JPH0641729A - Material for vapor deposition - Google Patents

Material for vapor deposition

Info

Publication number
JPH0641729A
JPH0641729A JP4199740A JP19974092A JPH0641729A JP H0641729 A JPH0641729 A JP H0641729A JP 4199740 A JP4199740 A JP 4199740A JP 19974092 A JP19974092 A JP 19974092A JP H0641729 A JPH0641729 A JP H0641729A
Authority
JP
Japan
Prior art keywords
vapor deposition
molar ratio
vacuum
vacuum chamber
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4199740A
Other languages
Japanese (ja)
Inventor
Tomonori Aoki
智則 青木
Nobuyuki Ida
信之 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTORON KK
Canon Inc
Original Assignee
OPUTORON KK
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTORON KK, Canon Inc filed Critical OPUTORON KK
Priority to JP4199740A priority Critical patent/JPH0641729A/en
Publication of JPH0641729A publication Critical patent/JPH0641729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To make it possible to obtain an optical thin film having stable optical characteristics by mixing lower titanium oxide having a specified molar ratio with zirconium oxide so that the molar ratio of Ti to Zr is regulated to a specified value and sintering the resulting mixture. CONSTITUTION:Lower titanium oxide having 1.0-1.75 molar ratio of O to Ti is mixed with zirconium oxide so that the molar ratio of Ti to Zr is regulated to 0.02-0.50 and the resulting mixture is sintered to produce a material for vapor deposition. When this material is used, the amt. of gaseous oxygen released at the time of vapor deposition is reduced, so vapor deposition can be started as soon as sputtering is started and vapor deposition time per one cycle can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空蒸着により酸化チ
タンと酸化ジルコニウムとの混合膜を形成する際に使用
される蒸着用材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor deposition material used for forming a mixed film of titanium oxide and zirconium oxide by vacuum vapor deposition.

【0002】[0002]

【従来の技術】従来より酸化チタンと酸化ジルコニウム
との混合膜は、特開昭50ー35211号公報に示され
る如く、二酸化チタンと二酸化ジルコニウムとを燒結し
てなる蒸着用材料を真空チャンバー中で電子銃や抵抗過
熱によって溶融し、蒸着すべき基板上に混合膜を蒸着し
ている。二酸化チタンと二酸化ジルコニウムよりなる混
合膜は、二酸化ジルコニウム単体からなる蒸着用材料を
用いて形成された蒸着膜に比べて硬度が高く、又、湿気
等の化学的耐久性が高いため、従来からカメラレンズ等
の多層反射防止膜の高屈折率物質として使用されてい
る。
2. Description of the Related Art Conventionally, a mixed film of titanium oxide and zirconium oxide is prepared by sintering a titanium dioxide and zirconium dioxide in a vacuum chamber as disclosed in Japanese Patent Laid-Open No. 35211/1975. It is melted by an electron gun or resistance heating, and a mixed film is deposited on the substrate to be deposited. A mixed film made of titanium dioxide and zirconium dioxide has higher hardness and higher chemical durability against moisture than a film formed by using a material for vapor deposition made of zirconium dioxide alone. It is used as a high-refractive index material for multilayer antireflection coatings such as lenses.

【0003】[0003]

【発明が解決しようとする課題】然しながら、上述した
二酸化チタンと二酸化ジルコニウムとを燒結してなる蒸
着用材料は、溶融時に解離された酸素の放出が著しい
為、チャンバー内が蒸着可能な真空度に達するまで時間
がかかる上、蒸着中も絶えずガスの放出が著しい為、形
成された混合膜の安定した光学特性が得られない等の問
題があった。
However, the above-mentioned material for vapor deposition formed by sintering titanium dioxide and zirconium dioxide has a remarkable degree of release of oxygen dissociated during melting. It takes a long time to reach the temperature, and gas is constantly remarkably released during vapor deposition, so that there is a problem that stable optical characteristics of the formed mixed film cannot be obtained.

