JPH0667001A - Material for vapor deposition - Google Patents

Material for vapor deposition

Info

Publication number
JPH0667001A
JPH0667001A JP4219235A JP21923592A JPH0667001A JP H0667001 A JPH0667001 A JP H0667001A JP 4219235 A JP4219235 A JP 4219235A JP 21923592 A JP21923592 A JP 21923592A JP H0667001 A JPH0667001 A JP H0667001A
Authority
JP
Japan
Prior art keywords
vapor deposition
zirconium
metal
zirconium dioxide
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4219235A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ida
信之 井田
Tomonori Aoki
智則 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTORON KK
Canon Inc
Original Assignee
OPUTORON KK
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTORON KK, Canon Inc filed Critical OPUTORON KK
Priority to JP4219235A priority Critical patent/JPH0667001A/en
Publication of JPH0667001A publication Critical patent/JPH0667001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To lessen the generation of the oxygen generated from pellets when the pellet are melted at the time of vapor deposition so that melting time and eventually he time required for a vapor deposition operation are shortened and that a stably vapor deposited film and high film strength are obtd. by mixing metal tantalum or metal zirconium at ratios of a specific range into zirconium dioxide. CONSTITUTION:The material for vapor deposition is formed by mixing the zirconium dioxide and the metal tantalum or the metal zirconium. The pellet-like material for vapor deposition is formed by mixing these materials at the ratios in which the weight of the metal tantalum or the metal zirconium is 2 to 25% of the total weight of the mixture and subjecting the mixture to a heat treatment in an inert atmosphere at such a high temp. that the mixture can be sintered. The zirconium dioxide, metal tantalum and metal zirconium to be used are preferably in a powdery form of adequate grain sizes to facilitate sintering. These materials are preferably previously mixed prior to sintering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空蒸着により二酸化
ジルコニウム膜を形成する際に使用する蒸着用材料に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor deposition material used for forming a zirconium dioxide film by vacuum vapor deposition.

【0002】[0002]

【従来の技術】真空蒸着は真空チャンバー中で蒸着材料
を電子銃あるいは抵抗加熱によって完全に溶融して蒸発
させ、これにより対象物面に蒸着膜を形成するものであ
る。蒸着用材料として二酸化ジルコニウムを用いて形成
した蒸着膜は広範な波長帯域で透過域を有し、屈折率が
高く、安定性と再現性が良く、更に二酸化ジルコニウム
自体は蒸着し易い物質である為、カメラレンズ、メガネ
等に於ける多層反射防止膜用の蒸着材料として使用され
ている。通常の二酸化ジルコニウム蒸着用材料は、二酸
化ジルコニウム粉末をプレスし、燒結してペレット状に
形成し使用されている。
2. Description of the Related Art In vacuum evaporation, an evaporation material is completely melted and evaporated by an electron gun or resistance heating in a vacuum chamber to form an evaporation film on the surface of an object. A vapor-deposited film formed by using zirconium dioxide as a vapor deposition material has a transmission region in a wide wavelength band, has a high refractive index, good stability and reproducibility, and zirconium dioxide itself is a substance that is easily vapor-deposited. It is used as a vapor deposition material for multilayer antireflection coatings in camera lenses, glasses, etc. A general zirconium dioxide vapor deposition material is used by pressing zirconium dioxide powder and sintering it to form a pellet.

【0003】[0003]

【発明が解決しようとする課題】然しながら斯様な蒸着
用ペレットは、溶融時に分解して酸素の如きガス放出が
著しい。この為、チャンバ−内が蒸着可能な真空度に到
達するまでの時間がかかるうえ、その発生するガスは基
板に蒸着された蒸着膜に、膜強度低下等の影響を与える
事がある。
However, such a pellet for vapor deposition is decomposed when melted to release a gas such as oxygen remarkably. For this reason, it takes time to reach a vacuum degree in which the inside of the chamber can be vapor-deposited, and the generated gas may affect the vapor-deposited film vapor-deposited on the substrate such as film strength reduction.

