JPH0667442A - Image holding member, its production and image forming method - Google Patents

Image holding member, its production and image forming method

Info

Publication number
JPH0667442A
JPH0667442A JP23632192A JP23632192A JPH0667442A JP H0667442 A JPH0667442 A JP H0667442A JP 23632192 A JP23632192 A JP 23632192A JP 23632192 A JP23632192 A JP 23632192A JP H0667442 A JPH0667442 A JP H0667442A
Authority
JP
Japan
Prior art keywords
layer
conductive
holding member
image
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23632192A
Other languages
Japanese (ja)
Inventor
Yuichi Yashiki
雄一 矢敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP23632192A priority Critical patent/JPH0667442A/en
Publication of JPH0667442A publication Critical patent/JPH0667442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To provide an image holding member with reduced production cost, which shows high electrostatic contrast during copying. CONSTITUTION:The image holding member 10 consists of a substrate 1 having conductive surface 2, charge generating layer formed on the substrate if necessary, and further a thermosoftening layer containing a charge transfer material and a thermosoftening resin thereon. A conductive particle layer 6 having conductive particles 5 consisting of insulating particles covered with a conductive material and embedded in the layer is formed on the thermosoftening layer 4. This conductive particle layer 6 is formed by applying a coating material containing dispersion of conductive particles 5 on the thermosoftening layer 4. To record picture image information in the image holding member 10, an electrophotographic photosensitive body having an electrostatic image is brought into contact with this image holding member 10 to transfer the electrostatic image and to accumulate charges on the conductive particles 5, if no charge generating layer is formed on the member 10. On the other hand, if the charge generating layer is formed, the image holding member is charged in negative and then exposed to picture images to erase charge in the exposed part. Then in both cases, the thermosoftening layer 4 is heated to move the charge accumulated in the conductive particles 5 in the thermosoftening layer 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱軟化性樹脂中の粒子
の移動により画像情報を記憶する像保持部材とその製造
方法および像形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image holding member which stores image information by moving particles in a thermosoftening resin, a method of manufacturing the same, and an image forming method.

【0002】[0002]

【従来の技術】従来の電子写真複写法は、電子写真感光
体に対して、表面を一様に帯電した後に画像露光を行っ
て、像様に表面電位を減衰させ、次いで、トナー現像
し、用紙に転写するカールソン方式が一般的な方法とし
て広く応用されている。しかしながら、この方式では、
画像を一枚複写するごとに、一回ずつ露光をしなければ
ならない。そのため、高速度の複写は、装置が複雑化
し、大型化するという問題があった。この点を改善する
ために、画像情報を電子写真感光体に記憶させ、一回の
画像露光により多数枚の複写を得る方式が提案されてい
る。例えば、米国特許第4883731号明細書には、
感光性粒子が熱軟化層の内部に移動して、画像情報を記
憶し、多数枚の複写を行う電子写真方式が記載されてい
る。
2. Description of the Related Art In the conventional electrophotographic copying method, the surface of an electrophotographic photosensitive member is uniformly charged and then imagewise exposed to attenuate the surface potential imagewise, and then toner development is performed. The Carlson method of transferring onto paper is widely applied as a general method. However, with this method,
Each time an image is copied, it must be exposed once. Therefore, high-speed copying has a problem that the apparatus becomes complicated and becomes large in size. In order to improve this point, a method has been proposed in which image information is stored in an electrophotographic photosensitive member and a large number of copies are obtained by one image exposure. For example, in US Pat. No. 4,883,731,
An electrophotographic system is described in which photosensitive particles move inside the heat-softening layer to store image information and make a large number of copies.

【0003】[0003]

【発明が解決しようとする課題】上記の電子写真法は、
1回の画像露光で多数枚の複写を行う場合に非常に好ま
しい方法である。しかしながら、感光性粒子としてセレ
ンが使用されているため、分光感度がセレンに支配され
るという欠点がある。図11は、感光体の分光感度特性
を示すグラフであり、Bがセレンを用いた感光体の分光
感度曲線である。近年、画像露光として、像様に変調さ
れたレーザー光を回転反射鏡で操作する方式が電子技術
の進展に伴って広く普及しており、この場合のレーザー
光源としては、波長780nmのレーザーダイオードを
用いることが一般的である。しかしながら、図11から
明らかなように、セレンを用いた感光体は780nmに
感度を有しないので、このようなレーザー光によって画
像書き込みを行うことができないという欠点を有してい
る。
The above electrophotographic method is
This is a very preferable method when a large number of copies are made by one image exposure. However, since selenium is used as the photosensitive particles, there is a disadvantage that the spectral sensitivity is dominated by selenium. FIG. 11 is a graph showing the spectral sensitivity characteristics of the photoconductor, and B is the spectral sensitivity curve of the photoconductor using selenium. In recent years, a method of operating image-modulated laser light with a rotary reflecting mirror as image exposure has become widespread with the progress of electronic technology. In this case, a laser diode with a wavelength of 780 nm is used as a laser light source. It is generally used. However, as is apparent from FIG. 11, since the photoreceptor using selenium has no sensitivity at 780 nm, it has a drawback that it is not possible to write an image with such a laser beam.

【0004】この点を改善するために、本発明者は、セ
レンを用いる代わりに、感光性を電荷発生層に持たせ、
加熱により導電性粒子を熱軟化層内部に移動させる像保
持部材を提案した(特願平3−69442号)。図12
はその概要を示す像保持部材の模式的断面図である。図
12において、11′は像保持部材であって、基体1の
上に導電層2が形成され、その上に電荷発生層3が設け
られている。さらにその上に電荷輸送物質と熱により軟
化する熱軟化性樹脂とからなる熱軟化層4が設けられて
いる。熱軟化層4の表面近傍には、導電性粒子5′が埋
め込まれて導電性粒子層6′を形成している。
In order to improve this point, the present inventor, instead of using selenium, imparts photosensitivity to the charge generation layer,
An image holding member has been proposed in which conductive particles are moved into the heat-softening layer by heating (Japanese Patent Application No. 3-69442). 12
FIG. 3 is a schematic cross-sectional view of an image holding member showing its outline. In FIG. 12, 11 'is an image holding member, in which a conductive layer 2 is formed on a substrate 1, and a charge generation layer 3 is provided thereon. Furthermore, a heat-softening layer 4 made of a charge-transporting substance and a heat-softening resin which is softened by heat is further provided thereon. In the vicinity of the surface of the heat softening layer 4, conductive particles 5'are embedded to form a conductive particle layer 6 '.

【0005】上記の像保持部材に像情報を記憶させる像
形成方法について簡単に説明する。まず、像保持部材1
1′の表面に負の帯電を施すと、導電性粒子5′は電荷
輸送物質を通じて表面電荷を中和し、導電性粒子5′の
内部には負電荷が残留する。次いで、画像露光を行う
と、電荷発生層3から正電荷が熱軟化層4に注入され、
導電性粒子5′の負電荷を中和し、光が当たらなかった
部分の導電性粒子5′には負電荷が残留する。次に、像
保持部材11′を加熱すると、負電荷が残留していた導
電性粒子5′は、粘度が低下した熱軟化層4中を静電引
力により基体1側に移動していく。一方、加熱により、
導電性粒子5′の電荷は自然放電するので、導電性粒子
5′の全てが電極側に移動することはなく、粒子の大き
さ、荷電密度のばらつき等により、熱軟化層4中にまば
らに分布して停止する。その後、像保持部材11′を常
温に戻すと画像情報が記憶された像保持部材が得られ
る。このようにして画像情報が記憶された像保持部材を
用いて、その全面に負の帯電を繰り返すことにより、画
像露光を行うことなく連続的に複写を行うことができ
る。
An image forming method for storing image information in the image holding member will be briefly described. First, the image holding member 1
When the surface of 1'is negatively charged, the conductive particles 5'neutralize the surface charge through the charge transport material, and the negative charges remain inside the conductive particles 5 '. Next, when imagewise exposure is performed, positive charges are injected from the charge generation layer 3 into the thermal softening layer 4,
The negative charges of the conductive particles 5'are neutralized, and the negative charges remain on the portions of the conductive particles 5'which were not exposed to the light. Next, when the image holding member 11 'is heated, the conductive particles 5'having a negative charge remaining therein move toward the substrate 1 side in the heat-softened layer 4 having a reduced viscosity by electrostatic attraction. On the other hand, by heating,
Since the electric charges of the conductive particles 5'are spontaneously discharged, all of the conductive particles 5'do not move to the electrode side, and the particles are scattered in the thermal softening layer 4 due to the size of the particles, variations in charge density, and the like. Distribute and stop. After that, when the image holding member 11 'is returned to room temperature, an image holding member in which image information is stored is obtained. By using the image holding member in which the image information is stored in this manner and repeating negative charging on the entire surface, continuous copying can be performed without performing image exposure.