【0004】本発明は上記事情に鑑みて為されたもの
で、その目的とする所は溶融の際、及び蒸着の際の酸素
の発生を少なくし、よって溶融時間を短縮することが可
能で、且つ高真空状態で蒸着出来る蒸着材料を提供する
ことにある。
The present invention has been made in view of the above circumstances, and its purpose is to reduce the generation of oxygen during melting and vapor deposition, and thus to shorten the melting time. Another object of the present invention is to provide an evaporation material that can be evaporated in a high vacuum state.

【0005】[0005]

【課題を解決するための手段】本発明の目的は、二酸化
ジルコニウムと低級酸化チタンとを所定の割合で混合
し、その混合物を不活性雰囲気中で且つ少なくとも燒結
出来る程度の高温で加熱処理してペレット状等の各種形
状にして得られる蒸着材料によって達成される。
The object of the present invention is to mix zirconium dioxide and lower titanium oxide in a predetermined ratio, and heat the mixture in an inert atmosphere at a high temperature at least capable of sintering. This is achieved by a vapor deposition material obtained in various shapes such as pellets.

【0006】即ち、チタニウムと酸素のモル比(O/Ti)が
1.0 〜1.75の低級酸化チタニウムと酸化ジルコニウムと
を混合し、チタニウムとジルコニウムのモル比(Ti/Zr)
が0.02〜0.50になる様にして燒結してなる蒸着用材料に
より上記目的を達成せんとするものである。
That is, the molar ratio of titanium and oxygen (O / Ti) is
1.0 to 1.75 lower titanium oxide and zirconium oxide are mixed, and titanium and zirconium molar ratio (Ti / Zr)
The above object is achieved by a material for vapor deposition which is sintered so that the ratio becomes 0.02 to 0.50.

【0007】本発明において使用する二酸化ジルコニウ
ム及び低級酸化チタンは特に制限はなくいずれのもので
も使用出来るが、燒結しやすい様に適度の粒度の粉末状
のものが好ましい。これらの平均粒径としては、二酸化
ジルコニウム及び低級酸化チタン共に、1〜5μm程度
であることが好ましい。
The zirconium dioxide and the lower titanium oxide used in the present invention are not particularly limited, and any one can be used, but a powdery one having an appropriate particle size is preferable so that it is easily sintered. The average particle size of both zirconium dioxide and lower titanium oxide is preferably about 1 to 5 μm.

【0008】本発明に於ては、二酸化ジルコニウム及び
低級酸化チタンを燒結するものであるが、燒結前にあら
かじめ両者を混合することが望ましい。混合方法として
はボールミルを用いる方法等が有る。
In the present invention, zirconium dioxide and lower titanium oxide are sintered, but it is desirable to mix both before sintering. As a mixing method, there is a method using a ball mill.

【0009】本発明に於ては、二酸化ジルコニウムと低
級酸化チタンとの配合割合は、チタニウムとジルコニウ
ムのモル比(Ti/Zr)が0.02〜0.50になる様にするもの
であるが、この場合、前記モル比が0.02以下であると加
熱、溶融、蒸着時に於ける酸素の放出防止に対する効果
が不十分であり、一方前記モル比が0.50以上であると酸
化チタンの影響により形成した蒸着膜のでの光吸収が増
大し、光透過特性が悪くなる。
In the present invention, the mixing ratio of zirconium dioxide and lower titanium oxide is such that the molar ratio of titanium and zirconium (Ti / Zr) is 0.02 to 0.50. In this case, When the molar ratio is 0.02 or less, heating, melting, the effect on the release of oxygen at the time of vapor deposition is insufficient, while when the molar ratio is 0.50 or more, the deposited film formed by the influence of titanium oxide. Light absorption increases and light transmission characteristics deteriorate.

【0010】本発明に用いられる低級酸化チタンのチタ
ンと酸素のモル比(O/Ti)が1より小さい場合、金属チタ
ンの影響により形成した蒸着膜の光吸収が増大し、光透
過特性が悪化する。一方、前記モル比が1.75より大きな
場合には、酸素の放出防止に対する効果が不十分であ
る。
When the titanium / oxygen molar ratio (O / Ti) of the lower titanium oxide used in the present invention is smaller than 1, the light absorption of the deposited film is increased due to the influence of titanium metal, and the light transmission characteristics are deteriorated. To do. On the other hand, when the molar ratio is greater than 1.75, the effect of preventing oxygen release is insufficient.