【0004】本発明は上記事情に鑑みて為されたもの
で、その目的とする所は蒸着時にペレットを溶融した
際、ペレットより生ずる酸素の発生を少なくし、よって
溶融時間しいては蒸着作業に要する時間を短縮すること
が可能で、且つ安定した蒸着膜と高い膜強度が得られる
蒸着材料を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the generation of oxygen generated from the pellets when the pellets are melted during vapor deposition, so that the melting time can be improved in the vapor deposition work. An object of the present invention is to provide a vapor deposition material capable of shortening the time required and capable of obtaining a stable vapor deposition film and high film strength.

【0005】[0005]

【課題を解決するための手段】本発明においては、二酸
化ジルコニウムと金属タンタル、又は二酸化ジルコニウ
ムと金属ジルコニウムを混合して蒸着用材料を形成す
る。その際、混合した全重量に対して金属タンタル或は
金属ジルコニウムの重量%が2〜15となる割合で混合
し、その混合物を不活性雰囲気中で且つ燒結できる程度
の高温で加熱処理してペレット状の蒸着材料を形成する
ことにより、上記目的に合致した蒸着材料を提供するも
のである。
In the present invention, zirconium dioxide and metal tantalum or zirconium dioxide and metal zirconium are mixed to form a vapor deposition material. At that time, metal tantalum or metal zirconium is mixed at a ratio of 2 to 15 with respect to the total weight of the mixture, and the mixture is heat-treated in an inert atmosphere and at a high temperature such that it can be sintered, and pelletized. By forming a vapor deposition material in the shape of a circle, a vapor deposition material that meets the above purpose is provided.

【0006】本発明に於いて用いられる二酸化ジルコニ
ウム、金属タンタル、金属ジルコニウムは、燒結しやす
いように適度の粒度の粉末状の物が好ましい。それらの
平均粒径としては、二酸化ジルコニウムは5〜15μ
m、金属タンタル或は金属ジルコニウムは10〜20μ
m程度であることが望ましい。
The zirconium dioxide, metal tantalum, and metal zirconium used in the present invention are preferably powdery ones having an appropriate particle size so that they can be easily sintered. Zirconium dioxide has an average particle size of 5 to 15 μm.
m, metal tantalum or metal zirconium is 10 to 20 μm
It is desirable that it is about m.

【0007】本発明に於ては、二酸化ジルコニウム及び
金属タンタル或は金属ジルコニウムを燒結するものであ
るが、燒結前にあらかじめ両者を混合することが望まし
い。混合方法としてはボールミルを用いる方法等が有
る。
In the present invention, zirconium dioxide and metallic tantalum or metallic zirconium are sintered, but it is desirable to mix both before sintering. As a mixing method, there is a method using a ball mill.

【0008】本発明に於ては、上記のごとく金属タンタ
ル或は金属ジルコニウムを2〜15重量%の割合で混合
するものであるが、金属タンタル或は金属ジルコニウム
の量が2重量%より少ない場合は、ペレットを加熱溶融
した際のガスの放出を防止する効果が少ない。一方、金
属タンタル或は金属ジルコニウムの量が15重量%より
多い場合は、金属タンタル或は金属ジルコニウムの影響
によるスプラッシュ現象が出始め、金属タンタル或は金
属ジルコニウムの影響により蒸着膜の光吸収が多くな
る。
In the present invention, metal tantalum or metal zirconium is mixed in the proportion of 2 to 15% by weight as described above, but when the amount of metal tantalum or metal zirconium is less than 2% by weight. Has little effect of preventing the release of gas when the pellet is heated and melted. On the other hand, when the amount of metal tantalum or metal zirconium is more than 15% by weight, the splash phenomenon starts to occur due to the influence of metal tantalum or metal zirconium, and the light absorption of the vapor deposition film increases due to the influence of metal tantalum or metal zirconium. Become.

【0009】本発明に於ては、燒結は不活性な状態で行
うものである。この為、燒結は真空中またはN2やAr等の
不活性ガス中で加熱することが好ましい。加熱温度は金
属タンタル或は金属ジルコニウムの配合割合に依っても
異なるが、1300℃〜1500℃とすることが好まし
い。又、加熱保持時間は2〜6時間程度である。上記燒
結を行う装置としては、たとえば真空電気炉等がある。
In the present invention, sintering is carried out in an inactive state. Therefore, sintering is preferably heated in an inert gas such as vacuum or N 2 and A r. The heating temperature varies depending on the blending ratio of metal tantalum or metal zirconium, but is preferably 1300 ° C to 1500 ° C. The heating and holding time is about 2 to 6 hours. An apparatus for performing the sintering is, for example, a vacuum electric furnace.

