JPH0665850B2 - Supercharged air cooling system - Google Patents

Supercharged air cooling system

Info

Publication number
JPH0665850B2
JPH0665850B2 JP61035879A JP3587986A JPH0665850B2 JP H0665850 B2 JPH0665850 B2 JP H0665850B2 JP 61035879 A JP61035879 A JP 61035879A JP 3587986 A JP3587986 A JP 3587986A JP H0665850 B2 JPH0665850 B2 JP H0665850B2
Authority
JP
Japan
Prior art keywords
cooling
cooling water
air
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61035879A
Other languages
Japanese (ja)
Other versions
JPS62195415A (en
Inventor
享 住田
道興 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Diesel Manufacturing Co Ltd
Original Assignee
Daihatsu Diesel Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Diesel Manufacturing Co Ltd filed Critical Daihatsu Diesel Manufacturing Co Ltd
Priority to JP61035879A priority Critical patent/JPH0665850B2/en
Publication of JPS62195415A publication Critical patent/JPS62195415A/en
Publication of JPH0665850B2 publication Critical patent/JPH0665850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はディーゼル機関又はガス機関に供給する過給空
気を冷却するためのシステムに係り、特に過給空気から
奪った熱を有効に利用するためのシステムに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for cooling supercharged air supplied to a diesel engine or a gas engine, and more particularly to effectively utilizing heat taken from the supercharged air. It is about the system.

従来技術 従来、上記のような過給空気の冷却システムは、第5図
に示す如く、ディーゼル機関又はガス機関により代表さ
れる機関1の給気口に過給機2が給気管4により接続さ
れており、この給気管4の中間に冷却水の流れる給気冷
却器3が介設され、過給機2によって例えば130゜C程
度まで昇温した過給空気がこの給気冷却器3により冷却
され、充填効率が高められて機関1に供給される。この
場合、給気冷却器3に供給される冷却水の温度は例えば
32゜C程度の冷却水が使われ、前記過給空気との熱交換
によってこの冷却水は34゜C程度まで昇温される。
2. Description of the Related Art Conventionally, in the supercharging air cooling system as described above, as shown in FIG. 5, a supercharger 2 is connected by a supply pipe 4 to a supply port of an engine 1 represented by a diesel engine or a gas engine. A supply air cooler 3 through which cooling water flows is provided in the middle of the supply air pipe 4, and the supercharged air heated to about 130 ° C. by the supercharger 2 is cooled by the supply air cooler 3. Then, the charging efficiency is increased and the fuel is supplied to the engine 1. In this case, the temperature of the cooling water supplied to the charge air cooler 3 is, for example,
Cooling water of about 32 ° C is used, and this cooling water is heated to about 34 ° C by heat exchange with the supercharged air.

第6図はこのような給気冷却器3による熱交換の状態を
示し、過給空気が130゜Cから45゜Cまで冷却され、そ
の熱を奪った冷却水が32゜Cから34゜Cまで昇温してい
ることを示している。
FIG. 6 shows the state of heat exchange by the charge air cooler 3 as described above. The supercharged air is cooled from 130 ° C to 45 ° C, and the cooling water deprived of its heat is cooled from 32 ° C to 34 ° C. It shows that the temperature has risen to.

従来技術の問題点 上記のようにして得られた冷却水は、温度が上昇した状
態においてもなお34゜C程度の低温で、その熱を利用し
て、たとえば冷暖房等を行うにはあまりにも低温すぎ、
実際には使い物にならないため、利用することなく捨て
られている。そのため、機関総発熱量の約12%を占める
給気冷却熱の排熱利用を行うことはできず不経済であっ
た。
Problems of the Prior Art The cooling water obtained as described above is still at a low temperature of about 34 ° C. even when the temperature rises, and it is too low to use the heat for cooling and heating, for example. Too
It is actually useless and is discarded without being used. Therefore, it was uneconomical to use the exhaust heat of the charge air cooling heat which accounts for about 12% of the total calorific value of the engine.