【0011】本発明に於ては、燒結は不活性な状態で行
うものである。この為、燒結は真空中またはN2やAr等の
不活性ガス中で加熱することが好ましい。加熱保持時間
は2〜6時間程度である。上記燒結を行う装置として
は、たとえば真空電気炉等がある。
In the present invention, sintering is performed in an inactive state. Therefore, sintering is preferably heated in an inert gas such as vacuum or N 2 and A r. The heating and holding time is about 2 to 6 hours. An apparatus for performing the sintering is, for example, a vacuum electric furnace.

【0012】本発明に係る蒸着用材料の形状としては、
ペレット状、顆粒状、その他の形状にすることができ
る。
The shape of the vapor deposition material according to the present invention is as follows:
It can be pelletized, granular, or any other shape.

【0013】[0013]

【実施例】以下、実施例により本発明を更に具体的に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0014】実施例1 チタンと酸素のモル比(O/Ti)が1.5 の低級酸化チタン(T
i2O3) 粉末と、二酸化ジルコニウム粉末をチタンとジル
コニウムウのモル比が0.1 となる様に混合しプレス成形
した後、真空中で約3時間、1450℃で燒結を行って
蒸着用ペレットを得た。次いで、真空槽中に配置された
電子ビーム蒸着用ハースに前記ペレットをセットし、真
空槽内を1×10-5Torr. になるまで排気した後、電子
ビームにより前記ペレットを溶解し、光学的膜厚(nd)が
125nmになるように蒸着用基板上に混合膜を形成し
た。
Example 1 Lower titanium oxide (T) having a molar ratio of titanium to oxygen (O / Ti) of 1.5
i 2 O 3 ) powder and zirconium dioxide powder are mixed so that the molar ratio of titanium and zirconium is 0.1 and press-molded, and then sintered at 1450 ° C. for about 3 hours in vacuum to form a vapor deposition pellet. Obtained. Next, the pellets were set in a hearth for electron beam vapor deposition placed in a vacuum chamber, the interior of the vacuum chamber was evacuated to 1 × 10 −5 Torr. A mixed film was formed on the evaporation donor substrate so that the film thickness (nd) was 125 nm.

【0015】図1は、蒸着時の真空槽の全圧の経時変化
を示す図で、縦軸に全圧(真空度)、横軸に経過時間が
取られている。図1に示す如く、蒸着ペレットの溶融開
始時に真空度は一時的におよそ8〜9×10ー5Torr. ま
で上昇するが、蒸着槽の排気手段により、直ちに全圧は
8×10ー5Torr. 以下になり、即座に蒸着の作業が開始
できる。
FIG. 1 is a diagram showing the change over time in the total pressure in the vacuum chamber during vapor deposition, in which the vertical axis represents the total pressure (degree of vacuum) and the horizontal axis represents the elapsed time. As shown in FIG. 1, a vacuum degree at the time of melting the start of the deposition pellets rises to temporarily approximately 8 to 9 × 10 over 5 Torr., The exhaust means of the vapor deposition chamber, immediately total pressure 8 × 10 over 5 Torr It becomes the following, and the work of vapor deposition can be started immediately.

【0016】図2(A)(B)は、マススペクトロメーターで
この場合の水(H2O)と酸素(O2)の分圧を計測した図で、
縦軸にイオン電流、横軸にMass No.( 質量数)が取られ
ている。図2(A) は蒸着ペレットの溶融開始後10秒
後、図2(B) は60秒後の分圧の状態を示す。
FIGS. 2 (A) and 2 (B) are views in which the partial pressures of water (H 2 O) and oxygen (O 2 ) in this case are measured by a mass spectrometer.
Ion current is plotted on the vertical axis and Mass No. (mass number) is plotted on the horizontal axis. FIG. 2 (A) shows the state of partial pressure after 10 seconds from the start of melting of the vapor deposition pellets, and FIG. 2 (B) shows the state of partial pressure after 60 seconds.