【0010】本発明に係る蒸着用材料の形状としては、
ペレット状、顆粒状、その他の形状にすることができ
る。
As the shape of the vapor deposition material according to the present invention,
It can be pelletized, granular, or any other shape.

【0011】[0011]

【実施例】以下、実施例により本発明を更に具体的に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0012】実施例1 二酸化ジルコニウム(平均粒径12μm)と金属タンタ
ル(平均粒径10〜20μm)を95:5の重量比で混
合し、プレス成形した後、真空中で約4時間1400℃
で燒結を行い蒸着用ペレットを得た。次いで蒸着槽中に
配置された電子ビーム用ハースにそのペレットをセット
し、蒸着槽内を1×10-5Torr.になるまで排気し
た後、電子ビームによってこれを溶解し、蒸着用基板で
ある研磨硝子面の上に光学的膜厚(nd)が250nm(λ/
2:λは設計波長500nm)の厚さに蒸着膜を形成し
た。
Example 1 Zirconium dioxide (average particle size: 12 μm) and metal tantalum (average particle size: 10-20 μm) were mixed at a weight ratio of 95: 5, press-molded, and then, in vacuum for about 4 hours at 1400 ° C.
Sintering was performed to obtain pellets for vapor deposition. Next, the pellets were set in an electron beam hearth arranged in the vapor deposition tank, and the inside of the vapor deposition tank was set at 1 × 10 −5 Torr. After evacuating until it becomes, it is melted by an electron beam, and the optical film thickness (nd) is 250 nm (λ /
2: λ was a designed wavelength of 500 nm) and the vapor deposition film was formed.

【0013】図1はこの時の蒸着槽の全圧の経時変化を
示す図で、縦軸に全圧(真空度)、横軸に経過時間が取
られている。図1に示す如く前記ペレットの溶融開始時
に、ペレットから生ずるガスを抜く為におよそ2分要し
ている。その後、蒸着装置をガス抜きの条件から蒸着を
開始するための条件に変更する為に、スパッター電流等
の条件が変化し、その為に一時的に蒸着槽の真空度は上
昇する。然しながら、この上昇率は、図1に示すごとく
微小なものであり、得られる蒸着膜の品質には悪影響を
与えない程度のものである。
FIG. 1 is a diagram showing the change over time in the total pressure of the vapor deposition tank, in which the vertical axis represents the total pressure (degree of vacuum) and the horizontal axis represents the elapsed time. As shown in FIG. 1, it takes about 2 minutes to release the gas generated from the pellets at the start of melting the pellets. After that, in order to change the vapor deposition apparatus from the degassing conditions to the conditions for starting vapor deposition, the conditions such as the sputtering current are changed, and therefore the degree of vacuum in the vapor deposition tank is temporarily increased. However, this increase rate is very small as shown in FIG. 1, and does not adversely affect the quality of the deposited film obtained.

【0014】比較例 二酸化ジルコニウムのみで蒸着用ペレットを形成し、次
いで蒸着槽中に配置された電子ビーム用ハースにそのペ
レットをセットし、蒸着槽内を1×10-5Torr.に
なるまで排気した後、電子ビームによってこれを溶解
し、蒸着用基板である研磨硝子面の上に光学的膜厚(nd)
が250nm(λ/2:λは設計波長500nm)の厚さに
蒸着膜を形成した。
Comparative Example A vapor deposition pellet was formed only from zirconium dioxide, and then the pellet was set in an electron beam hearth placed in the vapor deposition tank, and the inside of the vapor deposition tank was set at 1 × 10 −5 Torr. After evacuating until it becomes, it is melted by the electron beam and the optical film thickness (nd) is formed on the polishing glass surface which is the substrate for vapor deposition.
Was formed to a thickness of 250 nm (λ / 2: λ is a design wavelength of 500 nm).

