JPH06149125A - Image holding member and its production, image forming method and image reading method - Google Patents

Image holding member and its production, image forming method and image reading method

Info

Publication number
JPH06149125A
JPH06149125A JP32470292A JP32470292A JPH06149125A JP H06149125 A JPH06149125 A JP H06149125A JP 32470292 A JP32470292 A JP 32470292A JP 32470292 A JP32470292 A JP 32470292A JP H06149125 A JPH06149125 A JP H06149125A
Authority
JP
Japan
Prior art keywords
image
layer
holding member
image holding
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32470292A
Other languages
Japanese (ja)
Inventor
Yuichi Yashiki
雄一 矢敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP32470292A priority Critical patent/JPH06149125A/en
Publication of JPH06149125A publication Critical patent/JPH06149125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To provide the image holding member capable of electrophotographically storing an image and not only electrophotographically but magnetically reading the image, the method for storing the image by utilizing the image holding member and the method for magnetically reading the image stored on the image holding member. CONSTITUTION:This image holding member 10 is provided with a thermally softening layer consisting of a charge transfer material and a thermally softening resin on a base body 1 having at least a conductive surface 2 and has a particle layer formed by embedding oxide magnetic particles 5 near the surface of the thermally softening layer. The image holding member is provided with the charge generating layer on the base body having at least the conductive surface and is provided with the thermally softening layer consisting of the charge transfer material and the thermally softening resin thereon and has the particle layer formed by embedding the oxide magnetic particles near the surface of the thermally softening layer. The image is stored by forming the electrostatic image on the surface of the thermally softening layer and heating the holding member. The stored image is magnetically read.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱軟化性樹脂中の粒子
の移動により画像情報を記憶する像保持部材、その製造
方法、その像保持部材を用いる像形成方法、および形成
された像を読み取る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image holding member which stores image information by the movement of particles in a thermosoftening resin, a manufacturing method thereof, an image forming method using the image holding member, and a formed image. Regarding how to read.

【0002】[0002]

【従来の技術】従来の電子写真複写法は、電子写真感光
体に対して、表面を一様に帯電した後、画像露光を行っ
て像様に表面電位を減衰させ、次いで、トナー現像し、
用紙に転写するカールソン方式が一般的な方法として広
く応用されている。しかしながらこの方式では、画像を
一枚複写するごとに、一回ずつ露光をしなければならな
い。そのため、高速度の複写は、装置が複雑化し、大型
化するという問題があった。 この点を改善するため
に、画像情報を電子写真感光体に記憶させ、1回の画像
露光により多数枚の複写を得る方式が提案されている。
例えば、特開昭53−102037号や特開平2−26
9357号公報には、特定の化合物を感光層に添加し
て、持続性感光体を得ることが記載されている。しかし
ながら、画像情報の記憶時間、複写時のコントラスト等
の点で、満足なものは得られ難い。
2. Description of the Related Art In the conventional electrophotographic copying method, the surface of an electrophotographic photosensitive member is uniformly charged, then imagewise exposure is performed to attenuate the surface potential imagewise, and then toner development is performed.
The Carlson method of transferring onto paper is widely applied as a general method. However, in this method, each time one image is copied, exposure must be performed once. Therefore, high-speed copying has a problem that the apparatus becomes complicated and becomes large in size. In order to improve this point, a system has been proposed in which image information is stored in an electrophotographic photosensitive member and a large number of copies are obtained by one image exposure.
For example, JP-A-53-102037 and JP-A-2-26
Japanese Patent No. 9357 describes that a specific compound is added to a photosensitive layer to obtain a continuous photoreceptor. However, it is difficult to obtain a satisfactory one in terms of storage time of image information, contrast at the time of copying, and the like.

【0003】この点を改善するため、本発明者は、導電
性粒子を熱軟化層内部に移動させる像保持部材を提案し
た(特願平3−69442号公報)。図8はその像保持
部材の模式的断面図である。この像保持部材において
は、基体1の上に導電層2が形成され、その上に、電荷
発生層3が設けられている。さらにその上に、電荷輸送
層と熱により軟化する熱軟化性樹脂とからなる熱軟化層
4が設けられており、そして熱軟化層4の表面近傍に
は、導電性粒子7が埋め込まれて、導電性粒子層を形成
している。この像保持部材に像情報を記憶させる場合、
先ず、像保持部材の表面に負の帯電を施し、それによっ
て、導電性粒子に負電荷が残留するようになる。次に、
画像露光を行ない、光が当たらなかった部分の導電性粒
子に負電荷を残留させる。その後、像保持部材を熱軟化
性樹脂のTg以上の温度に加熱し、負電荷が残留してい
た導電性粒子を静電引力により基体側に移動させ、画像
情報が記憶された像保持部材を得る。この様にして得ら
れた画像情報が記憶された像保持部材は、電子写真法に
より複写物を作製するのに使用される。
In order to improve this point, the inventor of the present invention has proposed an image holding member for moving the conductive particles into the thermal softening layer (Japanese Patent Application No. 3-69442). FIG. 8 is a schematic sectional view of the image holding member. In this image holding member, the conductive layer 2 is formed on the substrate 1, and the charge generation layer 3 is provided thereon. Furthermore, a heat-softening layer 4 made of a charge-transporting layer and a heat-softening resin that is softened by heat is provided thereon, and conductive particles 7 are embedded near the surface of the heat-softening layer 4. A conductive particle layer is formed. When storing image information in this image holding member,
First, the surface of the image holding member is negatively charged, so that negative charges are left on the conductive particles. next,
Image exposure is performed to leave a negative charge on the conductive particles in the areas not exposed to light. After that, the image holding member is heated to a temperature not lower than the Tg of the thermosoftening resin, and the conductive particles having a negative electric charge are moved to the substrate side by electrostatic attraction, so that the image holding member in which the image information is stored is stored. obtain. The image holding member in which the image information thus obtained is stored is used for producing a copy by electrophotography.

【0004】[0004]

【発明が解決しようとする課題】上記の像保持部材を使
用すれば、従来の技術における上記の問題点が解決さ
れ、画像情報の記憶時間、複写時のコントラスト等の点
で、満足のいくものとなるが、この像保持部材を使用す
る場合、記憶された画像を磁気的な像として読み取るこ
とができない。本発明は、この点を解決したものであ
る。すなわち、本発明の目的は、電子写真的に画像を記
憶でき、その画像を電子写真的のみならず、磁気的にも
読み取ることができる像保持部材およびその製造方法を
提供することにある。本発明の他の目的は、上記像保持
部材を使用して像を形成する方法を提供することにあ
る。本発明のさらに他の目的は、上記像保持部材に記憶
された画像を磁気的に読み取る方法を提供することにあ
る。
Use of the above image holding member solves the above problems in the prior art and is satisfactory in terms of storage time of image information, contrast during copying, etc. However, when this image holding member is used, the stored image cannot be read as a magnetic image. The present invention solves this point. That is, an object of the present invention is to provide an image holding member capable of electrophotographically storing an image and capable of reading the image not only electrophotographically but also magnetically, and a manufacturing method thereof. Another object of the present invention is to provide a method of forming an image using the above image holding member. Still another object of the present invention is to provide a method for magnetically reading an image stored in the image holding member.