【0017】比較例1として、チタンと酸素のモル比(O
/Ti)が2.0 の低級酸化チタン粉末と、二酸化ジルコニウ
ム粉末をチタンとジルコニウムウのモル比が0.1 となる
様に混合し、上述した如きプロセスで形成した蒸着用ペ
レットを用いて、上述した如く蒸着用基板上に混合膜を
形成した。この時の真空槽の全圧の経時変化を図3に、
マススペクトロメーターで観察した水(H2O)と酸素(O2)
の分圧を図4(A)(B)に示す。第3図より明白な様に、本
発明以外の斯様な蒸着用材料を用いた場合には、蒸着ペ
レットの溶融開始時に真空度は一時的におよそ20×1
ー5Torr. まで上昇し、蒸着を開始可能な8×10ー5To
rr. 以下の真空度に到達するのに約60秒必要とした。
更に、図2と図4の比較より明らかな様に、本発明の蒸
着材料を用いた場合には、比較例の蒸着材料を用いた場
合に比して酸素に依るイオン電流値が低く、従って、蒸
着時にペレットより放出される分解ガスが少ないことが
分かる。
As Comparative Example 1 , the molar ratio of titanium and oxygen (O
/ Ti) is mixed with lower titanium oxide powder of 2.0 and zirconium dioxide powder so that the molar ratio of titanium and zirconium is 0.1, and vapor deposition is performed as described above using the vapor deposition pellets formed by the process as described above. A mixed film was formed on the substrate. Figure 3 shows the change over time in the total pressure in the vacuum chamber at this time.
Water (H 2 O) and oxygen (O 2 ) observed with a mass spectrometer
The partial pressure of is shown in FIGS. 4 (A) and (B). As is clear from FIG. 3, when such a material for vapor deposition other than the present invention is used, the degree of vacuum is temporarily about 20 × 1 at the start of melting of the vapor deposition pellets.
0 over 5 Torr. To rise, 8 × 10 over 5 the To capable initiate deposition
It took about 60 seconds to reach a vacuum degree of rr.
Further, as is clear from the comparison between FIG. 2 and FIG. 4, when the vapor deposition material of the present invention is used, the ion current value due to oxygen is lower than when the vapor deposition material of the comparative example is used, and It can be seen that less decomposition gas is released from the pellet during vapor deposition.

【0018】8×10ー5Torr. の酸素雰囲気中下で蒸着
することにより、屈折率が2.12〜2.13の光学性能が安定
した光学薄膜が得られた。
[0018] By depositing under an oxygen atmosphere of 8 × 10 over 5 Torr., Refractive index optical performance of 2.12 to 2.13 was obtained a stable optical thin film.

【0019】又、蒸着用基板の温度を300 ℃に保持する
と、屈折率が2.17〜2.19で従来より高い屈折率の光学薄
膜が得られた。
When the temperature of the vapor deposition substrate was kept at 300 ° C., an optical thin film having a refractive index of 2.17 to 2.19 and a higher refractive index than the conventional one was obtained.

【0020】本実施例の蒸着材料は、チタンと酸素のモ
ル比(O/Ti)が1.5 の低級酸化チタン(Ti2O3) と二酸化ジ
ルコニウムとが反応合成されたチタン酸ジルコニウム
(ZrTiO4)により構成されている。
The vapor deposition material of this example is zirconium titanate (ZrTiO 4 ) obtained by reaction synthesis of lower titanium oxide (Ti 2 O 3 ) having a molar ratio of titanium and oxygen (O / Ti) of 1.5 and zirconium dioxide. It is composed by.