【0015】図3はこの時の蒸着槽の全圧の経時変化を
示す図で、縦軸及び横軸は図1と同じに取られている。
図3に示す如く、ペレットから生ずるガス抜きの為に約
3分を必要とした。その後、蒸着を開始する為に装置の
条件を変化させるとペレットよりガスが多量に発生し真
空度が大きく低下する。この真空度の低下は、蒸着膜の
密度を低下させ蒸着膜の品質を低下させる。
FIG. 3 is a diagram showing the change over time in the total pressure of the vapor deposition tank at this time, and the vertical and horizontal axes are the same as those in FIG.
As shown in FIG. 3, it took about 3 minutes to degas the pellets. After that, when the conditions of the apparatus are changed to start vapor deposition, a larger amount of gas is generated than the pellets, and the degree of vacuum is greatly reduced. This reduction in the degree of vacuum lowers the density of the vapor deposition film and reduces the quality of the vapor deposition film.

【0016】図1及び図3より明らかな様に、本願発明
に係る蒸着用材料はペレットより生ずる分解ガスの量が
少なく、従って形成された蒸着膜の品質が高く、且つ、
ガス抜きに要する時間が従来に比して短時間で済む為、
蒸着時間の短宿が計れる。
As is apparent from FIGS. 1 and 3, the vapor deposition material according to the present invention produces a small amount of decomposition gas from the pellets, and thus the quality of the vapor deposition film formed is high, and
Since the time required for degassing is shorter than before,
You can measure short stays of vapor deposition time.

【0017】第1実施例において、蒸着用基板を300
℃に保持した結果、形成された光学的薄膜の屈折率は2.
06であり、通常の二酸化ジルコニウムを用いた場合の屈
折率と何等変わるところはなかった。
In the first embodiment, the vapor deposition substrate is 300
As a result of holding at ℃, the refractive index of the optical thin film formed is 2.
It was 06, and there was no difference from the refractive index when using ordinary zirconium dioxide.

【0018】実施例2 二酸化ジルコニウム(平均粒径12μm)と金属タンタ
ル(平均粒径10〜20μm)を98:2の重量比で混
合し、プレス成形した後、真空中で約4時間1400℃
で燒結を行い蒸着用ペレットを得た。次いで蒸着槽中に
配置された電子ビーム用ハースにそのペレットをセット
し、蒸着槽内を1×10-5Torr.になるまで排気し
た後、電子ビームによってこれを溶解し、蒸着用基板で
ある研磨硝子面の上に光学的膜厚(nd)が250nm(λ/
2:λは設計波長500nm)の厚さに蒸着膜を形成し
た。
Example 2 Zirconium dioxide (average particle size: 12 μm) and metal tantalum (average particle size: 10-20 μm) were mixed at a weight ratio of 98: 2, press-molded, and then, in vacuum for about 4 hours at 1400 ° C.
Sintering was performed to obtain pellets for vapor deposition. Next, the pellets were set in an electron beam hearth arranged in the vapor deposition tank, and the inside of the vapor deposition tank was set at 1 × 10 −5 Torr. After evacuating until it becomes, it is melted by an electron beam, and the optical film thickness (nd) is 250 nm (λ /
2: λ was a designed wavelength of 500 nm) and the vapor deposition film was formed.

【0019】実施例2の蒸着材料に於いては蒸着時に放
出ガスが発生したが、放出ガスの量は上記比較例の場合
の放出ガスの90%以下で少なかった。
In the vapor deposition material of Example 2, a release gas was generated during vapor deposition, but the amount of the release gas was 90% or less of the release gas in the case of the above comparative example, which was small.

【0020】実施例3 二酸化ジルコニウム(平均粒径12μm)と金属タンタ
ル(平均粒径10〜20μm)を85:15の重量比で
混合しプレス成形した後、真空中で約4時間1400℃
で燒結を行い蒸着用ペレットを得た。次いで蒸着槽中に
配置された電子ビーム用ハースにそのペレットをセット
し、蒸着槽内を1×10-5Torr.になるまで排気し
た後、電子ビームによってこれを溶解し、蒸着用基板で
ある研磨硝子面の上に光学的膜厚(nd)が250nm(λ/
2:λは設計波長500nm)の厚さに蒸着膜を形成し
た。
Example 3 Zirconium dioxide (average particle size: 12 μm) and metal tantalum (average particle size: 10-20 μm) were mixed at a weight ratio of 85:15, press-molded, and then in vacuum for about 4 hours at 1400 ° C.
Sintering was performed to obtain pellets for vapor deposition. Next, the pellets were set in an electron beam hearth arranged in the vapor deposition tank, and the inside of the vapor deposition tank was set at 1 × 10 −5 Torr. After evacuating until it becomes, it is melted by an electron beam, and the optical film thickness (nd) is 250 nm (λ /
2: λ was a designed wavelength of 500 nm) and the vapor deposition film was formed.