尚、特公昭53−27411号公報に記載されたディーゼル機
関の過給空気冷却装置では、過給空気の流れの上流側と
下流側にそれぞれ冷却管群を配置している点において本
発明に近い構成となっているが、この場合は上流側の冷
却管群が清水用であるのに対して下流側に位置する冷却
管群は、海水により冷却され、過給空気を海水により急
激に冷却した場合の冷却管における塩分の析出といった
問題点を解決せんとするもので、目的,構成,効果のい
ずれの点においても本発明とはまったく縁のない技術で
ある。
The supercharged air cooling device for a diesel engine described in Japanese Patent Publication No. 53-27411 is close to the present invention in that cooling pipe groups are arranged on the upstream side and the downstream side of the flow of supercharged air. In this case, the upstream side cooling pipe group is for fresh water, whereas the downstream side cooling pipe group is cooled by seawater, and supercharged air is rapidly cooled by seawater. In this case, it aims to solve the problem of salt precipitation in the cooling pipe, and is a technology that is completely unrelated to the present invention in any of the purposes, configurations, and effects.

発明の目的 従って本発明の目的とするところは、過給空気を冷却す
るための冷却水の排熱を実質的に利用し得るような冷却
システムを提供することである。
OBJECT OF THE INVENTION Accordingly, it is an object of the present invention to provide a cooling system that can substantially utilize the exhaust heat of cooling water for cooling supercharged air.

発明の構成 上記目的を達成するために本発明が採用する主たる手段
は、ディーゼル機関又はガス機関に過給空気を送り込む
過給空気通路に、その空気の流れ方向に見て上流側の清
水型熱交換器と下流側の清水型熱交換器を介設し、上記
上流側の熱交換器に供給する清水温度を上記機関の冷却
水出口温度に相当する80〜100゜Cとして該上流側の熱
交換器の清水入口を該機関の冷却水出口に接続し、下流
側の熱交換器に供給する清水温度を冷暖房システムの冷
却水出口温度に相当する30〜35゜Cとなして該下流側の
熱交換器の清水入口を該冷暖房システムの冷却水出口に
接続し、上記上流側の熱交換器から流出した冷却水を排
熱利用に供するようにした点にかかる過給空気の冷却シ
ステムである。
The main means adopted by the present invention in order to achieve the above-mentioned object is to provide a supercharged air passage for feeding supercharged air to a diesel engine or a gas engine, to the upstream side of fresh water type heat when viewed in the flow direction of the air. A heat exchanger on the upstream side is provided with a fresh water type heat exchanger on the downstream side, and the temperature of the fresh water supplied to the heat exchanger on the upstream side is 80 to 100 ° C corresponding to the outlet temperature of the cooling water of the engine. The fresh water inlet of the exchanger is connected to the cooling water outlet of the engine, and the temperature of the fresh water supplied to the heat exchanger on the downstream side is set to 30 to 35 ° C, which corresponds to the cooling water outlet temperature of the cooling and heating system. It is a cooling system for supercharged air according to the point that the fresh water inlet of the heat exchanger is connected to the cooling water outlet of the heating and cooling system, and the cooling water flowing out from the upstream heat exchanger is used for exhaust heat utilization. ..

実施例 続いて第1図〜第4図を参照して本発明を具体化した実
施例につき説明し、本発明の理解に供する。
Example Next, an example in which the present invention is embodied will be described with reference to FIGS. 1 to 4 to provide an understanding of the present invention.

ここに第1図は本発明の一実施例にかかる過給空気の冷
却システムを有する過給機付ディーゼル機関の概略構成
図、第2図は第1図に示した冷却システムにおける過給
空気及び冷却水の温度変化を示すグラフ、第3図は他の
実施例にかかる冷却システムをする過給機付ディーゼル
機関の概略構成図、第4図はその場合の温度変化を示す
第2図相当図である。
FIG. 1 is a schematic configuration diagram of a diesel engine with a supercharger having a supercharging air cooling system according to an embodiment of the present invention, and FIG. 2 is a supercharging air in the cooling system shown in FIG. FIG. 3 is a graph showing a temperature change of the cooling water, FIG. 3 is a schematic configuration diagram of a diesel engine with a supercharger having a cooling system according to another embodiment, and FIG. 4 is a view corresponding to FIG. 2 showing a temperature change in that case. Is.