【0021】実施例2 チタンと酸素のモル比(O/Ti)が1.75の低級酸化チタン(T
i2O3) 粉末と、二酸化ジルコニウム粉末をチタンとジル
コニウムウのモル比が0.02となる様に混合しプレス成形
した後、真空中で約3時間、1450℃で燒結を行って
蒸着用ペレットを得た。次いで、真空槽中に配置された
電子ビーム蒸着用ハースに前記ペレットをセットし、真
空槽内を1×10-5Torr. になるまで排気した後、電子
ビームにより前記ペレットを溶解し、光学的膜厚(nd)が
125nmになるように蒸着用基板上に混合膜を形成し
た。
Example 2 Lower titanium oxide (T) having a molar ratio of titanium to oxygen (O / Ti) of 1.75.
i 2 O 3 ) powder and zirconium dioxide powder were mixed so that the molar ratio of titanium and zirconium was 0.02 and press-molded, followed by sintering in vacuum at 1450 ° C. for about 3 hours to form pellets for vapor deposition. Obtained. Next, the pellets were set in a hearth for electron beam vapor deposition placed in a vacuum chamber, the interior of the vacuum chamber was evacuated to 1 × 10 −5 Torr. A mixed film was formed on the evaporation donor substrate so that the film thickness (nd) was 125 nm.

【0022】図5は、蒸着時の真空槽の全圧の経時変化
を示す図で、縦軸に全圧(真空度)、横軸に経過時間が
取られている。図5に示す如く、蒸着ペレットの溶融開
始時に真空度は一時的におよそ14×10ー5Torr. まで
上昇するが、蒸着槽の排気手段により、直ちに全圧は8
×10ー5Torr. 以下になり、蒸着の作業が開始できる。
FIG. 5 is a diagram showing the change over time in the total pressure in the vacuum chamber during vapor deposition, in which the vertical axis represents the total pressure (degree of vacuum) and the horizontal axis represents the elapsed time. As shown in FIG. 5, the degree of vacuum temporarily rises to about 14 × 10 −5 Torr. At the start of melting of the vapor deposition pellets, but the total pressure is immediately reduced to 8 by the evacuation means of the vapor deposition tank.
It becomes below × 10 -5 Torr. And the work of vapor deposition can be started.

【0023】図6(A)(B)は、マススペクトロメーターで
この場合の水(H2O)と酸素(O2)の分圧を計測した図で、
縦軸にイオン電流、横軸にMass No.( 質量数)が取られ
ている。図6(A) は蒸着ペレットの溶融開始後10秒
後、図6(B) は60秒後の分圧の状態を示す。図6に示
すように、蒸着直後に放出ガスが発生したが、実施例1
の比較例で示した蒸着ペレットの場合の放出ガスの約70
%であった。
FIGS. 6A and 6B are views in which the partial pressures of water (H 2 O) and oxygen (O 2 ) in this case are measured with a mass spectrometer.
Ion current is plotted on the vertical axis and Mass No. (mass number) is plotted on the horizontal axis. FIG. 6 (A) shows the state of partial pressure 10 seconds after the start of melting of the vapor deposition pellets, and FIG. 6 (B) shows the state of partial pressure after 60 seconds. As shown in FIG. 6, the released gas was generated immediately after the vapor deposition.
In the case of the vapor deposition pellets shown in the comparative example of
%Met.

【0024】実施例3 チタンと酸素のモル比(O/Ti)が1.00の低級酸化チタン(T
i2O3) 粉末と、二酸化ジルコニウム粉末をチタンとジル
コニウムウのモル比が0.50となる様に混合しプレス成形
した後、真空中で約4時間、1450℃で燒結を行って
蒸着用ペレットを得た。次いで、真空槽中に配置された
電子ビーム蒸着用ハースに前記ペレットをセットし、真
空槽内を1×10-5Torr. になるまで排気した後、電子
ビームにより前記ペレットを溶解し、光学的膜厚(nd)が
125nmになるように蒸着用基板上に混合膜を形成し
た。
Example 3 Lower titanium oxide (T) having a molar ratio of titanium to oxygen (O / Ti) of 1.00
i 2 O 3 ) powder and zirconium dioxide powder were mixed so that the molar ratio of titanium and zirconium was 0.50 and press-molded, followed by sintering in vacuum at 1450 ° C. for about 4 hours to form pellets for vapor deposition. Obtained. Next, the pellets were set in a hearth for electron beam vapor deposition placed in a vacuum chamber, the interior of the vacuum chamber was evacuated to 1 × 10 −5 Torr. A mixed film was formed on the evaporation donor substrate so that the film thickness (nd) was 125 nm.