【0005】[0005]

【課題を解決するための手段】本発明者は、先に提案し
た上記像保持部材において、導電性粒子のかわりに酸化
物磁性粒子を使用すると、磁性粒子が導電性粒子と同様
に荷電と加熱により熱軟化層中を移動すること、そして
記憶された画像を静電潜像(静電コントラスト)として
読み取るほか、磁気的な像として読み取ることができる
ことを発見し、本発明を完成した。
The inventors of the present invention have proposed that, in the above-mentioned image holding member, if oxide magnetic particles are used instead of the conductive particles, the magnetic particles are charged and heated in the same manner as the conductive particles. The present invention has been completed by discovering that the image can be moved in the heat-softening layer and that the stored image can be read as an electrostatic latent image (electrostatic contrast) as well as a magnetic image.

【0006】本発明の像保持部材の第1のものは、少な
くとも導電性表面を有する基体の上に、電荷輸送層物質
と熱軟化性樹脂からなる熱軟化層を設けてなり、該熱軟
化層がその表面近傍に酸化物磁性粒子が埋め込まれて形
成された粒子層を有することを特徴とする。また第2の
像保持部材は、少なくとも導電性表面を有する基体の上
に、電荷発生層を設け、その上に電荷輸送層物質と熱軟
化性樹脂から成る熱軟化層を設けてなり、該熱軟化層が
その表面近傍に酸化物磁性粒子が埋め込まれて形成され
た粒子層を有することを特徴とする。
The first image-holding member of the present invention comprises a heat-softening layer comprising a charge-transporting layer substance and a heat-softening resin, which is provided on at least a substrate having a conductive surface. Has a particle layer formed by burying oxide magnetic particles near the surface thereof. Further, the second image holding member is provided with a charge generation layer on a substrate having at least a conductive surface, and a heat softening layer made of a charge transporting layer substance and a heat softening resin on the charge generation layer. The softening layer has a particle layer formed by embedding oxide magnetic particles near the surface thereof.

【0007】本発明の像保持部材の製造方法は、少なく
とも導電性表面を有する基体の導電性表面に、下引き層
形成用塗布液および/または電荷発生層形成用塗布液を
塗布した後、電荷輸送層物質と熱軟化性樹脂からなる熱
軟化層形成用塗布液を塗布し、形成された熱軟化層の上
に酸化物磁性粒子を分散した塗料を塗布することによ
り、熱軟化層の表面近傍に酸化物磁性粒子層を形成する
ことを特徴とする。
According to the method for producing an image holding member of the present invention, after the coating liquid for forming the undercoat layer and / or the coating liquid for forming the charge generating layer is applied to the conductive surface of the substrate having at least the conductive surface, the charge is applied. By applying a coating solution for forming a heat-softening layer consisting of a transport layer substance and a heat-softening resin, and applying a coating material in which oxide magnetic particles are dispersed on the formed heat-softening layer, the vicinity of the surface of the heat-softening layer Is characterized in that an oxide magnetic particle layer is formed.

【0008】本発明の像形成方法の一つは、上記第1の
像保持部材に、あらかじめ負帯電し、画像露光を行って
像様に静電潜像を形成した電子写真感光体の該静電潜像
を転写して像様に酸化物磁性粒子を荷電させた後、像保
持部材を熱軟化性樹脂の軟化点以上の温度に加熱して荷
電している酸化物磁性粒子を熱軟化層中で移動させ、画
像情報を記憶させることを特徴とする。また本発明の像
形成方法の他の一つは、上記第2の像保持部材に負帯電
を施して、酸化物磁性粒子に荷電させ、次いで画像露光
を行うことにより、像様に酸化物磁性粒子を荷電させた
後、像保持部材を熱軟化性樹脂の軟化点以上の温度に加
熱して荷電している酸化物磁性粒子を熱軟化層中で移動
させ、画像情報を記憶させることを特徴とする。さらに
本発明の画像読取り方法は、上記第1または第2の像保
持部材に形成された像を、磁気ヘッドを用いて読み取る
ことを特徴とする。
One of the image forming methods of the present invention is one in which the electrostatic latent image is formed on the first image holding member by previously negatively charging and exposing the image to form an electrostatic latent image. After the latent image is transferred to charge the oxide magnetic particles imagewise, the image holding member is heated to a temperature not lower than the softening point of the thermosoftening resin to charge the charged oxide magnetic particles to the thermal softening layer. It is characterized in that it is moved inside and image information is stored. Another embodiment of the image forming method of the present invention is that the second image holding member is negatively charged to charge the oxide magnetic particles, and then imagewise exposure is performed to form an oxide magnetic image. After charging the particles, the image holding member is heated to a temperature equal to or higher than the softening point of the thermosoftening resin to move the charged oxide magnetic particles in the thermosoftening layer to store the image information. And Further, the image reading method of the present invention is characterized in that the image formed on the first or second image holding member is read using a magnetic head.

【0009】以下、図面を用いて本発明をさらに詳しく
説明する。図1は、本発明の第1の像保持部材、すなわ
ち、電荷発生層を備えていない像保持部材の断面図であ
り、図2は、本発明の第2の像保持部材、すなわち、電
荷発生層を備えた像保持部材の断面図でありる。図1
中、10は電荷発生層を備えていない像保持部材であっ
て、導電性の基体1の上に導電層2(基体が導電性の場
合は不要)、および電荷輸送物質と熱により軟化する熱
軟化性樹脂とからなる熱軟化層4が形成されている。熱
軟化層の表面近傍には、酸化物磁性粒子5が埋め込まれ
た状態で形成された粒子層が存在している。また、図2
中、20は電荷発生層を備えた像保持部材であって、基
体1の上に導電層2が形成され、その上に、電荷発生層
3が設けられている。さらにその上に、電荷輸送物質と
熱により軟化する熱軟化性樹脂とからなる熱軟化層4が
設けられており、その表面近傍には、酸化物磁性粒子5
が埋め込まれた状態で形成された粒子層が存在してい
る。
The present invention will be described in more detail below with reference to the drawings. FIG. 1 is a sectional view of a first image holding member of the present invention, that is, an image holding member not provided with a charge generation layer, and FIG. 2 is a second image holding member of the present invention, that is, charge generation. FIG. 6 is a cross-sectional view of an image holding member including layers. Figure 1
In the figure, 10 is an image holding member having no charge generation layer, a conductive layer 2 on a conductive substrate 1 (unnecessary if the substrate is conductive), and a heat transporting substance and heat softened by heat. A heat softening layer 4 made of a softening resin is formed. Near the surface of the heat-softening layer, there is a particle layer formed with the oxide magnetic particles 5 embedded therein. Also, FIG.
Reference numeral 20 denotes an image holding member provided with a charge generation layer, in which a conductive layer 2 is formed on a substrate 1 and a charge generation layer 3 is provided thereon. Further thereon, a heat softening layer 4 made of a charge transporting substance and a heat softening resin which is softened by heat is provided, and the oxide magnetic particles 5 are provided near the surface thereof.
There is a particle layer formed in a state of being embedded.

