。この結果を、さらに古典分散理論から導かれる下記
(2)式に適用するのである。ただし、(2)式はν
《ν(ω=2πν)の条件で近似式化されている。
The measurement results of the infrared spectrum in the range of 1.5tera to 300teraHz (50 to 1000cm -1 ) are shown by Cramers - Kronig [Cram
ers-Kroning]
The frequency of the TO mode (usually, there are a plurality of TO modes) and the value of ε ″ at each frequency, that is, the dielectric dispersion of the imaginary part ε ″ of the frequency (infrared region) -complex dielectric constant is obtained. This result is applied to the following formula (2) derived from the classical dispersion theory. However, equation (2) is ν
It is approximated under the condition of << ν j (ω = 2πν).

ただし、ν=:TOモードの周波数 4πρ:TOモードの周波数νにおける複素誘電率の
ε″成分の値に応じて定まる共振の強さの値 γ:減衰定数 ε∞:電子分極の与える誘電率の近似値 上記の(2)式は、TOモードの周波数νが上がれば誘
電損失が小さくなることを示している。このことから、
発明者は、上記誘電体材料の格子振動の解析を試み以下
の知見を見出すことができた。すなわち、上記誘電体材
料では、赤外活性な格子振動が内振動と外振動からな
る。ここで言う内振動とは、Aイオン(またはBイオ
ン)とこのイオンに最近接なO(酸素)イオンの間で起
こる振動であり、外振動とは、Aイオン(またはBイオ
ン)およびOイオンの集団とBaイオンとの間で起こる振
動であり、長距離的なクーロン相互作用である。したが
って、外振動のTOモードの周波数の方が内振動のそれよ
りも低く、そのため、外振動のTOモードの周波数を高く
することができれば、これに伴い誘電損失も低下させら
れるであろうという知見が得られたのである。
However, ν j =: TO mode frequency 4πρ j : TO mode frequency ν j, resonance strength value γ j determined according to the value of ε ″ component of complex permittivity γ j : damping constant ε ∞: electronic polarization Approximate value of permittivity given Equation (2) above shows that the dielectric loss becomes smaller as the TO mode frequency ν j increases.
The inventor has tried to analyze the lattice vibration of the above dielectric material and has been able to find out the following findings. That is, in the above dielectric material, infrared active lattice vibration is composed of inner vibration and outer vibration. The internal vibration referred to here is the vibration that occurs between the A ion (or B ion) and the O (oxygen) ion that is closest to this ion, and the external vibration is the A ion (or B ion) and O ion. Is a vibration that occurs between the population of Ba and the Ba ions, and is a long-range Coulomb interaction. Therefore, the frequency of the TO mode of the external vibration is lower than that of the internal vibration. Therefore, if the frequency of the TO mode of the external vibration can be increased, the dielectric loss will be reduced accordingly. Was obtained.

外振動の周波数は、Baイオンの質量と密接な関係があ
る。Baイオンの質量がもし小さくなれば外振動の周波数
が高くなることになるのである。そこで、このBaイオン
の一部を他のイオン、より質量の小さいイオンで置き換
え、誘電損失を小さく、かつ、比誘電率ε′を実用的な
範囲に維持することができると推察し、その方向でさら
に深く検討を続けた。その結果、Baイオンの一部をSrイ
オンで置き換えれば、実用的な比誘電率ε′を維持しつ
つ、誘電損失を小さくすることができることを見出せた
のである。Srの原子量は87.6であり、Baの原子量の137.
3のそれよりも相当に小さく、上記推察の正さが裏付け
られた恰好となっている。
The frequency of external vibration is closely related to the mass of Ba ions. If the mass of Ba ions is smaller, the frequency of external vibration will be higher. Therefore, it is presumed that a part of the Ba ions can be replaced with other ions, which have a smaller mass, to reduce the dielectric loss and maintain the relative permittivity ε'in a practical range. I continued to study more deeply. As a result, they have found that by replacing a part of Ba ions with Sr ions, the dielectric loss can be reduced while maintaining a practical relative permittivity ε '. The atomic weight of Sr is 87.6, and the atomic weight of Ba is 137.
It is considerably smaller than that of 3, and it is a good indication that the above assumption is correct.