【0006】以上のような像保持部材においては、導電
性粒子を少しでも多く基体側へ移動させる方が複写時の
一様な帯電時に静電コントラストが高くなる。しかし、
従来のものでは、この移動が不十分であり、より大きな
移動が望まれる。像形成時に導電性粒子を少しでも多く
基体側へ移動させるには、その粒子間の静電引力を強く
させる必要があり、そのためには、導電性粒子の粒径が
適度の範囲にあるものが好ましい。ところが、導電性材
料は絶縁性粒子に比して一般に高価である。しかも、導
電性粒子はより細かいものが多く存在し、通常は適度な
粒径範囲にある導電性粒子を入手することが困難であ
る。適度な粒径の導電性粒子を得るためには、特別の製
造手段を必要とし、工業的には不都合であるという問題
があった。
In the image holding member as described above, moving as much conductive particles as possible to the substrate side results in a higher electrostatic contrast during uniform charging during copying. But,
In the conventional case, this movement is insufficient, and a larger movement is desired. In order to move as much conductive particles as possible to the substrate side during image formation, it is necessary to increase the electrostatic attractive force between the particles. For that purpose, it is necessary that the particle size of the conductive particles be within an appropriate range. preferable. However, conductive materials are generally more expensive than insulating particles. Moreover, there are many finer conductive particles, and it is usually difficult to obtain conductive particles in an appropriate particle size range. In order to obtain the conductive particles having an appropriate particle size, a special manufacturing means is required, which is industrially inconvenient.

【0007】そこで、本発明は、複写時の静電コントラ
ストが高い像保持部材を提供することを目的とする。さ
らに、比較的高価な導電性材料の使用量を減少させるこ
とにより、像保持部材の製造コストを低減することを目
的とする。
Therefore, an object of the present invention is to provide an image holding member having a high electrostatic contrast during copying. Further, it is an object of the present invention to reduce the manufacturing cost of the image holding member by reducing the amount of the relatively expensive conductive material used.

【0008】[0008]

【課題を解決するための手段】本発明者は、種々の粒径
のものが存在する絶縁性粒子の表面に導電性材料を被覆
したところ、得られる導電性粒子は加熱により粘度が低
下した熱軟化層中をよく移動することを見出して、本発
明を完成するに至った。すなわち、本発明は、導電性表
面を有する基体上に、必要に応じて電荷発生層を形成
し、その上に電荷輸送物質と熱軟化性樹脂を含有する熱
軟化層を形成してなり、該熱軟化層上に、絶縁性粒子の
表面に導電性材料を被覆した導電性粒子を埋め込んだ導
電性粒子層を設けてなる像保持部材にある。本発明は、
また、上記熱軟化層の上に、絶縁性粒子の表面に導電性
材料を被覆した導電性粒子を分散した塗料を塗布し、形
成された導電性粒子層に導電性粒子を埋め込む像保持部
材の製造方法にある。本発明は、さらに、電荷発生層が
形成されてない像保持部材に対しては、静電像が形成さ
れた電子写真感光体を接触させて像保持部材表面に静電
像を転写し、電荷を導電性粒子に蓄積させた後に、ま
た、電荷発生層が形成された像保持部材に対しては、負
帯電を施して導電性粒子に電荷を蓄積し、次いで、画像
情報に対応した画像露光を行うことにより、露光部の導
電性粒子の電荷を消失させた後に、それぞれ熱軟化層を
熱軟化性樹脂の軟化点以上の温度に加熱して、電荷が蓄
積されている導電性粒子を熱軟化層中で移動させ、画像
情報を記憶させる像形成方法にある。
Means for Solving the Problems The present inventor has coated the surface of insulating particles having various particle diameters with a conductive material, and the obtained conductive particles have a reduced viscosity due to heating. The present invention has been completed by finding that they move well in the softened layer. That is, the present invention comprises forming a charge generation layer on a substrate having a conductive surface, if necessary, and forming a heat softening layer containing a charge transporting substance and a heat softening resin thereon, The image holding member is provided with a conductive particle layer in which conductive particles having conductive particles coated on the surfaces of insulating particles are embedded on the heat-softening layer. The present invention is
Further, on the heat-softening layer, a coating material in which conductive particles coated with a conductive material is dispersed on the surface of insulating particles is applied, and the conductive particles are embedded in the formed conductive particle layer. There is a manufacturing method. The present invention further transfers the electrostatic image to the surface of the image holding member by bringing the electrophotographic photosensitive member having the electrostatic image into contact with the image holding member on which the charge generation layer is not formed. After the charge is accumulated in the conductive particles, the image holding member on which the charge generation layer is formed is negatively charged to accumulate the charges in the conductive particles, and then the image exposure corresponding to the image information is performed. By removing the charge of the conductive particles in the exposed area by heating, the heat-softening layer is heated to a temperature equal to or higher than the softening point of the heat-softening resin to heat the conductive particles in which the charge is accumulated. An image forming method in which image information is stored by moving in a softening layer.

【0009】以下、本発明を詳細に説明する。図1は本
発明の像保持部材10を示す模式的断面図である。図1
において、基体1上に導電層2が形成され、その上に電
荷輸送物質と熱により軟化する熱軟化性樹脂とからなる
熱軟化層4が被覆されている。熱軟化層4の表面には、
絶縁性粒子の表面に導電性材料を被覆した導電性粒子5
が埋め込まれた導電性粒子層6が形成されている。図2
は同じく本発明の像保持部材11を示す模式的断面図で
ある。図2においては、導電層2と熱軟化層4との間に
電荷発生層3が積層されており、この点で像保持部材1
1は図1に示す像保持部材10と相違している。
The present invention will be described in detail below. FIG. 1 is a schematic sectional view showing an image holding member 10 of the present invention. Figure 1
In the above, a conductive layer 2 is formed on a substrate 1, and a heat softening layer 4 made of a charge transport substance and a heat softening resin which is softened by heat is coated thereon. On the surface of the heat softening layer 4,
Conductive particle 5 in which the surface of the insulating particle is coated with a conductive material
Conductive particle layer 6 in which is embedded is formed. Figure 2
FIG. 3 is a schematic sectional view showing the image holding member 11 of the present invention. In FIG. 2, the charge generation layer 3 is laminated between the conductive layer 2 and the thermal softening layer 4, and at this point the image holding member 1
1 is different from the image holding member 10 shown in FIG.

【0010】本発明の像保持部材10または11におい
て、基体1としては、例えばプラスチックフィルム、
紙、金属箔、ガラス等、電子写真感光体において使用で
きるものならば、いかなるものでも使用可能である。ま
た、その形状も特に制限されるものではなく、任意の形
状のものが使用可能である。基体1は少なくとも導電性
表面を有していなければならない。したがって、基体1
が導電性である場合には導電層2を特に形成する必要は
なく、また、非導電性である場合には、別途導電層2を
設けることによって導電性表面を形成してもよい。導電
層2は、電荷が自由に流れるものであればいかなるもの
でもよく、例えば、基体1表面に蒸着法、スパッタリン
グ法、プラズマCVD法、メッキ法等の方法で金属膜を
形成したり、金属や低抵抗の金属酸化物等の導電性粒子
を樹脂等に分散した導電性塗料を塗布して形成すること
ができる。接着性や帯電性の向上、画質の向上等のため
に、導電性表面上に下引層を設けてもよい。また、レー
ザー光により露光させる場合には、多重反射による干渉
縞発生を防止するために、下引層中に光散乱性粒子を分
散することが有効である。
In the image holding member 10 or 11 of the present invention, the substrate 1 is, for example, a plastic film,
Any material such as paper, metal foil, glass, etc. that can be used in the electrophotographic photoreceptor can be used. The shape is not particularly limited, and any shape can be used. The substrate 1 must have at least a conductive surface. Therefore, the base 1
Is electrically conductive, it is not necessary to form the conductive layer 2, and when it is non-conductive, the conductive surface may be formed by providing the conductive layer 2 separately. The conductive layer 2 may be made of any material as long as the charge flows freely, and for example, a metal film is formed on the surface of the substrate 1 by a method such as an evaporation method, a sputtering method, a plasma CVD method, a plating method, or a metal or It can be formed by applying a conductive paint in which conductive particles such as low resistance metal oxide are dispersed in a resin or the like. An undercoat layer may be provided on the conductive surface in order to improve the adhesiveness, the charging property, the image quality, and the like. Further, in the case of exposing with a laser beam, it is effective to disperse the light scattering particles in the undercoat layer in order to prevent the generation of interference fringes due to multiple reflection.