【0010】基体としては、例えばプラスチックフィル
ム、紙、金属箔、ガラス等、電子写真感光体において使
用できるものならば、如何なるものでも使用可能であ
る。またその形状も特に制限されるものではなく、任意
の形状のものが使用可能である。 基体は、少なくとも
導電性表面を有していなければならない。導電性表面
は、導電層を設けることによって形成してもよい。導電
層は、電荷が自由に流れるものであれば、如何なるもの
でもよく、例えば、金属膜を蒸着法、スパッタリング
法、プラズマCVD法、メッキ法等の方法で形成した
り、金属や低抵抗の金属酸化物等の導電性粒子を樹脂な
どに分散した導電性塗料を塗布してもよい。また、基体
が導電性である場合には、導電層を形成する必要はな
い。下引き層は、接着性の向上や、帯電性の向上、画質
の向上等のために設けてもよい。
As the substrate, any one can be used as long as it can be used in an electrophotographic photoreceptor such as plastic film, paper, metal foil, glass and the like. The shape is not particularly limited, and any shape can be used. The substrate must have at least a conductive surface. The conductive surface may be formed by providing a conductive layer. The conductive layer may be made of any material as long as the charge flows freely. For example, a metal film is formed by a method such as a vapor deposition method, a sputtering method, a plasma CVD method, a plating method, or a metal or a metal having a low resistance is used. A conductive paint in which conductive particles such as oxides are dispersed in resin may be applied. Also, if the substrate is conductive, it is not necessary to form a conductive layer. The undercoat layer may be provided in order to improve the adhesiveness, the charging property, the image quality, and the like.

【0011】基体の導電層の上に電荷発生層が形成され
る場合、電荷発生層としては、通常の機能分離型電子写
真感光体において使用される電荷発生層と全く同じもの
が用いられる。即ち、電荷発生材料として、金属又は無
金属フタロシアニン等のフタロシアニン顔料、スクエア
リウム化合物、アズレニウム化合物、ペリレン顔料、イ
ンジゴ顔料、キナクリドン顔料、アントアントロン、臭
素化アントアントロン、ピランスロン、フラバンスロン
等の多環キノン類、シアニン色素、キサンテン染料、ポ
リ−N−ビニルカルバゾールとトリニトロフルオレノン
などからなる電荷移動錯体、ピリリウム染料とポリカー
ボネート樹脂からなる共晶錯体等が使用される。電荷発
生層は、上記の電荷発生材料を結着樹脂および必要に応
じて電荷輸送材料と共に、適当な溶剤に分散させて電荷
発生層形成用塗布液を作製し、それを、上記基体の導電
性表面上に塗布することによって形成すればよい。電荷
発生層の膜厚は、通常、0.1〜2μmの範囲に設定さ
れる。
When the charge generation layer is formed on the conductive layer of the substrate, the charge generation layer is the same as the charge generation layer used in a usual function-separated electrophotographic photoreceptor. That is, as the charge generating material, a polycyclic quinone such as a phthalocyanine pigment such as a metal or metal-free phthalocyanine, a squarium compound, an azurenium compound, a perylene pigment, an indigo pigment, a quinacridone pigment, anthanthrone, a brominated anthanthrone, pyranthrone, and flavanthrone. , A cyanine dye, a xanthene dye, a charge transfer complex composed of poly-N-vinylcarbazole and trinitrofluorenone, and a eutectic complex composed of a pyrylium dye and a polycarbonate resin. The charge generating layer is prepared by dispersing the above charge generating material together with a binder resin and, if necessary, a charge transporting material in a suitable solvent to prepare a charge generating layer forming coating liquid, It may be formed by coating on the surface. The film thickness of the charge generation layer is usually set in the range of 0.1 to 2 μm.

【0012】熱軟化層に用いられる電荷輸送物質として
は、電子写真感光体における電荷輸送層に使用されるも
のであれば、如何なるものでも使用することができる。
例えば、アントラセン、ピレン、フェナントレン等の多
環芳香族化合物、インドール、カルバゾール、イミダゾ
ール、ピラゾリン化合物等の含窒素複素環化合物、ヒド
ラゾン化合物、トリフェニルメタン化合物、トリフェニ
ルアミン化合物、スチルベン化合物、ベンジジン化合
物、トリニトロフルオレノン、キノン化合物などが挙げ
られる。
As the charge-transporting substance used in the heat-softening layer, any substance can be used as long as it is used in the charge-transporting layer in the electrophotographic photosensitive member.
For example, anthracene, pyrene, polycyclic aromatic compounds such as phenanthrene, indole, carbazole, imidazole, nitrogen-containing heterocyclic compounds such as pyrazoline compounds, hydrazone compounds, triphenylmethane compounds, triphenylamine compounds, stilbene compounds, benzidine compounds, Examples include trinitrofluorenone and quinone compounds.

【0013】熱軟化性樹脂としては、ガラス転移点(T
g)が30〜90℃で、Tg以上の温度における粘度が
102 〜106 ポイズであるような熱可塑性樹脂が好ま
しく用いられる。例えば、ポリエチレン、塩化ビニル樹
脂、ポリプロピレン、スチレン樹脂、ABS樹脂、ポリ
ビニルアルコール、アクリル樹脂、アクリロニトリル−
スチレン共重合体、スチレン−アクリル酸エステル共重
合体、塩化ビニリデン樹脂、AAS(ASA)樹脂、A
ES樹脂、繊維素誘導体樹脂、熱可塑性ポリウレタン、
ポリビニルブチラール、ポリ−4−メチルペンテン−
1、ポリブテン−1、ロジンエステル樹脂等が挙げられ
る。中でも、スチレン−アクリル酸エステル共重合体、
スチレン−アクリル酸エステル−アクリル酸の三元重合
体が特に好適である。熱軟化層は、上記電荷輸送材料お
よび熱軟化性樹脂を適当な溶剤に分散或いは溶解させて
熱軟化層形成用塗布液を作製し、それを基体の導電性表
面または上記電荷発生層の上に塗布することによって形
成すればよい。熱軟化層4の膜厚は、通常3〜15μm
の範囲に設定される。
As the thermosoftening resin, a glass transition point (T
A thermoplastic resin having a g) of 30 to 90 ° C. and a viscosity at a temperature of Tg or higher of 10 2 to 10 6 poise is preferably used. For example, polyethylene, vinyl chloride resin, polypropylene, styrene resin, ABS resin, polyvinyl alcohol, acrylic resin, acrylonitrile-
Styrene copolymer, styrene-acrylic acid ester copolymer, vinylidene chloride resin, AAS (ASA) resin, A
ES resin, fibrin derivative resin, thermoplastic polyurethane,
Polyvinyl butyral, poly-4-methylpentene-
1, polybutene-1, rosin ester resin and the like. Among them, styrene-acrylic acid ester copolymer,
A styrene-acrylic acid ester-acrylic acid terpolymer is particularly preferred. The heat-softening layer is prepared by dispersing or dissolving the charge transport material and the heat-softening resin in an appropriate solvent to prepare a heat-softening layer-forming coating solution, which is then applied to the conductive surface of the substrate or the charge-generating layer. It may be formed by coating. The film thickness of the heat softening layer 4 is usually 3 to 15 μm.
It is set to the range of.