したがって、この発明は、 Ba1-xSrx(A1/3B2/3)O3 (ただし、Aは2価イオン、Bは5価イオン) であらわされ、複合ペロブスカイト系結晶構造を有する
4元素型の誘電体材料であって、AイオンはZnまたはC
o、BイオンはTaまたはNbであり、AイオンがZnの場合
はBイオンがTaであり、AイオンがCoの場合はBイオン
がNbであるとともに、1−X:Xが0.6:0.4〜0.1:0.9の範
囲にあることを特徴とする誘電体材料を要旨とする。
Therefore, the present invention is represented by Ba 1-x Sr x (A 1/3 B 2/3 ) O 3 (where A is a divalent ion and B is a pentavalent ion) and has a complex perovskite crystal structure. A four-element type dielectric material in which A ions are Zn or C
o, B ion is Ta or Nb, B ion is Ta when A ion is Zn, B ion is Nb when A ion is Co, and 1-X: X is 0.6: 0.4- The gist is a dielectric material characterized by being in the range of 0.1: 0.9.

つまり、この発明は、Ba1-xSrx(Zn1/3Ta2/3)O3なる組成
式で示される酸素は別としてBa、Sr、Zn、Taの4つの元
素のみの4元素型の構成であってXが0.4〜0.9の範囲に
ある誘電体材料か、あるいは、Ba1-xSrx(Co1/3Nb2/3)O3
なる組成式で示される酸素は別としてBa、Sr、Co、Nbの
4つの元素のみの4元素型の構成であってXが0.4〜0.9
の範囲にある誘電体材料なのである。
That is, the present invention is a four-element type containing only four elements Ba, Sr, Zn, and Ta, apart from oxygen represented by the composition formula Ba 1-x Sr x (Zn 1/3 Ta 2/3 ) O 3. Or a dielectric material in which X is in the range of 0.4 to 0.9, or Ba 1-x Sr x (Co 1/3 Nb 2/3 ) O 3
Aside from oxygen represented by the composition formula, Ba, Sr, Co, and Nb are composed of only four elements, and X is 0.4 to 0.9.
It is a dielectric material in the range of.

Baイオンの置換割合、すなわち、Baイオン(1−x):S
rイオン(x)は、比誘電率と誘電損失の観点から、0.
6:0.4〜0.1:0.9の範囲とされる。なお、比率はモル比で
ある。置換割合が上記比率を下回ると、Srによる置換効
果が少なく比誘電率と誘電損失の向上が十分でない。逆
に上記割合を上回ってしまっても、結晶構造の歪を生じ
るため向上の程度が小さい。誘電体材料は温度特性も重
要な要素であり、実用にあたっては、これらの各特性が
バランスする置換割合が選ばれることは言うまでもな
い。
Substitution ratio of Ba ions, that is, Ba ions (1-x): S
r-ion (x) is 0. from the viewpoint of relative permittivity and dielectric loss.
The range is from 6: 0.4 to 0.1: 0.9. The ratio is a molar ratio. When the substitution ratio is less than the above ratio, the substitution effect by Sr is small and the relative permittivity and the dielectric loss are not sufficiently improved. On the contrary, even if the ratio exceeds the above range, the degree of improvement is small because the crystal structure is distorted. The temperature characteristic is also an important factor for the dielectric material, and it is needless to say that in practical use, a substitution ratio that balances these characteristics is selected.

BaイオンがSrイオンで置換された状態、すなわち、複合
ペロブスカイト系誘電体材料が、例えば、固溶体となっ
ているようにすればよい。
The Ba ions are replaced by Sr ions, that is, the composite perovskite-based dielectric material may be, for example, a solid solution.

続いて,具体的な実施例と比較例の説明を行う。Next, specific examples and comparative examples will be described.