【0011】像保持部材11において、基体1の導電性
表面上に形成される電荷発生層3は、通常の機能分離型
電子写真感光体における電荷発生層と全く同様にして形
成することができる。すなわち、電荷発生材料として
は、金属または無金属フタロシアニン等のフタロシアニ
ン顔料、スクアリリウム化合物、アズレニウム化合物、
ペリレン顔料、インジゴ顔料、キナクリドン顔料、アン
トアントロン、臭素化アントアントロン、ピランスロ
ン、フラバンスロン等の多環キノン類、シアニン色素、
キサンテン染料、ポリ−N−ビニルカルバゾールとトリ
ニトロフルオレノン等からなる電荷移動錯体、ピリリウ
ム染料とポリカーボネート樹脂からなる共晶錯体等を使
用し、それを必要に応じて電荷輸送材料と共に結着樹脂
に分散し、塗布することによって形成すればよい。ま
た、上記電荷発生材料を蒸着した膜や、非晶質ケイ素の
蒸着膜等も有効である。さらにまた、近年開発されてい
る特定の結晶構造を有するチタニルフタロシアニンまた
はビスアゾ顔料等を電荷発生材料として使用することも
可能である。電荷発生層3の膜厚は、通常0.1〜2μ
mの範囲に設定される。
In the image holding member 11, the charge generating layer 3 formed on the conductive surface of the substrate 1 can be formed in exactly the same manner as the charge generating layer in a normal function-separated electrophotographic photosensitive member. That is, as the charge generating material, a phthalocyanine pigment such as metal or metal-free phthalocyanine, a squarylium compound, an azurenium compound,
Perylene pigments, indigo pigments, quinacridone pigments, anthanthrone, brominated anthanthrone, pyranthrone, polycyclic quinones such as flavanthrone, cyanine dyes,
A xanthene dye, a charge-transfer complex composed of poly-N-vinylcarbazole and trinitrofluorenone, or a eutectic complex composed of a pyrylium dye and a polycarbonate resin is used and dispersed in a binder resin together with a charge-transporting material as needed. Then, it may be formed by applying. Further, a film formed by vapor-depositing the charge generating material, a vapor-deposited film of amorphous silicon, or the like is also effective. Furthermore, it is possible to use titanyl phthalocyanine or bisazo pigment having a specific crystal structure which has been developed in recent years as a charge generating material. The thickness of the charge generation layer 3 is usually 0.1 to 2 μm.
It is set in the range of m.

【0012】熱軟化層4に用いられる電荷輸送物質とし
ては、電子写真感光体における電荷輸送層に使用される
ものであればいかなるものでも使用することができる。
例えば、アントラセン、ピレン、フェナントレン等の多
環芳香族化合物、インドール、カルバゾール、イミダゾ
ール、ピラゾリン化合物等の含窒素複素環化合物、ヒド
ラゾン化合物、トリフェニルメタン化合物、トリフェニ
ルアミン化合物、スチルベン化合物、ベンジジン化合
物、トリニトロフルオレノン、キノン化合物などが挙げ
られる。
As the charge-transporting substance used in the heat-softening layer 4, any substance can be used as long as it is used in the charge-transporting layer in the electrophotographic photosensitive member.
For example, anthracene, pyrene, polycyclic aromatic compounds such as phenanthrene, indole, carbazole, imidazole, nitrogen-containing heterocyclic compounds such as pyrazoline compounds, hydrazone compounds, triphenylmethane compounds, triphenylamine compounds, stilbene compounds, benzidine compounds, Examples include trinitrofluorenone and quinone compounds.

【0013】熱軟化層4に用いられる熱軟化性樹脂とし
ては、ガラス転移点(Tg)が30〜90℃で、Tg以
上の温度における粘度が102 〜106 ポイズであるよ
うな熱可塑性樹脂が好ましく用いられる。例えば、ポリ
エチレン、塩化ビニル樹脂、ポリプロピレン、スチレン
樹脂、ABS樹脂、ポリビニルアルコール、アクリル樹
脂、アクリロニトリル−スチレン共重合体、スチレン−
アクリル酸エステル共重合体、塩化ビニリデン樹脂、A
AS(ASA)樹脂、AES樹脂、繊維素誘導体樹脂、
熱可塑性ポリウレタン、ポリビニルブチラール、ポリ−
4−メチルペンテン−1、ポリブテン−1、ロジンエス
テル樹脂等が挙げられる。中でも、スチレン−アクリル
酸エステル共重合体、スチレン−アクリル酸エステル−
アクリル酸の三元重合体が特に好適である。熱軟化層4
の膜厚は、通常3〜15μmの範囲に設定される。
The thermosoftening resin used in the thermosoftening layer 4 is a thermoplastic resin having a glass transition point (Tg) of 30 to 90 ° C. and a viscosity of 10 2 to 10 6 poise at a temperature of Tg or higher. Is preferably used. For example, polyethylene, vinyl chloride resin, polypropylene, styrene resin, ABS resin, polyvinyl alcohol, acrylic resin, acrylonitrile-styrene copolymer, styrene-
Acrylic ester copolymer, vinylidene chloride resin, A
AS (ASA) resin, AES resin, fibrin derivative resin,
Thermoplastic polyurethane, polyvinyl butyral, poly-
4-Methylpentene-1, polybutene-1, rosin ester resin and the like can be mentioned. Among them, styrene-acrylic acid ester copolymer, styrene-acrylic acid ester-
Acrylic acid terpolymers are particularly suitable. Heat softening layer 4
The film thickness is usually set in the range of 3 to 15 μm.

【0014】熱軟化層4の表面には、絶縁性粒子の表面
に導電性材料を被覆した導電性粒子5が埋め込まれた導
電性粒子層6が形成される。導電性粒子層6は導電性粒
子5の単層または複数層から形成されていてもよい。絶
縁性粒子としては、酸化チタン、シリカ、アルミナ、ジ
ルコニア、マグネシア、酸化亜鉛、炭酸カルシウム、炭
酸バリウム、硫酸カルシウム、硫酸バリウム等の無機粉
体のうち、粒径が0.1〜0.4μmのものを用いるこ
とができる。
On the surface of the thermal softening layer 4, a conductive particle layer 6 is formed in which conductive particles 5 in which the surfaces of insulating particles are coated with a conductive material are embedded. The conductive particle layer 6 may be formed of a single layer or a plurality of layers of the conductive particles 5. The insulating particles include titanium oxide, silica, alumina, zirconia, magnesia, zinc oxide, calcium carbonate, barium carbonate, calcium sulfate, barium sulfate, and other inorganic powder having a particle size of 0.1 to 0.4 μm. Any thing can be used.

【0015】導電性材料としては、カーボンブラック、
沃化銅、沃化銀、硫化亜鉛、炭化ケイ素等の他に、金属
酸化物が好ましく使用される。特に、酸素欠陥を含む金
属酸化物およびドナーを形成する異種原子を少量含む金
属酸化物等は、導電性が高いので、すなわち、電子正孔
対を多く含有するので好ましい。金属酸化物の例として
は、ZnO、SnO2 、TiO2 、In2 3 、MoO
3 等あるいはこれらの複合酸化物が挙げられる。異種原
子を含む例としては、ZnOに対してはAl、In等、
TiO2 に対してはNb、Ta等、SnO2 に対しては
Sb、Nb、In、ハロゲン元素等の異種原子を含むも
のが挙げられる。これら異種原子の添加量は、0.01
〜30モル%の範囲が好ましく、1〜10モル%の範囲
が特に好ましい。また、金属複合酸化物としては、Sb
2 3 を1〜20重量%含むSnO2 が好ましく用いら
れる。このものは電荷輸送物質に対する電荷注入性が良
好であり、本発明には好適である。
As the conductive material, carbon black,
In addition to copper iodide, silver iodide, zinc sulfide, silicon carbide and the like, metal oxides are preferably used. In particular, a metal oxide containing oxygen defects, a metal oxide containing a small amount of different atoms forming a donor, and the like are preferable because they have high conductivity, that is, a large number of electron-hole pairs are contained. Examples of metal oxides include ZnO, SnO 2 , TiO 2 , In 2 O 3 and MoO.
3 or the like or a composite oxide of these. As an example including a heteroatom, for ZnO, Al, In, etc.,
Examples include TiO 2 containing Nb, Ta and the like, and SnO 2 containing Sb, Nb, In, halogen atoms and other heteroatoms. The addition amount of these heteroatoms is 0.01
Is preferably in the range of .about.30 mol%, particularly preferably in the range of 1 to 10 mol%. Further, as the metal composite oxide, Sb
SnO 2 containing 1 to 20% by weight of 2 O 3 is preferably used. This compound has a good charge injection property to the charge transport material and is suitable for the present invention.