なお、以下の実施例は本発明を具体化した一例に過ぎ
ず、本発明の技術的範囲を限定する性格のものではな
い。
The following examples are merely examples embodying the present invention and are not of the nature to limit the technical scope of the present invention.

また、第5図に示した従来の装置に用いた要素と共通の
要素には、同一の符号を使用して説明する。
Further, elements common to those used in the conventional apparatus shown in FIG. 5 will be described using the same reference numerals.

第1図及び第2図に示したこの実施例では、給気管4の
途中に2個の給気冷却器3a及び3bがが適当な間隔をおい
て設けられている。矢印で示す過給空気の流れ方向に見
て給気冷却器3aが上流側、同3bが下流側の空気冷却器で
ある。
In this embodiment shown in FIGS. 1 and 2, two air supply coolers 3a and 3b are provided in the air supply pipe 4 at appropriate intervals. The supply air cooler 3a is the upstream side and the same 3b is the downstream side air cooler as seen in the flow direction of the supercharged air shown by the arrow.

上記上流側の給気冷却器3aへは、たとえば80゜Cの比較
的高温の冷却水が供給される。その結果、過給機2を出
た当初の過給空気の温度が130゜Cであると、この過給
空気は上流側の給気冷却器3aにより90゜Cまで冷却さ
れ、その結果冷却水の温度は80゜Cから81゜Cまで昇温
される。
Cooling water having a relatively high temperature of, for example, 80 ° C. is supplied to the supply air cooler 3a on the upstream side. As a result, if the temperature of the supercharged air that initially leaves the supercharger 2 is 130 ° C, this supercharged air is cooled to 90 ° C by the upstream side air supply cooler 3a, and as a result, the cooling water is cooled. The temperature is raised from 80 ° C to 81 ° C.

上記のような上流側の給器冷却器3aに供給する冷却水と
しては、ディーゼル機関のシリンダジャケットを冷却し
た後の清水が用いられる。このため、第1図及び第2図
から明らかなように上流側の給気冷却器3aの高温冷却水
(清水)入口にディーゼル機関の冷却水出口が接続され
る。そして、小型高速のディーゼル機関ではこのような
冷却水の温度はたとえば80〜100゜C程度のものが得ら
れ、また中型中速の機関では80〜90゜Cのものが得られ
るため、この実施例のおける冷却システムはこのような
ディーゼル機関に適用して好適である。
As the cooling water supplied to the above-mentioned upstream side feeder cooler 3a, fresh water after cooling the cylinder jacket of the diesel engine is used. Therefore, as is clear from FIGS. 1 and 2, the cooling water outlet of the diesel engine is connected to the high temperature cooling water (fresh water) inlet of the supply air cooler 3a on the upstream side. In a small and high speed diesel engine, the temperature of such cooling water can be about 80 to 100 ° C, and in a medium to medium speed engine 80 to 90 ° C. The example cooling system is suitable for application to such a diesel engine.

こうして81゜Cまで昇温された冷却水は、十分に排熱利
用に供することができ、その場合、節約されるエネルギ
ーは接続さえるディーゼル機関における燃料の総発熱量
の約6%に相当する。
The cooling water heated up to 81 ° C. can be sufficiently used for exhaust heat utilization, in which case the energy saved corresponds to about 6% of the total calorific value of the fuel in the connected diesel engine.

こうして90゜C程度まで降温された過給空気は、下流側
の給気冷却器3bによりさらに冷却され、機関1に供給す
るに適した温度(たとえば45゜C)まで冷却される。
The supercharged air cooled to about 90 ° C. in this way is further cooled by the supply air cooler 3b on the downstream side, and is cooled to a temperature suitable for supplying to the engine 1 (for example, 45 ° C.).