〔実施例1〕 純度99.9%以上のBaCO3、SrCO3、ZnO、Ta2O5の各粉末を
用いた。これらを混合し、蒸留水を添加して24時間ボー
ルミル粉砕を行った後、乾燥させてから、温度:1100
℃、4時間の仮焼を行い粒状の複合ペロブスカイト系化
合物を得た。ついで、この化合物を再び粉砕し、所定の
形状にした後、ルツボ内のMgO板上に置いて、温度:1500
℃、2時間、空気雰囲気で焼成し誘電体材料を得た。得
られた材料の寸法は、直径約11mm、長さ約15mmの円柱で
ある。上記雰囲気が、チッソガス、アルゴンガス、ある
いは、酸素ガス雰囲気である場合もある。
Example 1 Powders of BaCO 3 , SrCO 3 , ZnO, and Ta 2 O 5 having a purity of 99.9% or more were used. After mixing them, adding distilled water and ball-milling for 24 hours, and then drying, temperature: 1100
Calcination was performed at 4 ° C. for 4 hours to obtain a granular composite perovskite compound. Then, this compound was pulverized again and formed into a predetermined shape, and then placed on a MgO plate in a crucible, and the temperature was 1500.
The dielectric material was obtained by firing in an air atmosphere at 2 ° C. for 2 hours. The dimensions of the material obtained are cylinders with a diameter of about 11 mm and a length of about 15 mm. The atmosphere may be nitrogen gas, argon gas, or oxygen gas atmosphere.

なお、BaイオンとSrイオンの比(モル比)が第1表とな
るように、BaCO3、SrCO3粉末の割合を変えて誘電体材料
を作成した。比較のために、Baイオンを全く含まないも
のと、逆に、Srイオンを全く含まないものもそれぞれ作
成した。
Dielectric materials were prepared by changing the ratio of BaCO 3 and SrCO 3 powder so that the ratio (molar ratio) of Ba ions and Sr ions was as shown in Table 1. For comparison, a sample containing no Ba ions and a sample containing no Sr ions were also prepared.

〔実施例2〕 ZnO粉末の代わりにCoO粉末を用いるとともにTa2O5粉末
の代わりにNb2O5粉末を用い、温度:1000℃、4時間の仮
焼を行い、温度:1400℃、2時間、空気雰囲気で焼成す
るようにした以外は、実施例1と全く同様にして誘電体
材料を得た。
Example 2 using a Nb 2 O 5 powder instead of Ta 2 O 5 powder with using CoO powder instead of ZnO powder, temperature: 1000 ° C., subjected to calcination for 4 hours, temperature: 1400 ° C., 2 A dielectric material was obtained in exactly the same manner as in Example 1 except that the firing was performed in the air atmosphere for the time.

〔比較例1〕 Ta2O5粉末の代わりにNb2O5粉末を用い、温度:1075℃、
4時間の仮焼を行い、温度1500℃、2時間、空気雰囲気
で焼成するようにした以外は、実施例1と全く同様にし
て誘電体材料を得た。
[Comparative Example 1] Nb 2 O 5 powder was used instead of Ta 2 O 5 powder at a temperature of 1075 ° C.
A dielectric material was obtained in exactly the same manner as in Example 1 except that calcination was performed for 4 hours and the temperature was set to 1500 ° C. for 2 hours in an air atmosphere.

〔比較例2〕 ZnO粉末の代わりにCoO粉末を用い、温度:1000℃、4時
間の仮焼を行い、温度1400℃、2時間、空気雰囲気で焼
成するようにした以外は、実施例1と全く同様にして誘
電体材料を得た。
[Comparative Example 2] Example 1 except that CoO powder was used instead of ZnO powder, calcination was performed at a temperature of 1000 ° C for 4 hours, and firing was performed at a temperature of 1400 ° C for 2 hours in an air atmosphere. A dielectric material was obtained in exactly the same manner.

〔比較例3〕 ZnO粉末の代わりにNiO粉末を用い、温度:1100℃、4時
間の仮焼を行い、温度1600℃、2時間、空気雰囲気で焼
成するようにした以外は、実施例1と全く同様にして誘
電体材料を得た。
[Comparative Example 3] Example 1 except that NiO powder was used instead of ZnO powder, calcination was performed at a temperature of 1100 ° C for 4 hours, and firing was performed in an air atmosphere at a temperature of 1600 ° C for 2 hours. A dielectric material was obtained in exactly the same manner.

〔比較例4〕 ZnO粉末の代わりにMgO粉末を用いるとともにTa2O5粉末
の代わりにNb2O5粉末を用い、温度1100℃、4時間の仮
焼を行い、温度1600℃、2時間、空気雰囲気で焼成する
ようにした以外は、実施例1と全く同様にして誘電体材
料を得た。
[Comparative Example 4] MgO powder was used instead of ZnO powder, and Nb 2 O 5 powder was used instead of Ta 2 O 5 powder, and calcination was performed at a temperature of 1100 ° C for 4 hours, and a temperature of 1600 ° C for 2 hours. A dielectric material was obtained in exactly the same manner as in Example 1 except that firing was performed in an air atmosphere.