【0021】実施例3の蒸着材料に於いては、比較例で
示した二酸化ジルコニウム単体より成る蒸着ペレットの
場合に比して放出ガスの量は約10%で格段に減少し
た。そして、金属タンタルの影響により僅かにスプラッ
シュ現象が見られたが、蒸着された膜の品質に影響を与
える程のものではなかった。
In the vapor deposition material of Example 3, the amount of released gas was about 10%, which was much smaller than that of the vapor deposition pellet made of zirconium dioxide alone shown in Comparative Example. A slight splash phenomenon was observed due to the influence of metallic tantalum, but it was not so large as to affect the quality of the deposited film.

【0022】実施例4 二酸化ジルコニウム(平均粒径12μm)と金属ジルコ
ニウム(平均粒径10〜20μm)を90:10の重量
比で混合しプレス成形した後、真空中で約3時間、13
20℃で燒結を行い蒸着用ペレットを得た。次いで、蒸
着槽中に配置された電子ビーム用ハースにそのペレット
をセットし、蒸着槽内を1×10-5Torr.になるま
で排気した後、電子ビームによってこれを溶解し、蒸着
用基板である研磨硝子面の上に光学的膜厚(nd)が250
nm(λ/2:λは設計波長500nm)の厚さに蒸着膜を
形成した。
Example 4 Zirconium dioxide (average particle size: 12 μm) and metallic zirconium (average particle size: 10-20 μm) were mixed at a weight ratio of 90:10 and press-molded.
Sintering was performed at 20 ° C to obtain pellets for vapor deposition. Next, the pellets were set in an electron beam hearth arranged in the vapor deposition tank, and the inside of the vapor deposition tank was set at 1 × 10 −5 Torr. After evacuating until it becomes, it is melted by electron beam and the optical film thickness (nd) is 250 on the polishing glass surface which is the substrate for vapor deposition.
A vapor deposition film was formed to a thickness of nm (λ / 2: λ is a design wavelength of 500 nm).

【0023】図2はこの時の真空槽の全圧の経時変化を
示す図で、縦軸に全圧(真空度)、横軸に経過時間が取
られている。図2に示す如く、ペレットの溶融開始時に
ペレットから生ずるガスを抜く為におよそ2分要してい
る。その後、蒸着装置をガス抜きの条件から蒸着を開始
するための条件に変更する為に、スパッター電流等の条
件が変化し、その為に一時的に蒸着槽の真空度は上昇す
る。然しながら、この上昇率は、図2に示すごとく微小
なものであり、得られる蒸着膜の品質には悪影響を与え
ない程度のものである。
FIG. 2 is a diagram showing the change over time in the total pressure in the vacuum chamber, in which the vertical axis represents the total pressure (degree of vacuum) and the horizontal axis represents the elapsed time. As shown in FIG. 2, it takes about 2 minutes to remove the gas generated from the pellets at the start of melting the pellets. After that, in order to change the vapor deposition apparatus from the degassing conditions to the conditions for starting vapor deposition, the conditions such as the sputtering current are changed, and therefore the degree of vacuum in the vapor deposition tank is temporarily increased. However, this increase rate is very small as shown in FIG. 2 and does not adversely affect the quality of the deposited film obtained.

【0024】第4実施例において、蒸着用基板を300
℃に保持した結果、形成された光学的薄膜の屈折率は2.
05であり、通常の二酸化ジルコニウムを用いた場合の屈
折率と何等変わるところはなかった。
In the fourth embodiment, the vapor deposition substrate is set to 300.
As a result of holding at ℃, the refractive index of the optical thin film formed is 2.
It was 05, and there was no difference from the refractive index when using normal zirconium dioxide.