【0025】図7は、蒸着時の真空槽の全圧の経時変化
を示す図で、縦軸に全圧(真空度)、横軸に経過時間が
取られている。図7に示す如く、蒸着ペレットの溶融開
始時に真空度はおよそ5×10ー5Torr. までしか上昇せ
ず、即座に蒸着の作業が開始できる。
FIG. 7 is a diagram showing the change over time in the total pressure in the vacuum chamber during vapor deposition, in which the vertical axis represents the total pressure (degree of vacuum) and the horizontal axis represents the elapsed time. As shown in FIG. 7, the degree of vacuum increases only to about 5 × 10 −5 Torr. At the start of melting of the vapor deposition pellets, and the vapor deposition work can be started immediately.

【0026】図8(A)(B)は、マススペクトロメーターで
この場合の水(H2O)と酸素(O2)の分圧を計測した図で、
縦軸にイオン電流、横軸にMass No.( 質量数)が取られ
ている。図8(A) は蒸着ペレットの溶融開始後10秒
後、図8(B) は60秒後の分圧の状態を示す。図8に示
すごとく、本実施例の蒸着ペレットは、明らかに分解ガ
スが少なかった。
FIGS. 8A and 8B are diagrams in which the partial pressures of water (H 2 O) and oxygen (O 2 ) in this case are measured with a mass spectrometer.
Ion current is plotted on the vertical axis and Mass No. (mass number) is plotted on the horizontal axis. FIG. 8A shows the state of partial pressure after 10 seconds from the start of melting of the vapor deposition pellets, and FIG. 8B shows the state of partial pressure after 60 seconds. As shown in FIG. 8, the vapor-deposited pellets of this example clearly contained less decomposed gas.

【0027】又、本実施例の蒸着ペレットで形成した光
学薄膜は、酸化チタンの影響により波長400nm で約1%
の光学的吸収がみられた。
The optical thin film formed from the vapor-deposited pellets of this embodiment has a wavelength of 400 nm of about 1% due to the influence of titanium oxide.
The optical absorption of was observed.

【0028】比較例2 チタンと酸素のモル比(O/Ti)が1.5 の低級酸化チタン(T
i2O3) 粉末と、二酸化ジルコニウム粉末をチタンとジル
コニウムウのモル比が0.01となる様に混合しプレス成形
した後、真空中で約3時間、1450℃で燒結を行って
蒸着用ペレットを得た。次いで、真空槽中に配置された
電子ビーム蒸着用ハースに前記ペレットをセットし、真
空槽内を1×10-5Torr. になるまで排気した後、電子
ビームにより前記ペレットを溶解し、光学的膜厚(nd)が
125nmになるように蒸着用基板上に混合膜を形成し
た。
Comparative Example 2 Lower titanium oxide (T) having a molar ratio of titanium to oxygen (O / Ti) of 1.5
i 2 O 3 ) powder and zirconium dioxide powder were mixed so that the molar ratio of titanium and zirconium was 0.01 and press-molded, and then sintered at 1450 ° C. for about 3 hours in vacuum to form a vapor deposition pellet. Obtained. Next, the pellets were set in a hearth for electron beam vapor deposition placed in a vacuum chamber, the interior of the vacuum chamber was evacuated to 1 × 10 −5 Torr. A mixed film was formed on the evaporation donor substrate so that the film thickness (nd) was 125 nm.

【0029】図9は、蒸着時の真空槽の全圧の経時変化
を示す図で、縦軸に全圧(真空度)、横軸に経過時間が
取られている。図10(A)(B)は、マススペクトロメーター
でこの場合の水(H2O)と酸素(O2)の分圧を計測した図
で、縦軸にイオン電流、横軸にMass No.( 質量数)が取
られている。図10(A) は蒸着ペレットの溶融開始後10
秒後、図10(B) は60秒後の分圧の状態を示す。図9,
図10に示す如く、蒸着槽の真空度、及び発生ガスの量
は、前記比較例1とほぼ同様で、改善が見られなかっ
た。
FIG. 9 is a diagram showing the change over time in the total pressure in the vacuum chamber during vapor deposition, in which the vertical axis represents the total pressure (degree of vacuum) and the horizontal axis represents the elapsed time. Figures 10 (A) and (B) show the partial pressures of water (H 2 O) and oxygen (O 2 ) in this case measured with a mass spectrometer, with the vertical axis representing the ion current and the horizontal axis representing the Mass No. (Mass number) is taken. Figure 10 (A) shows 10 after the start of melting of vapor deposition pellets.
After 10 seconds, FIG. 10 (B) shows the state of partial pressure after 60 seconds. Figure 9,
As shown in FIG. 10, the degree of vacuum in the vapor deposition tank and the amount of generated gas were almost the same as those in Comparative Example 1, and no improvement was observed.