上記のような下流側の給気冷却器3bに供給される冷却水
の温度としては、32゜C程度のものを使用することが多
いが、これは冷暖房システムのたとえばエアコン用の熱
交換器から排出される冷却水の温度が通常、我が国の気
温状況では最高32゜C程度になることが多いので、この
ような空調用の冷却水を使用可能であるためである。こ
のため、第1図及び第2図から明らかなように下流側の
給気冷却器3bの低温冷却水(清水)入口に冷暖房システ
ムの冷却水出口が接続される。
As the temperature of the cooling water supplied to the downstream side air supply cooler 3b as described above, a temperature of about 32 ° C is often used. This is from a heat exchanger for an air conditioner of an air conditioning system. This is because the temperature of the discharged cooling water is usually up to 32 ° C in most cases in Japan, and such cooling water for air conditioning can be used. Therefore, as is clear from FIGS. 1 and 2, the cooling water outlet of the cooling and heating system is connected to the low temperature cooling water (fresh water) inlet of the supply air cooler 3b on the downstream side.

こうして得られる冷却水の温度変化と過給空気の温度変
化とが第2図に示されている。ここに下流側の給気冷却
器における冷却水温度は32゜Cから33゜C程度まで昇温
され、これにより過給空気は90゜Cから45゜Cまで降温
される。
The temperature change of the cooling water and the temperature change of the supercharged air thus obtained are shown in FIG. Here, the temperature of the cooling water in the feed air cooler on the downstream side is raised from 32 ° C to 33 ° C, whereby the supercharged air is cooled from 90 ° C to 45 ° C.

第1図に示した実施例では、上流側の給気冷却器3aと下
流側の給気冷却器3bとを別体となし、その間を中間の給
気管により接続した例であるが、このような2段の給気
冷却器は第3図に示す如く一体状に接合して構成しても
よい。この場合、冷却器相互間の熱伝導をできるだけ少
なくするため隔壁に断熱材等を使用することが望まし
い。
The embodiment shown in FIG. 1 is an example in which the upstream side air supply cooler 3a and the downstream side air supply cooler 3b are formed as separate bodies and are connected by an intermediate air supply pipe. The two-stage charge air cooler may be integrally joined as shown in FIG. In this case, it is desirable to use a heat insulating material or the like for the partition wall in order to minimize heat conduction between the coolers.

この場合の冷却水及び過給空気の温度変化が第4図に示
される。
The temperature changes of the cooling water and the supercharged air in this case are shown in FIG.