【0025】実施例5 二酸化ジルコニウム(平均粒径12μm)と金属ジルコ
ニウム(平均粒径10〜20μm)を98:2の重量比
で混合しプレス成形した後、真空中で約3時間1320
℃で燒結を行い蒸着用ペレットを得た。次いで、蒸着槽
中に配置された電子ビーム用ハースにそのペレットをセ
ットし、蒸着槽内を1×10-5Torr.になるまで排
気した後、電子ビームによってこれを溶解し、蒸着用基
板である研磨硝子面の上に光学的膜厚(nd)が250nm
(λ/2:λは設計波長500nm)の厚さに蒸着膜を形
成した。
Example 5 Zirconium dioxide (average particle size 12 μm) and metallic zirconium (average particle size 10 to 20 μm) were mixed at a weight ratio of 98: 2 and press-molded, and then 1320 in vacuum for about 3 hours 1320.
The pellets for vapor deposition were obtained by sintering at ℃. Next, the pellets were set in an electron beam hearth arranged in the vapor deposition tank, and the inside of the vapor deposition tank was set at 1 × 10 −5 Torr. After evacuating until it becomes, it is melted by electron beam and the optical film thickness (nd) is 250 nm on the polishing glass surface which is the substrate for vapor deposition.
A vapor deposition film was formed to a thickness of (λ / 2: λ is a design wavelength of 500 nm).

【0026】実施例5の蒸着材料に於いては蒸着時に放
出ガスが発生したが、放出ガスの量は上記比較例の場合
の放出ガスの90%以下で少なかった。
In the vapor deposition material of Example 5, release gas was generated during vapor deposition, but the amount of release gas was 90% or less of the release gas in the case of the above comparative example, which was small.

【0027】実施例6 二酸化ジルコニウム(平均粒径12μm)と金属ジルコ
ニウム(平均粒径10〜20μm)を85:15の重量
比で混合しプレス成形した後、真空中で約3時間132
0℃で燒結を行い蒸着用ペレットを得た。次いで、蒸着
槽中に配置された電子ビーム用ハースにそのペレットを
セットし、蒸着槽内を1×10-5Torr.になるまで
排気した後、電子ビームによってこれを溶解し、蒸着用
基板である研磨硝子面の上に光学的膜厚(nd)が250nm
(λ/2:λは設計波長500nm)の厚さに蒸着膜を形
成した。
Example 6 Zirconium dioxide (average particle size: 12 μm) and metallic zirconium (average particle size: 10-20 μm) were mixed at a weight ratio of 85:15, press-molded, and then in vacuum for about 3 hours 132
Sintering was performed at 0 ° C. to obtain vapor deposition pellets. Next, the pellets were set in an electron beam hearth arranged in the vapor deposition tank, and the inside of the vapor deposition tank was set at 1 × 10 −5 Torr. After evacuating until it becomes, it is melted by electron beam and the optical film thickness (nd) is 250 nm on the polishing glass surface which is the substrate for vapor deposition.
A vapor deposition film was formed to a thickness of (λ / 2: λ is a design wavelength of 500 nm).

【0028】実施例6の蒸着材料に於いては、比較例で
示した二酸化ジルコニウム単体より成る蒸着ペレットの
場合に比して放出ガスの量は約10%で格段に減少し
た。そして、金属ジルコニウムの影響により僅かにスプ
ラッシュ現象が見られたが、蒸着された膜の品質に影響
を与える程のものではなかった。
In the vapor deposition material of Example 6, the amount of released gas was remarkably reduced by about 10% as compared with the vapor deposition pellet made of zirconium dioxide alone shown in Comparative Example. A slight splash phenomenon was observed due to the influence of metallic zirconium, but it was not so large as to affect the quality of the deposited film.

【0029】[0029]

【発明の効果】以上述べた様に、本発明の蒸着用材料に
よれば、蒸着時の放出ガスの放出量が減少する為、ガス
抜きに要する時間が短縮でき、一サイクルに要する蒸着
時間の短縮が計れる。更に、蒸着時の放出ガスの量を少
なく出来る為、光学特性の安定した光学薄膜が得られる
ものである。
As described above, according to the vapor deposition material of the present invention, the amount of released gas during vapor deposition is reduced, so that the time required for degassing can be shortened and the vapor deposition time required for one cycle can be shortened. Can be shortened. Furthermore, since the amount of gas released during vapor deposition can be reduced, an optical thin film with stable optical characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例1の蒸着用材料を用いて蒸
着を行った場合の、蒸着槽内の全圧力の経時変化を示す
図。
FIG. 1 is a diagram showing a change over time in the total pressure in a vapor deposition tank when vapor deposition is performed using the vapor deposition material of Example 1 according to the present invention.