【0030】[0030]

【発明の効果】以上述べた様に、本発明の蒸着用材料に
依れば、蒸着時の放出ガスである酸素の放出量が減少す
る為、スパッタリング開始と同時に即座に蒸着が開始出
来、一サイクルの蒸着時間の短縮が計れる。更に、蒸着
時の放出ガスの量を少なく出来る為、光学特性の安定し
た光学薄膜が得られるものである。
As described above, according to the vapor deposition material of the present invention, the amount of released oxygen gas during vapor deposition is reduced, so that vapor deposition can be started immediately when sputtering is started. The cycle deposition time can be shortened. Furthermore, since the amount of gas released during vapor deposition can be reduced, an optical thin film with stable optical characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例1の蒸着用材料を用いて蒸
着を行った場合の、真空槽内の全圧力の経時変化を示す
図。
FIG. 1 is a diagram showing a change over time in the total pressure in a vacuum chamber when vapor deposition is performed using the vapor deposition material of Example 1 according to the present invention.

【図2】(A)(B)は前記実施例1の蒸着用材料を用いて蒸
着を行った場合の、真空槽内の分圧の経時変化を示す
図。
2 (A) and 2 (B) are diagrams showing changes with time in partial pressure in a vacuum chamber when vapor deposition was performed using the vapor deposition material of Example 1;

【図3】比較例1の蒸着用材料を用いて蒸着を行った場
合の、真空槽内の全圧力の経時変化を示す図。
FIG. 3 is a diagram showing a change with time in the total pressure in the vacuum chamber when vapor deposition was performed using the vapor deposition material of Comparative Example 1.

【図4】(A)(B)は前記比較例1の蒸着用材料を用いて蒸
着を行った場合の、真空槽内の分圧の経時変化を示す
図。
4 (A) and (B) are diagrams showing changes with time in partial pressure in a vacuum chamber when vapor deposition was performed using the vapor deposition material of Comparative Example 1. FIG.

【図5】本発明に係る実施例2の蒸着用材料を用いて蒸
着を行った場合の、真空槽内の全圧力の経時変化を示す
図。
FIG. 5 is a diagram showing changes over time in the total pressure in the vacuum chamber when vapor deposition was performed using the vapor deposition material of Example 2 according to the present invention.

【図6】(A)(B)は前記実施例2の蒸着用材料を用いて蒸
着を行った場合の、真空槽内の分圧の経時変化を示す
図。
6 (A) and 6 (B) are diagrams showing changes with time in partial pressure in a vacuum chamber when vapor deposition was performed using the vapor deposition material of Example 2. FIG.

【図7】本発明に係る実施例3の蒸着用材料を用いて蒸
着を行った場合の、真空槽内の全圧力の経時変化を示す
図。
FIG. 7 is a diagram showing a change over time in the total pressure in the vacuum chamber when vapor deposition is performed using the vapor deposition material of Example 3 according to the present invention.

【図8】(A)(B)は前記実施例3の蒸着用材料を用いて蒸
着を行った場合の、真空槽内の分圧の経時変化を示す
図。
8 (A) and 8 (B) are diagrams showing changes with time in partial pressure in a vacuum chamber when vapor deposition was performed using the vapor deposition material of Example 3;

【図9】比較例2の蒸着用材料を用いて蒸着を行った場
合の、真空槽内の全圧力の経時変化を示す図。
FIG. 9 is a diagram showing a change with time in the total pressure in the vacuum chamber when vapor deposition was performed using the vapor deposition material of Comparative Example 2.