【0014】熱軟化層の表面近傍、即ち、表面から酸化
物磁性粒子の直径の数倍以内の間に、酸化物磁性粒子の
単層又は複数層が形成される。酸化物磁性粒子として
は、マグネタイト(Fe3 4 )、γ−Fe2 3 、C
rO2 や一般式MO・Fe2 3 で示されるフェライト
等の粒子が好適である。(M:Zn、Mn、Cu、N
i、CO、Mg、Ba、Ca等の金属)これらの酸化物
磁性粒子は、導電性粒子と同様に電子正孔対を有してお
り、電荷輸送層物質に対して電荷注入性を有しているの
で、本発明に適用することができる。酸化物磁性粒子の
粒径は、0.05〜1μm、特に0.2〜0.4μmの
範囲が好ましい。また、粒子の形状は球形に近いものが
好ましく、磁性トナーに使用される磁性粉が好適に使用
できる。
A single layer or a plurality of layers of oxide magnetic particles are formed in the vicinity of the surface of the heat softening layer, that is, within several times the diameter of the oxide magnetic particles from the surface. The oxide magnetic particles include magnetite (Fe 3 O 4 ), γ-Fe 2 O 3 and C.
Particles such as rO 2 and ferrite represented by the general formula MO · Fe 2 O 3 are suitable. (M: Zn, Mn, Cu, N
i, CO, Mg, Ba, Ca, and other metals) These oxide magnetic particles have electron-hole pairs similarly to the conductive particles, and have charge injection properties to the charge transport layer substance. Therefore, the present invention can be applied to the present invention. The particle size of the oxide magnetic particles is preferably 0.05 to 1 μm, and particularly preferably 0.2 to 0.4 μm. Further, the shape of the particles is preferably close to a sphere, and the magnetic powder used for the magnetic toner can be preferably used.

【0015】これらの酸化物磁性粒子を熱軟化層の表面
近傍に埋め込んで酸化物磁性粒子層形成する方法として
は、酸化物磁性粒子を熱軟化層形成用塗布液と同一組成
の塗布液に分散させておき、その分散液を熱軟化層の上
に塗布する湿式法を適用することができる。この場合、
分散液を塗布した際に、下層に存在する熱軟化層が溶解
しないよう、分散液の塗膜を速やかに乾燥させることが
必要である。
As a method for forming the oxide magnetic particle layer by embedding these oxide magnetic particles in the vicinity of the surface of the thermal softening layer, the oxide magnetic particles are dispersed in a coating solution having the same composition as the coating solution for forming the thermal softening layer. Then, a wet method of applying the dispersion onto the heat-softening layer can be applied. in this case,
When the dispersion liquid is applied, it is necessary to quickly dry the coating film of the dispersion liquid so that the heat-softening layer existing in the lower layer is not dissolved.

【0016】次に、本発明の像保持部材を用いて画像情
報を記憶させる像形成方法について、図面を参照して説
明する。図3は、画像情報を記憶させる像形成方法を説
明する図であって、図3(a)に示すように、像保持部
材10に、あらかじめ潜像を形成しておいた(すなわ
ち、帯電して画像露光をしておいた)感光体30を接触
させて潜像の転写を行う。感光体30としては、有機感
光体、セレン感光体、アモルファスシリコン感光体等、
通常の電子写真感光体の中から、使用する露光波長に適
用するものを選んで任意に用いられる。なお、感光体3
0は、基体1、導電層2(基体が導電性であれば不
要)、感光層6より構成される。転写する際、両者の導
電層2は電気的に接続させる。転写電位を調節するため
に、感光体側の導電層に適当量の電圧を印加するのが有
効である。像保持部材の表面に負電荷が転写されると、
酸化物磁性粒子5から表面の負電荷に対して直ちに正孔
が放出されて、電荷輸送物質を通して表面電荷を中和す
る。そして酸化物磁性粒子自体には負電荷が残留する。
次いで、図3(b)に示すように像保持部材を熱41に
よって加熱すると、負に荷電されていた粒子は静電引力
によって導電層側に泳動して行く。これにより、移動粒
子5Bが存在する部分と、最初と同じ状態の静止粒子5
Aが存在する部分とに分かれる。常温に戻せば、熱軟化
層は再び固体に戻り、画像の記録が完了し、画像情報が
記憶された像保持部材が得られる。
Next, an image forming method for storing image information using the image holding member of the present invention will be described with reference to the drawings. FIG. 3 is a diagram for explaining an image forming method for storing image information. As shown in FIG. 3A, a latent image has been previously formed on the image holding member 10 (that is, the latent image has been charged). Then, the photoreceptor 30 is brought into contact with the photosensitive member 30 and the latent image is transferred. The photoconductor 30 may be an organic photoconductor, a selenium photoconductor, an amorphous silicon photoconductor, or the like.
From the usual electrophotographic photoreceptors, those applicable to the exposure wavelength to be used are selected and used arbitrarily. The photoconductor 3
0 is composed of a substrate 1, a conductive layer 2 (unnecessary if the substrate is conductive), and a photosensitive layer 6. At the time of transfer, both conductive layers 2 are electrically connected. In order to adjust the transfer potential, it is effective to apply an appropriate amount of voltage to the electroconductive layer on the photoconductor side. When negative charges are transferred to the surface of the image holding member,
Holes are immediately released from the oxide magnetic particles 5 to the negative charges on the surface, and the surface charge is neutralized through the charge transport material. Then, negative charges remain on the oxide magnetic particles themselves.
Next, as shown in FIG. 3B, when the image holding member is heated by the heat 41, the negatively charged particles migrate to the conductive layer side by electrostatic attraction. As a result, the portion where the moving particle 5B exists and the stationary particle 5 in the same state as the first state
It is divided into the part where A exists. When the temperature is returned to room temperature, the thermosoftening layer returns to a solid state again, recording of an image is completed, and an image holding member in which image information is stored is obtained.