〔比較例5〕 ZnO粉末の代わりにNiO粉末を用いるとともにTa2O5粉末
の代わりにNb2O5粉末を用い、温度1100℃、4時間の仮
焼を行い、温度:1550℃、2時間、空気雰囲気で焼成す
るようにした以外は、実施例1と全く同様にして誘電体
材料を得た。
[Comparative Example 5] NiO powder was used instead of ZnO powder and Nb 2 O 5 powder was used instead of Ta 2 O 5 powder, and calcination was performed at a temperature of 1100 ° C for 4 hours and a temperature of 1550 ° C for 2 hours. A dielectric material was obtained in exactly the same manner as in Example 1 except that firing was performed in an air atmosphere.

作成した誘電体材料が、ペロブスカイト系結晶構造をし
ており、かつ、BaイオンがSrイオンで置換されているこ
とは、X線回折により確認した。
It was confirmed by X-ray diffraction that the prepared dielectric material had a perovskite crystal structure and Ba ions were replaced by Sr ions.

各誘電体材料の比誘電率ε′、および、Q値を、各G〜
20数GHz帯における測定に適した誘電体円柱共振器法に
より測定した。測定に用いた機器は、ヒューレット・パ
ッカード社製:ネットワークアナライザ8510Tである。
測定結果を、第1〜7表に示す。
The relative permittivity ε ′ of each dielectric material and the Q value are
It was measured by the dielectric cylinder resonator method suitable for measurement in the 20's GHz band. The instrument used for the measurement is a network analyzer 8510T manufactured by Hewlett-Packard Company.
The measurement results are shown in Tables 1 to 7.

上記第1〜7表から、Srイオンの添加により、比誘電率
特性および誘電損失特性が向上していることがよく分か
る。
From Tables 1 to 7 above, it is well understood that the addition of Sr ions improves the relative dielectric constant characteristics and the dielectric loss characteristics.

実施例1,2の材料は、比較例の場合と異なり、εが30
を越し実用的かつ小型化適性のある範囲の比誘電率を保
持しており、前記した共振器のみならず、マイクロ波集
積回路用基板として用いたり、導波管の空洞内に入れ導
波管の小型化を図るのに用いたりもできる。
The materials of Examples 1 and 2 were different from those of Comparative Example in that ε r was 30.
It holds a relative permittivity in a range that is practical and suitable for miniaturization, and can be used not only for the resonator described above but also as a substrate for microwave integrated circuits, or by inserting it in the cavity of a waveguide. It can also be used to reduce the size.

実施例の場合、比較例4のBa1-xSrx(Zn1/3Nb2/3)O3など
に比べて、組成式中のxの比較的広い範囲で温度係数が
低く、温度係数(誘電体共振器とした場合の共振周波数
の対温度変化率)の低いものが得やすいということも言
え好ましい。
In the case of the example, the temperature coefficient is low in a relatively wide range of x in the composition formula as compared with Ba 1-x Sr x (Zn 1/3 Nb 2/3 ) O 3 of Comparative Example 4, and the temperature coefficient is It can be said that it is easy to obtain a material having a low (resonance frequency versus temperature change rate in the case of a dielectric resonator), which is preferable.

この発明は、上記実施例に限らない。誘電体材料が上記
に例示した以外の製法で作られてもよい。誘電体材料が
単結晶であってもよい。
The present invention is not limited to the above embodiment. The dielectric material may be made by a manufacturing method other than those exemplified above. The dielectric material may be single crystal.