【0016】絶縁性粒子の表面に被覆層を形成する際の
処理方法としては種々の方法がある。例えば、Sb2
3 −SnO2 を導電性材料とした場合を例にとると、熱
水中に絶縁性粒子を分散しておき、その中に塩化スズと
塩化アンチモンのアセトン溶液を加え、加水分解により
絶縁性粒子表面にSb2 3 −SnO2 を析出させる方
法、300℃程度の高温に熱した絶縁性粒子に塩化スズ
と塩化アンチモンの水溶液を吹き付けて、加熱分解によ
りSb2 3 −SnO2 を形成させる方法、50〜10
0℃に加温された絶縁性粒子の水懸濁液に、加水分解を
防ぐに足る塩酸水に溶解した塩化スズおよび塩化アンチ
モンの溶液とアンチモン水溶液を同時に加え、中和によ
る加水分解により絶縁性粒子表面にSb2 3 −SnO
2 を析出させる方法等が挙げられる。導電性材料からな
る被覆層の量は、導電性粒子6全体の重量割合で5〜6
7%が好適である。これより少ない場合には、比抵抗が
低くならず電荷注入性が十分でない。一方、これを越え
る場合には、機械的強度の低下、粒子の粗大化、コスト
高等の欠点が生じる。
There are various methods for treating the coating layer on the surface of the insulating particles. For example, Sb 2 O
Taking 3- SnO 2 as a conductive material as an example, insulating particles are dispersed in hot water, and an acetone solution of tin chloride and antimony chloride is added to the insulating particles and the insulating particles are hydrolyzed. A method of depositing Sb 2 O 3 —SnO 2 on the surface, spraying an aqueous solution of tin chloride and antimony chloride on insulating particles heated to a high temperature of about 300 ° C. to form Sb 2 O 3 —SnO 2 by thermal decomposition. Method, 50-10
A solution of tin chloride and antimony chloride dissolved in a hydrochloric acid solution that is sufficient to prevent hydrolysis is added simultaneously to an aqueous suspension of insulating particles heated to 0 ° C, and an antimony solution is added at the same time. Sb 2 O 3 -SnO on the particle surface
Examples include a method of precipitating 2 . The amount of the coating layer made of a conductive material is 5 to 6 in terms of the weight ratio of the entire conductive particles 6.
7% is preferred. If it is less than this, the specific resistance is not lowered and the charge injection property is not sufficient. On the other hand, if it exceeds the above range, mechanical strength is lowered, particles are coarsened, and costs are increased.

【0017】後述する像形成時において、導電性粒子5
を少しでも多く基体1側へ移動させるためには、粒子間
の静電引力を強くさせる必要があり、そのためには、粒
子の大きさとして粒径が0.2〜0.4μmのものが好
ましい。これより小さいと、電荷が小さくなって静電引
力が小さくなる。一方、大きい場合には、移動時の摩擦
が大きくなってやはり移動し難くなる。
At the time of image formation described later, the conductive particles 5 are formed.
In order to move as much as possible to the substrate 1 side, it is necessary to strengthen the electrostatic attraction between the particles, and for that purpose, the particle size is preferably 0.2 to 0.4 μm. . If it is smaller than this, the electric charge becomes small and the electrostatic attraction becomes small. On the other hand, when it is large, the friction during the movement becomes large and it becomes difficult to move.

【0018】導電性粒子層6を熱軟化層4上に形成する
方法としては、導電性粒子5を熱軟化層形成用の塗布液
と同一組成の塗布液に分散させておき、その分散液を熱
軟化層4上に塗布する湿式法を適用することができる。
導電性粒子層6の膜厚は、導電性粒子5の直径の数倍以
内、具体的には通常0.25〜1.5μmの範囲に設定
される。このようにして、縦断面が図1または図2に示
されるような像保持部材10または11が作製される。
As a method for forming the conductive particle layer 6 on the thermal softening layer 4, the conductive particles 5 are dispersed in a coating solution having the same composition as the coating solution for forming the thermal softening layer, and the dispersion is prepared. A wet method of coating on the heat softening layer 4 can be applied.
The film thickness of the conductive particle layer 6 is set within several times the diameter of the conductive particles 5, specifically, in the range of usually 0.25 to 1.5 μm. In this way, the image holding member 10 or 11 whose longitudinal section is as shown in FIG. 1 or 2 is manufactured.

【0019】[0019]

【作用】次に、電荷発生層を有しない像保持部材10に
像情報を記憶させる像形成方法について、図3〜図5に
基づいて説明する。まず、図3において、基体1aの表
面に導電層2a(基体が導電性であれば不要)および感
光層7を順次積層した感光体8を帯電し、画像露光し
て、予め潜像を形成しておいた感光体8を像保持部材1
0と接触させて潜像の転写を行う。感光体8としては、
有機感光体、セレン感光体、アモルファスシリコン感光
体等、通常の電子写真感光体の中から、使用する露光波
長に適用するものを選んで任意に用いられる。転写する
際、像保持部材10と感光体8の導電層2、2aを電気
的に接続させる。感光体8側の導電層2aに適当量の電
圧を印加することは、転写電位を調節するために有効で
ある。像保持部材10の表面に負電荷が転写されると、
導電性粒子5は常温で電子正孔対を有しており、直ちに
上面の負電荷に対して正孔が放出され、電荷輸送物質を
通して表面電荷を中和する。そして、導電性粒子5の内
部には負電荷が残留する。負電荷が転写されなかった部
分の導電性粒子5には電荷は存在しない。
Next, an image forming method for storing image information in the image holding member 10 having no charge generation layer will be described with reference to FIGS. First, in FIG. 3, a photoreceptor 8 in which a conductive layer 2a (unnecessary if the substrate is conductive) and a photosensitive layer 7 are sequentially laminated on the surface of a substrate 1a is charged, imagewise exposed to form a latent image in advance. The photoconductor 8 that has been set is attached to the image holding member 1.
The latent image is transferred by bringing it into contact with 0. As the photoconductor 8,
Any one of ordinary electrophotographic photoconductors such as an organic photoconductor, a selenium photoconductor, and an amorphous silicon photoconductor is selected and used according to the exposure wavelength to be used. At the time of transfer, the image holding member 10 and the conductive layers 2, 2a of the photoconductor 8 are electrically connected. Applying an appropriate amount of voltage to the conductive layer 2a on the photoconductor 8 side is effective for adjusting the transfer potential. When negative charges are transferred to the surface of the image holding member 10,
The conductive particles 5 have electron-hole pairs at room temperature, holes are immediately released to the negative charge on the upper surface, and the surface charge is neutralized through the charge transport material. Then, negative charges remain inside the conductive particles 5. There is no charge in the conductive particles 5 in the part where the negative charge is not transferred.

【0020】次いで、図4に示すように、像保持部材1
0を加熱すると、熱軟化層4および導電性粒子層6の熱
軟化性樹脂が軟化し、帯電していた粒子5は静電引力に
より導電層2側に泳動していく。これにより、泳動して
移動した導電性粒子(移動粒子5a)が存在する部分
と、最初と同じ状態の静止したままの移動しなかった導
電性粒子(非移動粒子5b)が存在する部分とに分かれ
る。常温に戻せば熱軟化層4は再び固体に戻り、画像の
記録が完了する。
Next, as shown in FIG. 4, the image holding member 1
When 0 is heated, the thermosoftening resin of the thermosoftening layer 4 and the electroconductive particle layer 6 is softened, and the charged particles 5 migrate to the electroconductive layer 2 side by electrostatic attraction. As a result, a conductive particle (moving particle 5a) that has migrated and moved exists in a portion and a conductive particle (non-moving particle 5b) that has not moved and remains in the same state as in the beginning exists. Divide. When the temperature is returned to room temperature, the heat-softening layer 4 returns to a solid state, and the image recording is completed.

【0021】上記のようにして画像情報が記憶された像
保持部材を用いて複写物を得る電子写真法について説明
する。図5に示すように、画像情報が記憶された像保持
部材12に対してコロナ帯電器13を相対的に移動させ
て表面に負の帯電を施す。それにより、非移動粒子5b
が存在する部分は、図3に示す場合と同様に、導電性粒
子に負電荷が残留し、表面電位は導電性粒子が存在しな
い場合の85〜95%程度になる。一方、移動粒子5a
が存在する部分では、電極となる基体1に近い方の粒子
から次々に正電荷が注入されて、表面側の負電荷を中和
して行き、結果的に、表面電位は、導電性粒子が存在し
ない場合に比べて、0〜20%と非常に低くなる。した
がって、一様な全面負帯電のみで、画像に応じた静電コ
ントラストを有する潜像が形成される。この際、絶縁性
粒子は電荷注入には何ら関与しない。
An electrophotographic method for obtaining a copy by using the image holding member in which the image information is stored as described above will be described. As shown in FIG. 5, the corona charger 13 is relatively moved with respect to the image holding member 12 in which the image information is stored, so that the surface is negatively charged. Thereby, the non-moving particles 5b
As in the case shown in FIG. 3, the negative electric charge remains in the conductive particles in the portion where the is present, and the surface potential is about 85 to 95% of that in the case where the conductive particles are not present. On the other hand, moving particles 5a
In the portion where is present, positive charges are successively injected from the particles closer to the substrate 1 serving as an electrode to neutralize the negative charges on the surface side, and as a result, the surface potential is determined by the conductive particles. It is very low, 0 to 20%, compared to the case where it is not present. Therefore, a latent image having an electrostatic contrast corresponding to the image is formed only by uniform negative charging on the entire surface. At this time, the insulating particles do not participate in the charge injection.