【0017】次に、第2の像保持部材を用いる像形成方
法について説明する。図4は、像形成方法を説明する図
面であって、先ず、図4(a)に示すように、像保持部
材10に対して、コロナ帯電器42を相対的に移動させ
て、表面に負の帯電を施す。それによって、上記した酸
化物磁性粒子は、常温で電子正孔対を有しており、直ち
に表面の負電荷に対して正孔が放出されて、電荷輸送物
質を通じて表面電荷を中和する。そして、酸化物磁性粒
子の内部には、負電荷が残留する。次に、図4(b)に
示すように、画像露光を行う。43は電荷発生層を感光
させる光であって、これは十分に薄い酸化物磁性粒子層
を通過して、その大部分が電荷発生層3に到達する。ダ
イオードレーザービームの場合には、電子的手段で像様
に変調させて露光させるが、その際には、現像剤を付着
させる部分に光を当てればよい。それによって、電荷発
生層から正電荷が熱軟化層に注入され、層中を輸送され
て、酸化物磁性粒子の負電荷を中和する。一方、光が当
たらなかった部分の酸化物磁性粒子には、負電荷が残っ
ている。
Next, an image forming method using the second image holding member will be described. FIG. 4 is a view for explaining the image forming method. First, as shown in FIG. 4A, the corona charger 42 is moved relative to the image holding member 10 so that the surface of the image holding member 10 is negative. Charge. As a result, the above oxide magnetic particles have electron-hole pairs at room temperature, and holes are immediately released to the negative charges on the surface to neutralize the surface charges through the charge transport material. Then, negative charges remain inside the oxide magnetic particles. Next, as shown in FIG. 4B, image exposure is performed. Reference numeral 43 denotes light that sensitizes the charge generation layer, and most of the light reaches the charge generation layer 3 through the sufficiently thin oxide magnetic particle layer. In the case of a diode laser beam, the image is modulated by an electronic means so as to be exposed, and at that time, light may be applied to a portion to which the developer is attached. As a result, a positive charge is injected from the charge generation layer into the thermal softening layer and is transported in the layer to neutralize the negative charge of the oxide magnetic particles. On the other hand, a negative charge remains in the oxide magnetic particles in the part not exposed to the light.

【0018】その後、図4(c)に示すように、像保持
部材を、熱41によって加熱する。加熱方法としては、
加熱ローラーに通す方法、加熱容器に入れる方法、熱線
により加熱する方法等の任意の方法が採用でき、Tg以
上の温度に数秒間加熱する。それにより、負電荷が残留
していた酸化物磁性粒子は、軟化して粘度が低下した熱
軟化層中を、静電引力により電極となる基体側に移動し
ている。一方、加熱により、熱軟化層4の電気抵抗が低
下して、酸化物磁性粒子の電荷は、急激に自然放電する
ので、酸化物磁性粒子が全て電極側に移動することはな
く、粒子の大きさ、荷電密度のばらつき等により、熱軟
化層中にまばらに分布して停止する。このようにして、
移動した酸化物磁性粒子(移動粒子5B)を含有する部
分が形成される。次いで、像保持部材を常温に戻せば、
画像情報が記憶された像保持部材が得られる。
Thereafter, as shown in FIG. 4C, the image holding member is heated by the heat 41. As a heating method,
Any method such as a method of passing it through a heating roller, a method of putting it in a heating container, or a method of heating with a heating wire can be adopted, and heating is performed at a temperature of Tg or higher for several seconds. As a result, the oxide magnetic particles having the negative charges remaining therein are moved to the side of the base body which becomes the electrode by the electrostatic attraction in the heat-softened layer which is softened and whose viscosity is lowered. On the other hand, by heating, the electric resistance of the thermal softening layer 4 is lowered, and the electric charge of the oxide magnetic particles is abruptly spontaneously discharged. Now, due to variations in the charge density, etc., they are sparsely distributed in the thermal softening layer and stop. In this way
A portion containing the moved oxide magnetic particles (moving particles 5B) is formed. Then, if the image holding member is returned to room temperature,
An image holding member in which image information is stored can be obtained.

【0019】次に、上記のようにして画像情報が記憶さ
れた像保持部材を用いて複写物を得る電子写真方法につ
いて説明する。図5および図6に示すように、画像情報
が記憶された像保持部材10Aおよび20Aに対して、
例えばコロナ帯電器42により、その全面に負の帯電を
施す。それにより、移動しなかった酸化物磁性粒子(非
移動粒子5A)が存在する部分では、図3(a)および
図4(a)に示す場合と同様に、磁性粒子に負電荷が残
留し、表面電位は、磁性粒子が存在しない場合の85〜
95%程度になる。一方、移動した磁性粒子(移動粒子
5B)が存在する部分では、電極に近い方の粒子から次
々に正電荷が注入されて、表面側の負電荷を中和して行
き、結果的に、表面電位は、磁性粒子が存在しない場合
に比べて、0〜20%と、非常に低くなる。したがっ
て、一様な全面負帯電のみで、画像に応じた静電コント
ラストを有する潜像が形成される。
Next, an electrophotographic method for obtaining a copy by using the image holding member in which the image information is stored as described above will be described. As shown in FIGS. 5 and 6, for the image holding members 10A and 20A in which image information is stored,
For example, the corona charger 42 negatively charges the entire surface. As a result, in the portion where the oxide magnetic particles that have not moved (non-moving particles 5A) are present, a negative charge remains on the magnetic particles, as in the case shown in FIGS. 3A and 4A. The surface potential is 85 to 85 when magnetic particles are not present.
It will be about 95%. On the other hand, in the portion where the moved magnetic particles (moving particles 5B) are present, positive charges are successively injected from the particles closer to the electrode to neutralize the negative charges on the surface side, and as a result, the surface The electric potential is 0 to 20%, which is extremely low as compared with the case where no magnetic particles are present. Therefore, a latent image having an electrostatic contrast corresponding to the image is formed only by uniform negative charging on the entire surface.

【0020】形成された静電像を電子写真現像剤で現像
すれば、像を可視化することができる。その際、高電位
部分を可視化したい場合には、陰画反転現像を施す。陽
画と陰画の選択は感光体の画像露光方式にもより、希望
の画像が得られる方式を選択すればよい。なお、デジタ
ル変調レーザー光で露光する場合には、電子的に陽画と
陰画の制御が可能である。次いで、常法により転写用紙
に転写することによって複写物を得ることができる。そ
の後、再び帯電をすることにより図5および図6に示す
ように潜像を形成することができ、したがって、画像露
光を行うことなく、連続的に複写を行うことができる。
なお、複写後は、必要に応じてクリーニングを行うこと
もできる。複写終了後の像保持部材は新しいものと交換
される。
If the formed electrostatic image is developed with an electrophotographic developer, the image can be visualized. At that time, when it is desired to visualize the high potential portion, negative image reversal development is performed. The positive image and the negative image may be selected according to the image exposure method of the photoconductor, so that a desired image can be obtained. In the case of exposure with digitally modulated laser light, positive and negative images can be electronically controlled. Then, a copy can be obtained by transferring to a transfer sheet by a conventional method. Then, by recharging, a latent image can be formed as shown in FIGS. 5 and 6, and therefore copying can be continuously performed without performing image exposure.
After copying, cleaning can be performed as needed. The image holding member after the copying is replaced with a new one.