【図2】本発明に係る実施例4の蒸着用材料を用いて蒸
着を行った場合の、蒸着槽内の全圧力の経時変化を示す
図。
FIG. 2 is a diagram showing changes over time in the total pressure in the vapor deposition tank when vapor deposition is performed using the vapor deposition material of Example 4 according to the present invention.

【図3】比較例の蒸着用材料を用いて蒸着を行った場合
の、蒸着槽内の全圧力の経時変化を示す図。
FIG. 3 is a diagram showing changes over time in the total pressure in the vapor deposition tank when vapor deposition was performed using the vapor deposition material of the comparative example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二酸化ジルコニウムと金属タンタルとを
混合し燒結してなる蒸着用材料であって、全重量に対し
金属タンタルの重量比が2〜15重量%であることを特
徴とする蒸着用材料。
1. A vapor deposition material obtained by mixing zirconium dioxide and metal tantalum and sintering the mixture, wherein the weight ratio of the metal tantalum to the total weight is 2 to 15% by weight. .
【請求項2】 二酸化ジルコニウムと金属ジルコニウム
とを混合し燒結してなる蒸着用材料であって、全重量に
対して金属ジルコニウムの重量比が2〜15重量%であ
ることを特徴とする蒸着用材料。
2. A vapor deposition material obtained by mixing and sintering zirconium dioxide and metal zirconium, wherein the weight ratio of metal zirconium to the total weight is 2 to 15% by weight. material.
JP4219235A 1992-08-18 1992-08-18 Material for vapor deposition Pending JPH0667001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4219235A JPH0667001A (en) 1992-08-18 1992-08-18 Material for vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4219235A JPH0667001A (en) 1992-08-18 1992-08-18 Material for vapor deposition

Publications (1)

Publication Number Publication Date
JPH0667001A true JPH0667001A (en) 1994-03-11

Family

ID=16732331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4219235A Pending JPH0667001A (en) 1992-08-18 1992-08-18 Material for vapor deposition

Country Status (1)

Country Link
JP (1) JPH0667001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816528A1 (en) * 1996-06-24 1998-01-07 General Electric Company A method for depositing zirconium oxide on a substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816528A1 (en) * 1996-06-24 1998-01-07 General Electric Company A method for depositing zirconium oxide on a substrate

Similar Documents

Publication Publication Date Title
JP5138881B2 (en) Vapor deposition materials for the production of high refractive index layers
JP3069403B2 (en) Method for producing titanium suboxide
JPH0667001A (en) Material for vapor deposition
JPH07196365A (en) Sintered ito, ito clear conductive layer and formation thereof
JP3039721B2 (en) Vapor deposition material and method for producing optical thin film using the vapor deposition material
JP2009504557A (en) SiOx: Si composite object and manufacturing method thereof
JP3160309B2 (en) Thin film formation method
JPH07331412A (en) Optical parts for infrared ray and their production
JP2004169098A (en) Vapor depositing material, and optical thin film and optical component obtained by using the same
JP3186793B2 (en) Method for producing titanium suboxide
JP4298067B2 (en) Method for forming optical thin film
JPH04224113A (en) Production of titanium oxide for vapor deposition
JP3186788B2 (en) Method for producing titanium suboxide
JPH1192212A (en) Magnesium oxide sintered compact, its production and magnesium oxide thin film
JPH0641729A (en) Material for vapor deposition
JPS6128027B2 (en)
JP3472169B2 (en) Evaporation material for optical thin film with intermediate refractive index and optical thin film using the evaporation material
JP4269830B2 (en) Vapor deposition material
JP2939359B2 (en) Method for producing titanium suboxide
JPS59148002A (en) Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition
JP4363168B2 (en) Titanium oxide sintered body and manufacturing method thereof
JPH0813140A (en) Indium oxide sputtering target, its production, indium oxide film, and production of indium oxide film
JP5426136B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
JP5284822B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
JPH0158267B2 (en)