【0022】形成された静電像を電子写真現像剤で現像
すれば、像を可視化することができる。その際、高電位
部分を可視化したい場合には、陽画現像、反対に低電位
部分を可視化したい場合には、陰画反転現像を施す。陽
画と陰画の選択は感光体の画像露光方式にもより、希望
の画像が得られる方式を選択すればよい。なお、デジタ
ル変調レーザー光で露光する場合には、電子的に陽画と
陰画の制御が可能である。次いで、常法により転写用紙
に転写することによって複写物を得ることができる。そ
の後、像保持部材12を再び帯電させると、上述のよう
に潜像を形成することができ、したがって、画像露光を
行うことなく、連続的に複写を行うことができる。な
お、複写後は必要に応じてクリーニングを行うこともで
きる。一連の工程が終了後の像保持部材10は新しいも
のと交換される。
If the formed electrostatic image is developed with an electrophotographic developer, the image can be visualized. At that time, positive image development is performed to visualize the high potential portion, and negative image reversal development is performed to visualize the low potential portion. The positive image and the negative image may be selected according to the image exposure method of the photoconductor, so that a desired image can be obtained. In the case of exposure with digitally modulated laser light, positive and negative images can be electronically controlled. Then, a copy can be obtained by transferring to a transfer sheet by a conventional method. After that, when the image holding member 12 is charged again, a latent image can be formed as described above, and therefore copying can be continuously performed without performing image exposure. It should be noted that after the copying, cleaning can be performed if necessary. The image holding member 10 after a series of steps is replaced with a new one.

【0023】さらに、電荷発生層3を有する像保持部材
11に像情報を記憶させる像形成方法について、図6〜
図8に基づいて説明する。まず、図6に示すように、像
保持部材11に対してコロナ帯電器13を相対的に移動
させて表面に負の帯電を施す。それによって、導電性粒
子5は常温で電子正孔対を有しているので、直ちに表面
の負電荷に対して正孔が放出され、電荷輸送物質を通じ
て表面電荷を中和する。そして、導電性粒子5の内部に
は負電荷が残留する。なお、その際の表面電位は、導電
性粒子5が存在しない場合に比べて、80〜95%程度
になっている。
Further, the image forming method for storing image information in the image holding member 11 having the charge generating layer 3 will be described with reference to FIGS.
It will be described with reference to FIG. First, as shown in FIG. 6, the corona charger 13 is moved relative to the image holding member 11 to negatively charge the surface. As a result, since the conductive particles 5 have electron-hole pairs at room temperature, holes are immediately released to the negative charges on the surface, and the surface charges are neutralized through the charge transport material. Then, negative charges remain inside the conductive particles 5. The surface potential at that time is about 80 to 95% as compared with the case where the conductive particles 5 are not present.

【0024】次いで、図7に示すように、画像露光を行
う。すなわち、光を照射して電荷発生層3を感光させる
と、光は十分に薄い導電性粒子層6および熱軟化層4を
通過して、その大部分が電荷発生層3に到達する。ダイ
オードレーザー光を照射する場合には、電子的手段で像
様に変調させて露光させるが、その際には、現像剤を付
着させる部分に光を当てればよい。それによって、電荷
発生層3から正電荷が熱軟化層4に注入され、熱軟化層
4中の電荷輸送物質を通じて導電性粒子5の負電荷を中
和する。一方、光が当たらなかった部分の導電性粒子5
には負電荷が残っている。
Next, as shown in FIG. 7, image exposure is performed. That is, when light is irradiated to expose the charge generation layer 3, the light passes through the sufficiently thin conductive particle layer 6 and the thermal softening layer 4, and most of the light reaches the charge generation layer 3. In the case of irradiating with a diode laser beam, it is image-wise modulated by an electronic means and exposed, and in that case, light may be applied to a portion to which the developer is attached. As a result, positive charges are injected from the charge generation layer 3 into the thermal softening layer 4, and the negative charges of the conductive particles 5 are neutralized through the charge transport material in the thermal softening layer 4. On the other hand, the conductive particles 5 in the part not exposed to light
Has a negative charge.

【0025】その後、図8に示すように、像保持部材1
1を加熱する。加熱方法としては、加熱ローラーに通す
方法、加熱容器に入れる方法、熱線を照射する方法等の
任意の方法が採用でき、Tg以上の温度に数秒間加熱す
る。それにより、負電荷が残留していた導電性粒子は、
軟化して粘度が低下した熱軟化層4中を静電引力により
電極となる基体1側に移動していく。一方、加熱によ
り、熱軟化層4の電気抵抗が低下して導電性粒子の電荷
は急激に自然放電するので、導電性粒子が全て電極側に
移動することはなく、粒子の大きさ、荷電密度のばらつ
き等により、熱軟化層4中にまばらに分布して停止す
る。このようにして、移動粒子5aと非移動粒子5bを
含有する部分が形成される。次いで、像保持部材11を
常温に戻せば、画像情報が記憶された像保持部材が得ら
れる。なお、導電性粒子が移動した部分は、光の透過率
が小さくなるので、肉眼でも濃淡の差を確認することが
可能である。
Thereafter, as shown in FIG. 8, the image holding member 1
Heat 1. As a heating method, any method such as a method of passing it through a heating roller, a method of putting it in a heating container, or a method of irradiating with heat rays can be adopted, and heating is performed at a temperature of Tg or higher for several seconds. As a result, the conductive particles with the negative charge remaining are
The heat-softening layer 4 which has been softened and whose viscosity has been lowered is moved to the side of the substrate 1 serving as an electrode by electrostatic attraction. On the other hand, by heating, the electric resistance of the thermal softening layer 4 is lowered and the electric charge of the conductive particles is abruptly spontaneously discharged. Therefore, all the conductive particles do not move to the electrode side, and the particle size and charge density are not changed. And the like, the particles are sparsely distributed in the thermal softening layer 4 and stop. In this way, a portion containing the moving particles 5a and the non-moving particles 5b is formed. Next, when the image holding member 11 is returned to room temperature, the image holding member in which the image information is stored is obtained. In addition, since the light transmittance is reduced in the portion where the conductive particles have moved, it is possible to visually confirm the difference in light and shade.

【0026】上記のようにして画像情報が記憶された像
保持部材を用いて複写物を得る電子写真法について説明
する。図9に示すように、画像情報が記憶された像保持
部材14に対してコロナ帯電器13を相対的に移動させ
て表面に負の帯電を施す。それにより、非移動粒子5b
が存在する部分は、図6に示す場合と同様に、導電性粒
子に負電荷が残留し、表面電位は導電性粒子が存在しな
い場合の85〜95%程度になる。一方、移動粒子5a
が存在する部分では、電極に近い方の粒子から次々に正
電荷が注入されて表面側の負電荷を中和して行き、結果
的に、表面電位は、導電性粒子が存在しない場合に比べ
て、0〜20%と非常に低くなる。したがって、一様な
全面負帯電のみで、画像に応じた静電コントラストを有
する潜像が形成される。その後、像保持部材14を再び
帯電をすることにより上述のように潜像を形成すること
ができ、したがって、画像露光を行うことなく、連続的
に複写を行うことができる。なお、複写後は必要に応じ
てクリーニングを行うこともできる。
An electrophotographic method for obtaining a copy by using the image holding member in which the image information is stored as described above will be described. As shown in FIG. 9, the corona charger 13 is relatively moved with respect to the image holding member 14 in which the image information is stored, so that the surface is negatively charged. Thereby, the non-moving particles 5b
As in the case shown in FIG. 6, negative charges remain in the conductive particles, and the surface potential is about 85 to 95% of the case where no conductive particles are present. On the other hand, moving particles 5a
In the area where is present, positive charges are successively injected from the particles closer to the electrode to neutralize the negative charges on the surface side, and as a result, the surface potential is higher than that when there are no conductive particles. It is very low, 0-20%. Therefore, a latent image having an electrostatic contrast corresponding to the image is formed only by uniform negative charging on the entire surface. After that, the latent image can be formed as described above by recharging the image holding member 14, and therefore, copying can be continuously performed without performing image exposure. It should be noted that after the copying, cleaning can be performed if necessary.