【0021】本発明の第1および第2の像保持部材は、
以上の如き電子写真操作のほか、磁性粒子の移動を応用
して、磁性像を読み取ることも可能である。それについ
て第1の像保持部材に関する図7により説明する。10
Aは画像情報が記憶された像保持部材であり、静止粒子
5Aと移動粒子5Bが存在している。それぞれの磁性粒
子は表面からの距離が異なるので、表面からの透磁率に
差が生じる。そのため、磁気ヘッド44で走査すれば、
電気信号の強弱の変化として読み取ることができる。そ
の際、磁気ヘッドに直流バイアス電流を流すことも有効
である。このような操作により、画像情報を電気信号と
して入力することができる。この方法は、画像を記憶で
きること、解像度が高いこと、磁気ヘッドにより信号を
入力できること等の長所があり、このような光電変換方
法は未だ知られていない新規な方法である。
The first and second image holding members of the present invention are
In addition to the electrophotographic operation as described above, the movement of magnetic particles can be applied to read a magnetic image. This will be described with reference to FIG. 7 regarding the first image holding member. 10
A is an image holding member in which image information is stored, and includes stationary particles 5A and moving particles 5B. Since each magnetic particle has a different distance from the surface, there is a difference in magnetic permeability from the surface. Therefore, if the magnetic head 44 scans,
It can be read as a change in the strength of the electric signal. At that time, it is also effective to supply a DC bias current to the magnetic head. By such an operation, the image information can be input as an electric signal. This method is advantageous in that it can store an image, has a high resolution, and can input a signal by a magnetic head, and such a photoelectric conversion method is a novel method that has not been known yet.

【0022】[0022]

【実施例】実施例1 基体として、アルミニウムを蒸着した導電層を有する厚
さ50μmのポリエステルフィルムを用いた。一方、ス
チレン62重量部、アクリル酸エチル36重量部、アク
リル酸2重量部を原料とし、トルエンを溶剤として合成
した重量平均分子量約8000の三元重合体を用意し
た。この重合体のTgは48℃であり、110℃におけ
る粘度は28000ポイズであった。この重合体78重
量部とN,N′−ジフェニル−N,N′−ビス−(m−
トリル)ベンジジン22重量部をトルエン500重量部
に溶解した。得られた溶液を導電層上にワイヤーバーで
塗布し、110℃で15分間乾燥して、膜厚8μmの熱
軟化層を形成した。次に、マグネタイトからなる球状磁
性酸化鉄粒子(商品名:MAT305、戸田工業(株)
製、平均粒径0.3μ)2部を、上記三元重合体8重量
部、上記電荷輸送物質2重量部およびトルエン100重
量部からなる溶液に混合し、次いでボールミルで分散し
た。この分散液を上記熱軟化層上にワイヤーバーによっ
て、乾燥後の膜厚が0.6μmになるように塗布し、1
10℃で5分間乾燥をして、図1に示す断面構造を有す
る像保持部材を作製した。
Example 1 A polyester film having a thickness of 50 μm and having a conductive layer on which aluminum was vapor-deposited was used as a substrate. On the other hand, a terpolymer having a weight average molecular weight of about 8000 was prepared using 62 parts by weight of styrene, 36 parts by weight of ethyl acrylate, and 2 parts by weight of acrylic acid as raw materials, and using toluene as a solvent. The Tg of this polymer was 48 ° C., and the viscosity at 110 ° C. was 28,000 poise. 78 parts by weight of this polymer and N, N'-diphenyl-N, N'-bis- (m-
22 parts by weight of tolyl) benzidine were dissolved in 500 parts by weight of toluene. The obtained solution was applied onto the conductive layer with a wire bar and dried at 110 ° C. for 15 minutes to form a heat-softening layer having a film thickness of 8 μm. Next, spherical magnetic iron oxide particles composed of magnetite (trade name: MAT305, Toda Kogyo Co., Ltd.)
2 parts by weight (average particle size: 0.3 μ) were mixed with a solution consisting of 8 parts by weight of the terpolymer, 2 parts by weight of the charge transport material and 100 parts by weight of toluene, and then dispersed by a ball mill. This dispersion was applied onto the heat-softened layer with a wire bar so that the film thickness after drying would be 0.6 μm.
After drying at 10 ° C. for 5 minutes, an image holding member having the sectional structure shown in FIG. 1 was produced.

【0023】これとは別に、X型フタロシアニンを電荷
発生層とし、その上に電荷輸送層を有する電子写真感光
体を用意した。(例えば、特開昭63−271355号
公報に記載されている感光体)この感光体を−700V
に帯電させた後、ダイオードレーザーを用いて、文字部
分に対応して光が照射されるよう露光を行い、静電潜像
を形成した。露光された部分は−100Vの電位となっ
た。
Separately from this, an electrophotographic photosensitive member having an X-type phthalocyanine as a charge generation layer and having a charge transport layer thereon was prepared. (For example, the photosensitive member described in JP-A-63-271355).
After being charged to, an exposure was performed using a diode laser so that light was irradiated corresponding to the character portion to form an electrostatic latent image. The exposed part had a potential of -100V.

【0024】次に、この感光体を上記像保持部材と接触
させ、この感光体の基体に+100Vの電圧を印加し
た。像保持部材の表面では、感光体側の無露光部に対応
する部分が−500Vであり、感光体側の露光部に対応
する部分はゼロであった。その後、フィルムを115℃
に保持したヒートロール上を5秒間となるように通過さ
せて加熱した。これにより、電荷が残っている部分の粒
子は基体側に移動した(図3(b))。
Next, this photosensitive member was brought into contact with the above-mentioned image holding member, and a voltage of +100 V was applied to the substrate of this photosensitive member. On the surface of the image holding member, the portion corresponding to the non-exposed portion on the photoconductor side was -500V, and the portion corresponding to the exposed portion on the photoconductor side was zero. After that, the film is 115 ℃
It was heated by passing it over the heat roll held for 5 seconds. As a result, the particles in the portion where the electric charge remained moved to the substrate side (FIG. 3 (b)).