発明の効果 本発明は以上述べた如く、ディーゼル機関又はガス機関
に過給空気を送り込む過給空気通路に、その過給空気の
流れ方向に見て上流側の清水型熱交換器と下流側の清水
型熱交換器を介設し、上記上流側の熱交換器に供給する
清水温度を上記機関の冷却水出口温度に相当する80〜10
0゜Cとして該上流側の熱交換器の清水入口を該機関の
冷却水出口に接続し、下流側の熱交換器に供給する清水
温度を冷暖房システムの冷却水出口温度に相当する30〜
35゜Cとなして該下流側の熱交換器の清水入口を該冷暖
房システムの冷却水出口に接続し、上記上流側の熱交換
器から流出した冷却水を排熱利用に供するようにしたこ
とを特徴とする過給空気の冷却システムであるから、過
給空気を冷却するための特に上流側の熱交換器からの冷
却水を、その排熱を利用し得る温度範囲の冷却水として
取り出すことができ、排熱の利用性が向上するものであ
る。
EFFECTS OF THE INVENTION As described above, the present invention has, in the supercharging air passage for feeding supercharging air to the diesel engine or the gas engine, the fresh water type heat exchanger on the upstream side and the downstream side of the supercharging air heat exchanger as viewed in the flow direction of the supercharging air. A fresh water type heat exchanger is installed, and the temperature of fresh water supplied to the heat exchanger on the upstream side corresponds to the cooling water outlet temperature of the engine by 80 to 10
At 0 ° C, the fresh water inlet of the upstream heat exchanger is connected to the cooling water outlet of the engine, and the temperature of fresh water supplied to the downstream heat exchanger corresponds to the cooling water outlet temperature of the cooling and heating system.
At 35 ° C, the fresh water inlet of the heat exchanger on the downstream side is connected to the cooling water outlet of the heating and cooling system, and the cooling water flowing out from the heat exchanger on the upstream side is used for exhaust heat utilization. Since it is a cooling system for supercharged air, the cooling water for cooling the supercharged air, especially from the upstream heat exchanger, is taken out as cooling water in a temperature range in which the exhaust heat can be used. It is possible to improve the utilization efficiency of exhaust heat.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例にかかる過給空気の冷却シス
テムを有する過給機付ディーゼル機関の概略構成図、第
2図は第1図に示した冷却システムにおける過給空気及
び冷却水の温度変化を示すグラフ、第3図は他の実施例
にかかる冷却システムを有する過給機付ディーゼル機関
の概略構成図、第4図はその場合の温度変化を示す第2
図相当図、第5図は従来の給気冷却器を設けた過給機付
機関の概略構成図、第6図は第5図に示した従来の給気
冷却器における過給空気・冷却水の温度変化を示すグラ
フである。 (符号の説明) 1……機関、2……過給機 3a……上流側の給気冷却器 3b……下流側の給気冷却器 4……給気管。
FIG. 1 is a schematic configuration diagram of a diesel engine with a supercharger having a supercharging air cooling system according to an embodiment of the present invention, and FIG. 2 is a supercharging air and cooling water in the cooling system shown in FIG. FIG. 3 is a graph showing the temperature change of FIG. 3, FIG. 3 is a schematic configuration diagram of a diesel engine with a supercharger having a cooling system according to another embodiment, and FIG.
Fig. 5 is a schematic diagram, Fig. 5 is a schematic configuration diagram of an engine with a supercharger provided with a conventional charge air cooler, and Fig. 6 is a supercharged air / cooling water in the conventional charge air cooler shown in Fig. 5. It is a graph which shows the temperature change of. (Explanation of symbols) 1 ... Engine, 2 ... Supercharger 3a ... Upstream air supply cooler 3b ... Downstream air supply cooler 4 ... Air supply pipe.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ディーゼル機関又はガス機関に過給空気を
送り込む過給空気通路に、その過給空気の流れ方向に見
て上流側の清水型熱交換器と下流側の清水型熱交換器を
介設し、上記上流側の熱交換器に供給する清水温度を上
記機関の冷却水出口温度に相当する80〜100℃として該
上流側の熱交換器の清水入口を該機関の冷却水出口に接
続し、下流側の熱交換器に供給する清水温度を冷暖房シ
ステムの冷却水出口温度に相当する30〜35℃となして該
下流側の熱交換器の清水入口を該冷暖房システムの冷却
水出口に接続し、上記上流側の熱交換器から流出した冷
却水を排熱利用に供するようにしたことを特徴とする過
給空気の冷却システム。
1. A supercharged air passage for feeding supercharged air to a diesel engine or a gas engine is provided with a freshwater heat exchanger on the upstream side and a freshwater heat exchanger on the downstream side as seen in the flow direction of the supercharged air. The fresh water temperature of the upstream heat exchanger is set to 80 to 100 ° C, which corresponds to the cooling water outlet temperature of the engine, and the fresh water inlet of the upstream heat exchanger is set to the cooling water outlet of the engine. The temperature of fresh water connected to the heat exchanger on the downstream side is set to 30 to 35 ° C. corresponding to the cooling water outlet temperature of the cooling / heating system, and the fresh water inlet of the heat exchanger on the downstream side is set to the cooling water outlet of the cooling / heating system. A cooling system for supercharged air, characterized in that the cooling water flowing out of the upstream heat exchanger is used for exhaust heat utilization.
JP61035879A 1986-02-19 1986-02-19 Supercharged air cooling system Expired - Lifetime JPH0665850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035879A JPH0665850B2 (en) 1986-02-19 1986-02-19 Supercharged air cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035879A JPH0665850B2 (en) 1986-02-19 1986-02-19 Supercharged air cooling system