【0027】前述の像形成方法において、導電性粒子が
熱軟化層中をよく泳動するには、粒径0.2〜0.4μ
mの導電性粒子が好ましいが、このような粒径の導電性
粒子は単体では入手難い。そこで、本発明は、上記の粒
径範囲のものが得やすい絶縁性粒子の表面に導電性材料
を被覆した導電性粒子を使用すると、導電性粒子でも
0.2〜0.4μmの粒径となり、よく泳動するように
なる。そのため、導電性粒子の単体の場合よりも粒子の
移動量が多くなり、複写時の静電コントラストが高くな
ることが確認された。なお、像保持部材自体は通常の機
能分離型電子写真感光体とほぼ同じ構造なので、画像露
光後に加熱をしなければ、通常の電子写真感光体と同様
に使用することも可能である。すなわち、帯電して画像
露光後に現像を行えば、原稿から1枚ずつコピーをとる
こともでき、連続複写が不要な場合には、このようなコ
ピーモードも併用できる。
In the above-mentioned image forming method, in order for the conductive particles to migrate well in the heat softening layer, the particle size is 0.2 to 0.4 μm.
The conductive particles of m are preferable, but it is difficult to obtain the conductive particles having such a particle size by themselves. Therefore, according to the present invention, when the conductive particles in which the surface of the insulating particles, which is easily obtained in the above particle size range, is coated with the conductive material, the conductive particles have a particle size of 0.2 to 0.4 μm. , I will migrate well. Therefore, it was confirmed that the moving amount of particles was larger than that of the conductive particles alone, and the electrostatic contrast during copying was higher. Since the image holding member itself has substantially the same structure as a normal function-separated electrophotographic photosensitive member, it can be used in the same manner as a normal electrophotographic photosensitive member if it is not heated after image exposure. That is, if the image is charged and developed after image exposure, it is possible to make copies one by one from the original, and when continuous copying is unnecessary, such a copy mode can be used together.

【0028】[0028]

【実施例】以下、実施例により本発明をさらに詳細に説
明する。 実施例1 基体として、アルミニウムを蒸着した導電層を有する厚
さ50μmのポリエステルフィルムを用いた。一方、ス
チレン62重量部、アクリル酸エチル36重量部、アク
リル酸2重量部を原料とし、トルエンを溶剤として合成
された重量平均分子量約8000の三元重合体を用意し
た。この重合体のTgは48℃であり、110℃におけ
る粘度は28000ポイズであった。この重合体78重
量部および電荷輸送物質としてのN,N′−ジフェニル
−N,N′−ビス−(m−トリル)ベンジジン22重量
部をトルエン500重量部に溶解した。得られた溶液を
上記導電層上にワイヤーバーで塗布し、110℃で15
分間乾燥して膜厚8μmの熱軟化層を形成した。
The present invention will be described in more detail with reference to the following examples. Example 1 A 50 μm-thick polyester film having a conductive layer on which aluminum was vapor-deposited was used as a substrate. On the other hand, a terpolymer having a weight average molecular weight of about 8000 was prepared by using 62 parts by weight of styrene, 36 parts by weight of ethyl acrylate, and 2 parts by weight of acrylic acid as raw materials, and using toluene as a solvent. The Tg of this polymer was 48 ° C., and the viscosity at 110 ° C. was 28,000 poise. 78 parts by weight of this polymer and 22 parts by weight of N, N'-diphenyl-N, N'-bis- (m-tolyl) benzidine as a charge transport material were dissolved in 500 parts by weight of toluene. The obtained solution is applied on the above conductive layer with a wire bar, and the solution is applied at 110 ° C. for 15
After drying for a minute, a heat-softening layer having a film thickness of 8 μm was formed.

【0029】次に、酸化アンチモン10%を含有する酸
化スズを酸化チタンに対して75重量%になるよう平均
粒径0.3μの酸化チタン粉末(商品名:ECT62、
チタン工業社製)2重量部を、上記三元重合体8重量
部、上記電荷輸送物質2重量部およびトルエン100重
量部からなる溶液に混合し、次いでボールミルで分散し
た。この分散液を上記熱軟化層上にワイヤーバーにて膜
厚0.6μmになるように塗布し、110℃で5分間乾
燥して像保持部材を作製した。作製された像保持部材は
図1に示す断面構造を有するものである。これとは別
に、x型フタロシアニンを電荷発生層とし、その上に電
荷輸送層を有する電子写真感光体を用意した(例えば、
特開昭63−271355号公報に記載されている感光
体)。その分光感度を測定したところ、図11における
曲線Aで示される結果が得られ、波長780nmの部分
で十分な実用感度を有していることが確認された。
Next, a titanium oxide powder (trade name: ECT62, with a mean particle size of 0.3 μ) was used so that tin oxide containing 10% antimony oxide was 75% by weight with respect to titanium oxide.
2 parts by weight (manufactured by Titanium Industry Co., Ltd.) was mixed with a solution consisting of 8 parts by weight of the terpolymer, 2 parts by weight of the charge transport material and 100 parts by weight of toluene, and then dispersed by a ball mill. This dispersion was applied onto the heat-softened layer with a wire bar to a film thickness of 0.6 μm, and dried at 110 ° C. for 5 minutes to prepare an image holding member. The produced image holding member has the sectional structure shown in FIG. Separately, an x-type phthalocyanine was used as a charge generation layer, and an electrophotographic photosensitive member having a charge transport layer thereon was prepared (for example,
Photoreceptor described in JP-A-63-271355). When the spectral sensitivity was measured, the result indicated by the curve A in FIG. 11 was obtained, and it was confirmed that the spectral sensitivity was sufficient at the wavelength of 780 nm.

【0030】上記感光体を−700Vに帯電させた後、
ダイオードレーザーを用いて、文字部分に対応して光が
照射されるよう露光を行い、潜像を形成した。露光され
た部分は−100Vの電位となった。次に、この感光体
の基体に+100Vの電圧を印加した。像保持部材の表
面では、感光体側の無露光部に対応する部分が−500
Vであり、感光体側の露光部に対応する部分はゼロであ
った。その後、フィルム(像保持部材)を115℃に保
持したヒートロール上に加熱時間が5秒間となるように
通過させて加熱した。これにより、電荷が残っている部
分の導電性粒子は基体側に移動した(図4)。以上のよ
うにして、像の書き込みによる記憶を終了した。
After charging the photoreceptor to -700V,
A diode laser was used to perform exposure so that light was emitted corresponding to the character portion, and a latent image was formed. The exposed part had a potential of -100V. Next, a voltage of +100 V was applied to the base of this photoconductor. On the surface of the image holding member, the portion corresponding to the non-exposed portion on the photoconductor side is -500.
V, and the portion corresponding to the exposed portion on the photoconductor side was zero. Then, the film (image holding member) was heated by passing it over a heat roll held at 115 ° C. for 5 seconds. As a result, the conductive particles in the part where the electric charge remained moved to the substrate side (FIG. 4). As described above, the storage by writing the image is completed.

【0031】得られた像情報が記憶された像保持部材
を、108φmm×340mmのアルミニウムパイプに
巻き付け、−800Vに帯電、二成分正帯電現像剤によ
る現像、A4用紙への転写、ブラシクリーニングの各工
程を実施する電子写真複写機に取り付けた。図5に示す
ように、帯電器(13)で帯電させ、移動粒子(5a)
を含有する部分が−100Vの表面電位を、また、非移
動粒子(5b)を含有する部分が−750Vの表面電位
を有する潜像を形成した。この潜像を二成分正帯電現像
剤により現像し、転写することによって、高コントラス
トを有する複写像が得られた。この工程を毎分100枚
の速度で繰り返し実施した。その結果、連続2000枚
の複写を行っても、何ら問題がないことが確認された。
The image holding member in which the obtained image information is stored is wound around an aluminum pipe of 108 mm × 340 mm, charged to −800 V, developed with a two-component positively charged developer, transferred to A4 paper, and brush cleaned. It was attached to an electrophotographic copying machine to carry out the process. As shown in FIG. 5, the moving particles (5a) are charged by the charger (13).
To form a latent image having a surface potential of −100 V and a portion containing non-migrating particles (5b) having a surface potential of −750 V. This latent image was developed with a two-component positively charged developer and transferred to obtain a copy image having a high contrast. This process was repeated at a speed of 100 sheets per minute. As a result, it was confirmed that there was no problem even when continuous 2000 sheets were copied.

【0032】実施例2 スチレン80重量部とヒドロキシメタクリレート20重
量部をモノマーとして合成した、重量平均分子量が約1
2000、Tgが約38℃、110℃の粘度が2500
0ポイズの共重合体を用意した。この共重合体を熱軟化
性樹脂として使用した以外は、実施例1と全く同様にし
て像保持部材を作製した。この像保持部材は、熱軟化層
の密着強度が実施例1の場合よりも若干劣るものの、同
様にして像形成を行うことができ、また、連続複写に供
することができた。
Example 2 80 parts by weight of styrene and 20 parts by weight of hydroxymethacrylate were synthesized as monomers, and the weight average molecular weight was about 1.
2000, Tg is about 38 ℃, viscosity at 110 ℃ is 2500
A 0 poise copolymer was prepared. An image holding member was produced in exactly the same manner as in Example 1 except that this copolymer was used as a thermosoftening resin. Although the image holding member had the adhesion strength of the heat-softening layer slightly inferior to that of Example 1, it was possible to perform image formation in the same manner and to provide continuous copying.

【0033】実施例3 実施例2における熱軟化層の塗布前に、膜厚0.5μm
の共重合ナイロン樹脂(商品名:CM8000、東レ社
製)からなる下引層を基体の導電層上に形成した。この
ように下引層を設けることにより、熱軟化層の密着強度
を向上させることができた。
Example 3 Before applying the heat-softening layer in Example 2, the film thickness was 0.5 μm.
An undercoat layer made of the copolymerized nylon resin (trade name: CM8000, manufactured by Toray Industries, Inc.) was formed on the conductive layer of the substrate. By providing the undercoat layer in this manner, the adhesion strength of the heat softening layer could be improved.