【0025】以上のようにして、像の書き込みによる記
憶操作を終了した。得られた像情報が記憶された像保持
部材を、108φmm×340mmのアルミニウムパイ
プに巻き付け、帯電(−800V)、二成分正帯電現像
剤による現像、A4用紙への転写、ブラシクリーニング
の各工程を実施する電子写真複写機に取り付けた。図5
に示されるように、帯電器60で帯電させたところ、移
動粒子5Bを有する部分は−140V、非移動粒子5A
を有する部分は−760Vの表面電位の潜像が形成され
た。この潜像を二成分正帯電現像剤により現像し、転写
することによって、高コントラストを有する複写像が得
られた。この工程を毎分100枚の速度で繰り返し実施
した。その結果、連続2000枚の複写を行っても、何
ら問題がないことが確認された。
As described above, the storage operation by writing the image is completed. The image holding member in which the obtained image information is stored is wrapped around an aluminum pipe of 108 mm x 340 mm and charged (-800 V), developed with a two-component positively charged developer, transferred to A4 paper, and brush-cleaned. It was attached to the electrophotographic copying machine to be implemented. Figure 5
As shown in FIG. 4, when charged by the charger 60, the portion having the moving particles 5B is −140 V, the non-moving particles 5A
A latent image having a surface potential of -760 V was formed on the portion having. This latent image was developed with a two-component positively charged developer and transferred to obtain a copy image having a high contrast. This process was repeated at a speed of 100 sheets per minute. As a result, it was confirmed that there was no problem even when continuous 2000 sheets were copied.

【0026】一方、この像保持部材をアルミニウムパイ
プに巻き付けたまま、4000rpmで回転させ、磁気
ヘッドを軸方向に38.4mm/分の速度で操作して、
磁気画像の読み取りを行った。これにより、A4画像を
10μm単位の大きさで電気信号として取り出すことが
できた。
On the other hand, while the image holding member was wound around the aluminum pipe, it was rotated at 4000 rpm, and the magnetic head was operated in the axial direction at a speed of 38.4 mm / min.
The magnetic image was read. As a result, the A4 image could be extracted as an electric signal in a size of 10 μm.

【0027】実施例2 実施例1と同じ基体上に、N−メトキシメチル化ナイロ
ンに樹脂(商品名:トレジンG550、帝国化学(株)
製)の6%をメタノール・ブタノール溶液(混合比2:
1)を塗布して、1.0μmの厚さの下引き層を形成し
た。次に、ポリビニルブチラール樹脂(商品名:BM−
1、積水化学工業(株)製)3部をシクロヘキサノン1
00部に溶解し、X型無金属フタロシアニン6部を混合
し、1φガラスビーズを分散媒としたサンドミル分散機
で6時間にわたって分散処理した。得られた分散液に2
−ブタノンを加えて3.5%濃度の電荷発生層形成用塗
布液を作製した。これを上記下引き層上に塗布し、0.
25μmの厚さの電荷発生層を形成した。この上に実施
例1と同様の方法で、熱軟化層および磁性粒子層を形成
した。これにより、電荷発生層を有する図2で示される
断面構造を有する像保持部材を作製した。この像保持部
材を220×300mmに切り取り、−600Vに一様
に帯電させ(図4(a))、次いで5ルックス秒の白色
光で画像露光を行った(図4(b))。露光部は−15
0V、非露光部は、−580Vであった。これを120
℃のオーブンに10秒間入れて加熱処理を行った(図4
(c))。このようにして作製された像保持部材は、実
施例1と同様に連続複写に使用し、また磁気画像を電気
信号として取り出すことができた。
Example 2 On the same substrate as in Example 1, N-methoxymethylated nylon was used as a resin (trade name: Toresin G550, Teikoku Kagaku Co., Ltd.).
6% of a methanol / butanol solution (mixing ratio 2:
1) was applied to form an undercoat layer having a thickness of 1.0 μm. Next, polyvinyl butyral resin (trade name: BM-
1, Sekisui Chemical Co., Ltd.) 3 parts cyclohexanone 1
It was dissolved in 00 parts, mixed with 6 parts of X-type metal-free phthalocyanine, and dispersed for 6 hours by a sand mill disperser using 1φ glass beads as a dispersion medium. 2 in the resulting dispersion
-Butanone was added to prepare a coating liquid for forming a charge generation layer having a concentration of 3.5%. This was coated on the above-mentioned undercoat layer, and
A charge generation layer having a thickness of 25 μm was formed. A thermal softening layer and a magnetic particle layer were formed on this in the same manner as in Example 1. As a result, an image holding member having the charge generation layer and having the cross-sectional structure shown in FIG. 2 was produced. This image holding member was cut into 220 × 300 mm, uniformly charged to −600 V (FIG. 4A), and then imagewise exposed with white light of 5 lux seconds (FIG. 4B). Exposed part is -15
0V, the non-exposed part was -580V. This is 120
It was placed in an oven at ℃ for 10 seconds for heat treatment (Fig. 4).
(C)). The image holding member thus produced was used for continuous copying in the same manner as in Example 1, and a magnetic image could be taken out as an electric signal.

【0028】[0028]

【発明の効果】本発明の像保持部材は、一回の書き込み
で画像を記録することができ、多数枚の複写を行うこと
ができるほか、記憶された磁気的な画像を電気信号とし
て取り出すことができる。
The image holding member of the present invention is capable of recording an image by writing once, copying a large number of sheets, and taking out a stored magnetic image as an electric signal. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の像保持部材の模式的断面図で
ある。
FIG. 1 is a schematic sectional view of a first image holding member of the present invention.

【図2】 本発明の第2の像保持部材の模式的断面図で
ある。
FIG. 2 is a schematic sectional view of a second image holding member of the present invention.

【図3】 本発明の第1の像保持部材を用いた像形成工
程の説明図である。
FIG. 3 is an explanatory diagram of an image forming process using the first image holding member of the present invention.

【図4】 本発明の第2の像保持部材を用いた像形成工
程の説明図である。
FIG. 4 is an explanatory diagram of an image forming process using the second image holding member of the present invention.

【図5】 本発明の第1の像保持部材の電子写真法によ
る潜像形成工程の説明図である。
FIG. 5 is an explanatory diagram of a latent image forming step of the first image holding member of the present invention by an electrophotographic method.

【図6】 本発明の第2の像保持部材の電子写真法によ
る潜像形成工程の説明図である。
FIG. 6 is an explanatory diagram of a latent image forming step of the second image holding member of the present invention by an electrophotographic method.

【図7】 本発明の像保持部材を用いて磁気的な画像を
電気信号として取り出す方法を示す説明図である。
FIG. 7 is an explanatory diagram showing a method of extracting a magnetic image as an electric signal using the image holding member of the present invention.

【図8】 本発明と関連する他の像保持部材の模式的断
面図である。
FIG. 8 is a schematic cross-sectional view of another image holding member related to the present invention.