【図10】(A)(B)は前記比較例2の蒸着用材料を用いて
蒸着を行った場合の、真空槽内の分圧の経時変化を示す
図。
10 (A) and 10 (B) are diagrams showing changes with time in partial pressure in a vacuum chamber when vapor deposition was performed using the vapor deposition material of Comparative Example 2 described above.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チタンと酸素のモル比(O/Ti)が1.0 〜1.
75の低級酸化チタニウムと酸化ジルコニウムとを混合
し、チタンとジルコニウムのモル比(Ti/Zr)が0.02〜0.
50になる様にして燒結してなる蒸着用材料。
1. The molar ratio of titanium to oxygen (O / Ti) is 1.0 to 1.
75 lower titanium oxide and zirconium oxide are mixed, and the molar ratio of titanium and zirconium (Ti / Zr) is 0.02 to 0.
A material for vapor deposition that is sintered and made to be 50.
JP4199740A 1992-07-27 1992-07-27 Material for vapor deposition Pending JPH0641729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4199740A JPH0641729A (en) 1992-07-27 1992-07-27 Material for vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4199740A JPH0641729A (en) 1992-07-27 1992-07-27 Material for vapor deposition

Publications (1)

Publication Number Publication Date
JPH0641729A true JPH0641729A (en) 1994-02-15

Family

ID=16412846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4199740A Pending JPH0641729A (en) 1992-07-27 1992-07-27 Material for vapor deposition

Country Status (1)

Country Link
JP (1) JPH0641729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062237A (en) * 2007-09-07 2009-03-26 Canon Optron Inc Forming material for optical thin film and method of forming optical thin film
JP2012107276A (en) * 2010-11-16 2012-06-07 Nichia Corp Titanium oxide based vapor deposition material and manufacturing method of the same
JP2014070234A (en) * 2012-09-28 2014-04-21 Nichia Chem Ind Ltd Vapor deposition material based on titanium oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062237A (en) * 2007-09-07 2009-03-26 Canon Optron Inc Forming material for optical thin film and method of forming optical thin film
JP2012107276A (en) * 2010-11-16 2012-06-07 Nichia Corp Titanium oxide based vapor deposition material and manufacturing method of the same
JP2014070234A (en) * 2012-09-28 2014-04-21 Nichia Chem Ind Ltd Vapor deposition material based on titanium oxide

Similar Documents

Publication Publication Date Title
JPH0641729A (en) Material for vapor deposition
JP3069403B2 (en) Method for producing titanium suboxide
JP3359268B2 (en) Pellet for vacuum film formation, method for manufacturing MgO sintered body, and method for vacuum film formation of MgO thin film
JPS63166965A (en) Target for vapor deposition
KR0141194B1 (en) Fabrication method of target for sputturing
JP3472169B2 (en) Evaporation material for optical thin film with intermediate refractive index and optical thin film using the evaporation material
JPH04224113A (en) Production of titanium oxide for vapor deposition
JP3160309B2 (en) Thin film formation method
JPH0667001A (en) Material for vapor deposition
JP4298067B2 (en) Method for forming optical thin film
JP4786282B2 (en) Evaporating material manufacturing method and evaporating material storage method
JP3186788B2 (en) Method for producing titanium suboxide
JPS59148002A (en) Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition
JPS6326349A (en) Formation of cubic boron nitride film
JP4196438B2 (en) Vapor deposition material and manufacturing method thereof
JPS5928629B2 (en) Hard coating manufacturing method
JPH07278805A (en) Production of low oxygen silicon nitride sputtering target
JP2939359B2 (en) Method for producing titanium suboxide
JPS63114966A (en) Apparatus for producing thin film
JP2586807B2 (en) Method for producing fullerene intercalation compound
JP2507963B2 (en) Method of manufacturing oxide thin film
JPH1112722A (en) Magnesium oxide for vacuum-deposition
JPS6148563A (en) Source for vacuum deposition
JPH11229121A (en) Material for vapor deposition
JPS59217332A (en) Manufacture of silicon dioxide film