【0034】実施例4 電荷発生層を有する像保持部材を図10に示すウェブコ
ーター20にて製造した例を次に示す。図10におい
て、ロール21からフィルムが供給され、塗料汲み上げ
ロール22と塗布ロール23により塗布液をフィルム表
面に塗布し、乾燥ゾーン24を通って乾燥させ、巻き取
りロール25にフィルムが巻き取られる。26は押し当
てロール、27は排気ダクトである。膜厚は塗布液の濃
度、塗布ロールの回転速度等によって制御することがで
きる。このウェブコーターにより、アルミニウム蒸着し
た実施例1のポリエステルフィルム上に、下引層形成用
塗料は20cm/秒、電荷発生層形成用塗料は30cm
/秒、熱軟化層形成用塗料は40cm/秒の速度で順次
塗布して、長さ110mの塗布フィルムを得た。電荷発
生層の膜厚は0.25μmである。次いで、導電性粒子
層形成用塗料を同じくウェブコーターにより熱軟化層上
に40cm/秒の速度で塗布を行い、膜厚0.5μmの
導電性粒子層を形成した。その後、得られた像保持部材
を220mm×300mmに切り取った。
Example 4 An example in which an image holding member having a charge generating layer is manufactured by the web coater 20 shown in FIG. 10 is shown below. In FIG. 10, a film is supplied from a roll 21, a coating liquid is applied to the surface of the film by a paint scooping roll 22 and a coating roll 23, the film is dried through a drying zone 24, and the film is wound up by a winding roll 25. 26 is a pressing roll, and 27 is an exhaust duct. The film thickness can be controlled by the concentration of the coating liquid, the rotation speed of the coating roll, and the like. With this web coater, the coating film for forming the undercoat layer was 20 cm / sec, and the coating film for forming the charge generation layer was 30 cm on the polyester film of Example 1 vapor-deposited on aluminum.
/ Sec, the coating material for forming the heat-softening layer was sequentially applied at a speed of 40 cm / sec to obtain a coated film having a length of 110 m. The film thickness of the charge generation layer is 0.25 μm. Next, the conductive particle layer-forming coating material was applied onto the heat-softening layer at a rate of 40 cm / sec by the same web coater to form a conductive particle layer having a thickness of 0.5 μm. After that, the obtained image holding member was cut into 220 mm × 300 mm.

【0035】上記ウェブコーターによる塗布の際、熱軟
化層形成用塗料および下引層形成用塗料は実施例3と同
様のものを用い、また、電荷発生層形成用塗料および導
電性粒子層形成用塗料は下記のようにして調製した。す
なわち、ポリビニルブチラール樹脂(商品名:エスレッ
クBM−1、積水化学工業社製)3重量部をシクロヘキ
サノン100重量部に溶解し、次いでx型フタロシアニ
ン6重量部を混合し、直径1mmのガラスビーズを分散
媒としたサンドミル分散機で6時間にわたって分散し
た。分散液に2−ブタノンを加えて3.5%濃度の電荷
発生層形成用塗料を調製した。一方、実施例1と同じ導
電性酸化チタン粉末2重量部を実施例1と同様に、三元
重合体8重量部、電荷輸送物質2重量部およびトルエン
100重量部からなる溶液に混合した。その後、サンド
ミル分散機により塗料化して導電性粒子層形成用塗料を
調製した。
At the time of coating with the above web coater, the same coating material for forming the heat softening layer and the coating material for forming the undercoat layer as in Example 3 were used, and the coating material for forming the charge generating layer and the conductive particle layer were formed. The paint was prepared as follows. That is, 3 parts by weight of polyvinyl butyral resin (trade name: S-REC BM-1, manufactured by Sekisui Chemical Co., Ltd.) is dissolved in 100 parts by weight of cyclohexanone, then 6 parts by weight of x-type phthalocyanine is mixed, and glass beads having a diameter of 1 mm are dispersed. A sand mill disperser as a medium was used for dispersion for 6 hours. 2-Butanone was added to the dispersion to prepare a charge generation layer-forming coating material having a concentration of 3.5%. On the other hand, 2 parts by weight of the same conductive titanium oxide powder as in Example 1 was mixed in the same manner as in Example 1 with a solution consisting of 8 parts by weight of the terpolymer, 2 parts by weight of the charge transport material and 100 parts by weight of toluene. Then, it was made into a coating material with a sand mill disperser to prepare a coating material for forming a conductive particle layer.

【0036】上記のようにして作製された像保持部材の
表面を−750Vに一様に帯電した後、ダイオードレー
ザーを用いて12erg/cm2 の強度で像露光を行っ
た。その際、フィルム(像保持部材)を直径25mmの
ローラー上に搬送させながら、その屈曲部において、レ
ーザー光を照射するようにして、レーザー光の干渉によ
って画像に縞模様が生じるのを防止した(特開平1−2
81475号公報、参照)。その後、暗所において、1
15℃に保持したヒートロール上にフィルムを加熱時間
が5秒間となるように通過させて加熱した。これによ
り、露光されなかった部分の導電性粒子は基体側に移動
した。以上のようにして、像の書き込みによる記憶を終
了した。
After the surface of the image holding member produced as described above was uniformly charged to -750 V, image exposure was carried out with a diode laser at an intensity of 12 erg / cm 2 . At that time, while the film (image holding member) was conveyed onto a roller having a diameter of 25 mm, a laser beam was irradiated at the bent portion to prevent a stripe pattern from being generated in the image due to the interference of the laser beam ( JP-A 1-2
No. 81475, reference). Then, in the dark, 1
The film was passed over a heat roll kept at 15 ° C. for 5 seconds to heat the film. As a result, the conductive particles in the unexposed portion moved to the substrate side. As described above, the storage by writing the image is completed.

【0037】得られた像情報が記憶された像保持部材を
108φmm×340mmのアルミニウムパイプに巻き
付け、−800Vに帯電、二成分正帯電現像剤による現
像、A4用紙への転写、ブラシクリーニングの各工程を
実施する電子写真複写機に取り付けて毎分100枚の速
度で複写を行った。連続2000枚の複写を行っても、
何ら問題はなかった。
The image holding member in which the obtained image information is stored is wrapped around an aluminum pipe of 108 φmm × 340 mm, charged to −800 V, developed with a two-component positively charged developer, transferred to A4 paper, and brush cleaned. The copying machine was mounted on an electrophotographic copying machine for carrying out, and copying was performed at a speed of 100 sheets per minute. Even if you make continuous 2000 copies,
There was no problem.

【0038】[0038]

【発明の効果】本発明の像保持部材は、1回の画像の書
き込みだけで画像を記録することができ、簡単な電子写
真法で多数枚の複写を連続的に行うことができる。ま
た、像保持部材の作製には、導電性粒子を安価な材料か
ら幅広く選択できるようになったので、より低価格の像
保持部材を提供することができる。一方、電荷発生層を
有する像保持部材の電荷発生層に画像露光して像を形成
する方法の他に、本発明は、電荷発生層を像保持部材に
有しない場合についても、像が形成された電子写真感光
体から静電像を転写する像形成方法をとることにより、
さらに低価格の像保持部材を提供することが可能になっ
た。
The image holding member of the present invention can record an image by writing the image only once and can continuously make a large number of copies by a simple electrophotographic method. Further, since the conductive particles can be widely selected from inexpensive materials in the production of the image holding member, it is possible to provide a lower cost image holding member. On the other hand, in addition to the method of forming an image by performing image exposure on the charge generating layer of the image holding member having the charge generating layer, the present invention forms an image even when the image holding member does not have the charge generating layer. By taking the image forming method that transfers the electrostatic image from the electrophotographic photoreceptor,
Further, it has become possible to provide a low cost image holding member.

【図面の簡単な説明】[Brief description of drawings]

【図1】 電荷発生層を有しない本発明の像保持部材の
模式的断面図を示す。
FIG. 1 shows a schematic cross-sectional view of an image holding member of the present invention having no charge generation layer.

【図2】 電荷発生層を有する本発明の像保持部材の模
式的断面図を示す。
FIG. 2 shows a schematic sectional view of an image holding member of the present invention having a charge generation layer.

【図3】 図1に示された像保持部材を用いる像形成方
法の説明図である。
FIG. 3 is an explanatory diagram of an image forming method using the image holding member shown in FIG.

【図4】 同じく図1に示された像保持部材を用いる像
形成方法の説明図である。
4 is an explanatory view of an image forming method using the image holding member shown in FIG.

【図5】 画像情報が記憶された図4に示す像保持部材
を用いる電子写真法の説明図である。
5 is an explanatory view of an electrophotographic method using the image holding member shown in FIG. 4 in which image information is stored.