Publications (2)

Publication Number Publication Date
JPS62195415A JPS62195415A (en) 1987-08-28
JPH0665850B2 true JPH0665850B2 (en) 1994-08-24

Family

ID=12454284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035879A Expired - Lifetime JPH0665850B2 (en) 1986-02-19 1986-02-19 Supercharged air cooling system

Country Status (1)

Country Link
JP (1) JPH0665850B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19962391A1 (en) * 1999-12-23 2001-06-28 Behr Industrietech Gmbh & Co Intercooler
DE10254016A1 (en) * 2002-11-19 2004-06-03 Behr Gmbh & Co. Kg Device for cooling charging air for turbocharger with first cooling stage has second cooling stage(s), cooling device with coolant circuit with evaporator and/or refrigerant circuit
JP5557502B2 (en) * 2009-09-30 2014-07-23 株式会社ディーゼルユナイテッド Diesel engine with air cooler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153116A (en) * 1974-11-02 1976-05-11 Kawasaki Heavy Ind Ltd Deiizerukikanno kakyukukireikyakusochi
FR2461101A1 (en) * 1979-08-06 1981-01-30 Alsacienne Constr Meca DEVICE FOR CONTROLLING THE AIR OF DIESEL ENGINE POWER SUPPLY
JPS5822794A (en) * 1981-08-05 1983-02-10 Mitsui Eng & Shipbuild Co Ltd Water heater for ship

Also Published As

Publication number Publication date
JPS62195415A (en) 1987-08-28

Similar Documents

Publication Publication Date Title
US4236492A (en) Internal combustion engine having a supercharger and means for cooling charged air
US20120018127A1 (en) Charge air cooler, cooling system and intake air control system
GB1560769A (en) Low-compression piston internalcombustion engine with turbosupercharging and control of the intake air temperature
ATE483906T1 (en) COMBUSTION ENGINE COMPRISING AN EXHAUST GAS RECIRCULATION SYSTEM
EP1321644A4 (en) Waste heat recovery device of internal combustion engine
CA2084357A1 (en) Mixed heat exchanger for air intake circuits in internal combustion engines
FR2353715A1 (en) POWER PLANT WITH INTERNAL COMBUSTION ENGINE FOR SHIP
CN210554237U (en) Fuel cell system and automobile
JP5898174B2 (en) Cooling device for engine exhaust gas recirculation circuit
CA2441614A1 (en) Device for humidifying the intake air of an internal combustion engine, which is equipped with a turbocharger, involving pre-heating effected by a water circuit
JPH0665850B2 (en) Supercharged air cooling system
CN206903782U (en) Temperature raising system for low-load air inlet main pipe of engine
JPS5638516A (en) Cooler of supercharged engine
CN107650622B (en) Engine waste heat recycling system
KR910000081B1 (en) Cooling arrangement for internal combustion engines
JPH077573Y2 (en) Intake air heating system for ship engine
SE502710C2 (en) Device at an internal combustion engine suction pipe
WO2022022119A1 (en) Egr system and vehicle
CN210637158U (en) In-line five-cylinder diesel engine
JPS5813075Y2 (en) Charge air heating device for internal combustion engine with supercharger
JPS59224414A (en) Cooling device for internal-combustion engine with turbo charger
CN218151134U (en) Engine cooling system and engine
JPS6030421Y2 (en) Supercharged air cooling system for internal combustion engine with supercharger
JPS58148226A (en) Intake temperature controller of internal-combustion engine
CN215408832U (en) Exhaust module for an internal combustion engine, exhaust system for an internal combustion engine and internal combustion engine