【符号の説明】[Explanation of symbols]

1…基体、2…導電層、3…電荷発生層、4…熱軟化
層、5…酸化物磁性粒子、5A…非移動粒子、5B…移
動粒子、6…感光層、7…導電性粒子、10…像保持部
材、20…像保持部材、30…感光体、41…熱、42
…帯電器、43…光、44…磁気ヘッド。
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Conductive layer, 3 ... Charge generation layer, 4 ... Thermal softening layer, 5 ... Oxide magnetic particles, 5A ... Non-migrating particles, 5B ... Moving particles, 6 ... Photosensitive layer, 7 ... Conductive particles, Reference numeral 10 ... Image holding member, 20 ... Image holding member, 30 ... Photoconductor, 41 ... Heat, 42
... charger, 43 ... light, 44 ... magnetic head.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも導電性表面を有する基体の上
に、電荷輸送層物質と熱軟化性樹脂からなる熱軟化層を
設けてなり、該熱軟化層がその表面近傍に酸化物磁性粒
子が埋め込まれて形成された粒子層を有することを特徴
とする像保持部材。
1. A heat-softening layer comprising a charge transport layer substance and a heat-softening resin is provided on a substrate having at least a conductive surface, and the heat-softening layer has oxide magnetic particles embedded near the surface thereof. An image holding member having a particle layer formed as described above.
【請求項2】 少なくとも導電性表面を有する基体の上
に、電荷発生層を設け、その上に電荷輸送層物質と熱軟
化性樹脂から成る熱軟化層を設けてなり、該熱軟化層が
その表面近傍に酸化物磁性粒子が埋め込まれて形成され
た粒子層を有することを特徴とする像保持部材。
2. A charge generation layer is provided on a substrate having at least a conductive surface, and a heat softening layer made of a charge transport layer substance and a heat softening resin is provided thereon, and the heat softening layer is An image holding member having a particle layer formed by burying oxide magnetic particles near the surface.
【請求項3】 酸化物磁性粒子がマグネタイトである請
求項1または請求項2記載の像保持部材。
3. The image holding member according to claim 1, wherein the oxide magnetic particles are magnetite.
【請求項4】 少なくとも導電性表面を有する基体の導
電性表面に、下引き層形成用塗布液および/または電荷
発生層形成用塗布液を塗布した後、電荷輸送層物質と熱
軟化性樹脂からなる熱軟化層形成用塗布液を塗布し、形
成された熱軟化層の上に酸化物磁性粒子を分散した塗料
を塗布することにより、熱軟化層の表面近傍に酸化物磁
性粒子層を形成することを特徴とする像保持部材の製造
方法。
4. A coating solution for forming an undercoat layer and / or a coating solution for forming a charge generation layer is applied to the conductive surface of a substrate having at least a conductive surface, and then the charge transport layer substance and a thermosoftening resin are applied. The coating liquid for forming a heat-softening layer is formed, and a coating material in which oxide magnetic particles are dispersed is applied on the formed heat-softening layer to form an oxide magnetic particle layer near the surface of the heat-softening layer. A method for manufacturing an image holding member, comprising:
【請求項5】 請求項1に記載の像保持部材に、あらか
じめ負帯電し、画像露光を行って像様に静電潜像を形成
した電子写真感光体の該静電潜像を転写して像様に酸化
物磁性粒子を荷電させた後、像保持部材を熱軟化性樹脂
の軟化点以上の温度に加熱して荷電している酸化物磁性
粒子を熱軟化層中で移動させ、画像情報を記憶させるこ
とを特徴とする像形成方法。
5. The electrostatic latent image of an electrophotographic photosensitive member on which an electrostatic latent image is imagewise formed by previously negatively charging the image holding member according to claim 1 and performing image exposure. After the oxide magnetic particles are image-wise charged, the image holding member is heated to a temperature equal to or higher than the softening point of the thermosoftening resin to move the charged oxide magnetic particles in the thermosoftening layer. An image forming method characterized by storing the image.
【請求項6】 請求項2に記載の像保持部材に負帯電を
施して、酸化物磁性粒子に荷電させ、次いで画像露光を
行うことにより、像様に酸化物磁性粒子を荷電させた
後、像保持部材を熱軟化性樹脂の軟化点以上の温度に加
熱して荷電している酸化物磁性粒子を熱軟化層中で移動
させ、画像情報を記憶させることを特徴とする像形成方
法。
6. The image holding member according to claim 2 is negatively charged to charge the oxide magnetic particles, and then image exposure is performed to charge the oxide magnetic particles imagewise, An image forming method, characterized in that an image holding member is heated to a temperature equal to or higher than a softening point of a thermosoftening resin to move charged oxide magnetic particles in a thermosoftening layer to store image information.
【請求項7】 請求項5または6に記載の方法により像
保持部材に形成された像を、磁気ヘッドを用いて読み取
ることを特徴とする画像読取り方法。
7. An image reading method, wherein the image formed on the image holding member by the method according to claim 5 or 6 is read using a magnetic head.
JP32470292A 1992-11-11 1992-11-11 Image holding member and its production, image forming method and image reading method Pending JPH06149125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32470292A JPH06149125A (en) 1992-11-11 1992-11-11 Image holding member and its production, image forming method and image reading method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32470292A JPH06149125A (en) 1992-11-11 1992-11-11 Image holding member and its production, image forming method and image reading method

Publications (1)

Publication Number Publication Date
JPH06149125A true JPH06149125A (en) 1994-05-27

Family

ID=18168762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32470292A Pending JPH06149125A (en) 1992-11-11 1992-11-11 Image holding member and its production, image forming method and image reading method

Country Status (1)

Country Link
JP (1) JPH06149125A (en)

Similar Documents

Publication Publication Date Title
JPH05224469A (en) Simultaneous printing method wherein fixed data and variable data are improved
JPH05216248A (en) Member for forming infrared-ray red-light sensitive particle-movemnet image
JPH0410631B2 (en)
US5464716A (en) Image-holding member and production method thereof, method for forming image-forming master using the image-holding member and the forming apparatus, and image-forming method using them
JPH06149125A (en) Image holding member and its production, image forming method and image reading method
JP2853362B2 (en) Method for manufacturing image holding member
US5614343A (en) Electrophotographic copying process for reversal development
US4465749A (en) Electrostatic charge differential amplification (CDA) in imaging process
JP2861060B2 (en) Image forming device
JP3427197B2 (en) Method of reproducing electrophotographic photosensitive member for latent image transfer and latent image transfer type electrophotographic apparatus to which the method is applied
JP3458255B2 (en) Electrophotographic process by latent image transfer method
JPH07287475A (en) Image forming member and image forming method
JP3053847B2 (en) Electrophotographic equipment
JPH07287407A (en) Electrophotographic photoreceptor for transferring latent image
JPH0511485A (en) Image retaining member and production thereof
JPH0527452A (en) Image retaining member and production thereof
JPH0667442A (en) Image holding member, its production and image forming method
JPH07199548A (en) Image forming method
JPH08202055A (en) Electrophotographic photoreceptor for latent image transfer
JPH06149124A (en) Image forming method
JPH07287405A (en) Electrophotographic photoreceptor for transferring latent image
JPH0683244A (en) Electrophotographic method
JPH06222583A (en) Production of image holding member
JPH07129029A (en) Image forming member and its production
JPH07146628A (en) Image forming method and electrophotographic method