【図6】 図2に示された像保持部材を用いる像形成方
法の説明図である。
FIG. 6 is an explanatory diagram of an image forming method using the image holding member shown in FIG.

【図7】 同じく図2に示された像保持部材を用いる像
形成方法の説明図である。
FIG. 7 is an explanatory diagram of an image forming method using the image holding member also shown in FIG.

【図8】 同じく図2に示された像保持部材を用いる像
形成方法の説明図である。
FIG. 8 is an explanatory diagram of an image forming method using the image holding member shown in FIG.

【図9】 画像情報が記憶された図8に示す像保持部材
を用いる電子写真法の説明図である。
9 is an explanatory diagram of an electrophotographic method using the image holding member shown in FIG. 8 in which image information is stored.

【図10】 本発明の像形成部材を製造するためのウェ
ブコーターの側面図を示す。
FIG. 10 shows a side view of a web coater for making the imaging member of the present invention.

【図11】 感光体の分光感度特性を示すグラフであ
る。
FIG. 11 is a graph showing the spectral sensitivity characteristics of the photoconductor.

【図12】 従来の像保持部材の模式的断面図である。FIG. 12 is a schematic sectional view of a conventional image holding member.

【符号の説明】[Explanation of symbols]

1…基体、2…導電層、3…電荷発生層、4…熱軟化
層、5…導電性粒子、5a…移動粒子、5b…非移動粒
子、6…導電性粒子層、7…感光層、8…感光体、10
…電荷発生層を有しない像保持部材、11…電荷発生層
を有する像保持部材、12、14…画像情報を記憶した
像保持部材、13…コロナ帯電器
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Conductive layer, 3 ... Charge generation layer, 4 ... Thermal softening layer, 5 ... Conductive particles, 5a ... Moving particles, 5b ... Non-migrating particles, 6 ... Conductive particle layer, 7 ... Photosensitive layer, 8: photoconductor, 10
Image holding member having no charge generation layer, 11 Image holding member having charge generation layer, 12, 14 Image holding member storing image information, 13 Corona charger

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 導電性表面を有する基体上に、電荷輸送
物質と熱軟化性樹脂を含有する熱軟化層を形成してな
り、該熱軟化層上に、絶縁性粒子の表面に導電性材料を
被覆した導電性粒子を埋め込んだ導電性粒子層を設けて
なることを特徴とする像保持部材。
1. A heat-softening layer containing a charge-transporting substance and a heat-softening resin is formed on a substrate having a conductive surface, and a conductive material is formed on the surface of insulating particles on the heat-softening layer. An image holding member comprising a conductive particle layer in which conductive particles coated with are embedded.
【請求項2】 導電性表面を有する基体上に電荷発生層
を形成し、その上に電荷輸送物質と熱軟化性樹脂を含有
する熱軟化層を形成してなり、該熱軟化層上に、絶縁性
粒子の表面に導電性材料を被覆した導電性粒子を埋め込
んだ導電性粒子層を設けてなることを特徴とする像保持
部材。
2. A charge generation layer is formed on a substrate having a conductive surface, and a heat softening layer containing a charge transport substance and a heat softening resin is formed thereon, and the heat softening layer is formed on the heat softening layer. An image holding member comprising a conductive particle layer in which conductive particles coated with a conductive material are embedded on the surface of insulating particles.
【請求項3】 導電性粒子の平均粒径が0.2〜0.4
μmである請求項1または2に記載の像保持部材。
3. The average particle diameter of the conductive particles is 0.2 to 0.4.
The image holding member according to claim 1, wherein the image holding member has a thickness of μm.
【請求項4】 導電性表面を有する基体上に、電荷輸送
物質と熱軟化性樹脂を含有する熱軟化層を形成し、該熱
軟化層の上に、絶縁性粒子の表面に導電性材料を被覆し
た導電性粒子を分散した塗料を塗布し、形成された導電
性粒子層に導電性粒子を埋め込むことを特徴とする像保
持部材の製造方法。
4. A heat-softening layer containing a charge-transporting substance and a heat-softening resin is formed on a substrate having a conductive surface, and a conductive material is provided on the surface of insulating particles on the heat-softening layer. A method for producing an image holding member, which comprises applying a coating material in which coated conductive particles are dispersed and embedding the conductive particles in the formed conductive particle layer.
【請求項5】 導電性表面を有する基体上に電荷発生層
を形成し、その上に電荷輸送物質と熱軟化性樹脂を含有
する熱軟化層を形成し、該熱軟化層の上に、絶縁性粒子
の表面に導電性材料を被覆した導電性粒子を分散した塗
料を塗布し、形成された導電性粒子層に導電性粒子を埋
め込むことを特徴とする像保持部材の製造方法。
5. A charge generation layer is formed on a substrate having a conductive surface, a heat softening layer containing a charge transport substance and a heat softening resin is formed thereon, and an insulation is formed on the heat softening layer. A method for producing an image holding member, characterized in that a coating material in which conductive particles coated with a conductive material are dispersed is applied to the surface of the conductive particles, and the conductive particles are embedded in the formed conductive particle layer.
【請求項6】 請求項1に記載の像保持部材に、静電像
が形成された電子写真感光体を接触させて像保持部材表
面に静電像を転写し、電荷を導電性粒子に蓄積させた
後、熱軟化層を熱軟化性樹脂の軟化点以上の温度に加熱
して、電荷が蓄積されている導電性粒子を熱軟化層中で
移動させ、画像情報を記憶させることを特徴とする像形
成方法。
6. An electrophotographic photosensitive member on which an electrostatic image is formed is brought into contact with the image holding member according to claim 1, the electrostatic image is transferred to the surface of the image holding member, and charges are accumulated in conductive particles. After that, the heat-softening layer is heated to a temperature equal to or higher than the softening point of the heat-softening resin, the conductive particles in which electric charges are accumulated are moved in the heat-softening layer, and image information is stored. Image forming method.
【請求項7】 請求項2に記載の像保持部材に負帯電を
施して導電性粒子に電荷を蓄積し、次いで、画像情報に
対応した画像露光を行うことにより、露光部の導電性粒
子の電荷を消失させた後、熱軟化層を熱軟化性樹脂の軟
化点以上の温度に加熱して、電荷が蓄積されている導電
性粒子を熱軟化層中で移動させ、画像情報を記憶させる
ことを特徴とする像形成方法。
7. The image holding member according to claim 2 is negatively charged to accumulate charges in the conductive particles, and then image exposure corresponding to image information is performed, whereby the conductive particles in the exposed portion After the electric charge disappears, the heat-softening layer is heated to a temperature higher than the softening point of the heat-softening resin to move the conductive particles in which the charge is accumulated in the heat-softening layer to store the image information. And an image forming method.
JP23632192A 1992-08-13 1992-08-13 Image holding member, its production and image forming method Pending JPH0667442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23632192A JPH0667442A (en) 1992-08-13 1992-08-13 Image holding member, its production and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23632192A JPH0667442A (en) 1992-08-13 1992-08-13 Image holding member, its production and image forming method

Publications (1)

Publication Number Publication Date
JPH0667442A true JPH0667442A (en) 1994-03-11

Family

ID=16999075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23632192A Pending JPH0667442A (en) 1992-08-13 1992-08-13 Image holding member, its production and image forming method

Country Status (1)

Country Link
JP (1) JPH0667442A (en)

Similar Documents

Publication Publication Date Title
JPH05224469A (en) Simultaneous printing method wherein fixed data and variable data are improved
US5411826A (en) Image-holding member and production method thereof, method for forming image-forming master using the image-holding member and the forming apparatus, and image-forming method using them
JP2853362B2 (en) Method for manufacturing image holding member
US5614343A (en) Electrophotographic copying process for reversal development
JPH0667442A (en) Image holding member, its production and image forming method
JP2891462B2 (en) Charge holding medium exposure recording method
JPH10123735A (en) Internally illuminated electrophotographic photoreceptor
JPH0511485A (en) Image retaining member and production thereof
JPH07129029A (en) Image forming member and its production
JP3427197B2 (en) Method of reproducing electrophotographic photosensitive member for latent image transfer and latent image transfer type electrophotographic apparatus to which the method is applied
JP2861060B2 (en) Image forming device
JPH07287475A (en) Image forming member and image forming method
JP2581060B2 (en) Latent image forming method
US7811729B2 (en) Imaging member
JPH07120123B2 (en) Image holding member, image forming method and electrophotographic method
JPH06149125A (en) Image holding member and its production, image forming method and image reading method
JPH05241481A (en) Image holding member
JPH0527452A (en) Image retaining member and production thereof
JPH06222583A (en) Production of image holding member
JP2625724B2 (en) Image forming method
JPH06313972A (en) Electrophotographic sensitive body and electrophotographic device
JPH07146628A (en) Image forming method and electrophotographic method
JPH0683244A (en) Electrophotographic method
JPH06149124A (en) Image forming method
JP3154832B2 (en) Photoconductor