〔発明の効果〕〔The invention's effect〕

この発明にかかる誘電体材料は、上記に述べたような構
成であるので、εが30を越し実用的かつ小型化適性の
ある範囲の比誘電率を保持している上、誘電損失も少な
く、また、温度係数(誘電体共振器とした場合の共振周
波数の対温度変化率)の低いものが得やすいという顕著
な効果を奏し、有用性が顕著である。
Since the dielectric material according to the present invention has the structure as described above, it maintains a relative permittivity in a range where ε r exceeds 30, which is practical and suitable for downsizing, and also has a small dielectric loss. In addition, it has a remarkable effect that a material having a low temperature coefficient (resonance frequency vs. temperature change rate in the case of a dielectric resonator) can be easily obtained, and its usefulness is remarkable.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】組成式: Ba1-xSrx(A1/3B2/3)O3 (ただし、Aは2価イオン、Bは5価イオン) であらわされ、複合ペロブスカイト系結晶構造を有する
4元素型の誘電体材料であって、AイオンはZnまたはC
o、BイオンはTaまたはNbであり、AイオンがZnの場合
はBイオンがTaであり、AイオンがCoの場合はBイオン
がNbであるとともに、1−X:Xが0.6:0.4〜0.1:0.9の範
囲にあることを特徴とする誘電体材料。
1. A composite perovskite crystal structure represented by the composition formula: Ba 1-x Sr x (A 1/3 B 2/3 ) O 3 (where A is a divalent ion and B is a pentavalent ion). A four-element type dielectric material having A, where A ions are Zn or C
o, B ion is Ta or Nb, B ion is Ta when A ion is Zn, B ion is Nb when A ion is Co, and 1-X: X is 0.6: 0.4- A dielectric material characterized by being in the range of 0.1: 0.9.
JP62262465A 1987-10-17 1987-10-17 Dielectric material Expired - Lifetime JPH0670885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262465A JPH0670885B2 (en) 1987-10-17 1987-10-17 Dielectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262465A JPH0670885B2 (en) 1987-10-17 1987-10-17 Dielectric material

Publications (2)

Publication Number Publication Date
JPH01105404A JPH01105404A (en) 1989-04-21
JPH0670885B2 true JPH0670885B2 (en) 1994-09-07

Family

ID=17376161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262465A Expired - Lifetime JPH0670885B2 (en) 1987-10-17 1987-10-17 Dielectric material

Country Status (1)

Country Link
JP (1) JPH0670885B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05298922A (en) * 1992-04-22 1993-11-12 Oki Electric Ind Co Ltd Dielectric ceramic for microwave
KR100360974B1 (en) * 2000-08-24 2002-11-23 주식회사 아모텍 Method for Preparing Dielectric Ceramic Compositions
US6926448B2 (en) 2000-09-29 2005-08-09 Nsk Ltd. Bearing unit for wheel drive

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191556A (en) * 1985-02-18 1986-08-26 日本特殊陶業株式会社 Method of burning dielectric ceramic composition for high frequency wave
JPH0784345B2 (en) * 1987-05-19 1995-09-13 宇部興産株式会社 Manufacturing method of perovskite ceramics

Also Published As

Publication number Publication date
JPH01105404A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
EP1193231B1 (en) High frequency ceramic compact, use thereof, and method of producing the same
KR100203515B1 (en) Dielectric ceramic composition for high frequency
US6304157B1 (en) High-frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication apparatus
KR100406123B1 (en) High Frequency Dielectric Ceramic Composition, Dielectric Resonator, Dielectric Filter, Dielectric Duplexer, and Communication System
JPH0670885B2 (en) Dielectric material
JP4006755B2 (en) Dielectric porcelain composition for microwave
US5262370A (en) Dielectric ceramic compositions
JP2664654B2 (en) High frequency dielectric composition
US5521130A (en) Dielectric material for high frequencies
US6380115B1 (en) High-frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication apparatus
EP1013624A2 (en) High-frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer and communication device
JP2579139B2 (en) High frequency dielectric composition
KR20020068111A (en) Ceramic Compositions of High Frequency Dielectrics Sintered at Low Temperature
JPH01123488A (en) Dielectric material
JPH01105403A (en) Dielectric material
JPH01124272A (en) Dielectric material
JP2000203934A (en) Dielectric porcelain composition for high frequency and dielectric resonator
JPH06329462A (en) Dielectric ceramic composition
JP2579138B2 (en) Microwave dielectric composition
US5198395A (en) Dielectric ceramic composition for high frequency use
US5998323A (en) High frequency dielectric material
JP3575336B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3239708B2 (en) Dielectric porcelain composition
JP3239707B2 (en) Dielectric porcelain composition
JPH0971464A (en) Dielectric porcelain composition