JPH0664906A - Powdery silicon nitride - Google Patents

Powdery silicon nitride

Info

Publication number
JPH0664906A
JPH0664906A JP4223036A JP22303692A JPH0664906A JP H0664906 A JPH0664906 A JP H0664906A JP 4223036 A JP4223036 A JP 4223036A JP 22303692 A JP22303692 A JP 22303692A JP H0664906 A JPH0664906 A JP H0664906A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride powder
powder
phase
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4223036A
Other languages
Japanese (ja)
Other versions
JP3268020B2 (en
Inventor
Hideki Hirotsuru
秀樹 広津留
Hiroshi Isozaki
啓 磯崎
Hiroshi Nishikawa
洋 西川
Tetsuo Kaga
鉄夫 加賀
Hiroshi Shimodaira
博 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP22303692A priority Critical patent/JP3268020B2/en
Publication of JPH0664906A publication Critical patent/JPH0664906A/en
Application granted granted Critical
Publication of JP3268020B2 publication Critical patent/JP3268020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide the subject powdery silicon nitride capable of producing a sintered compact exhibiting a high strength, a high toughness and a high reliability. CONSTITUTION:This powdery silicon nitride is a mixed powder composed of a powdery silicon nitride (A) exhibiting >=50% beta phase content and <=5mum average particle diameter (Da) and a powdery silicon nitride (B) exhibiting >=50% beta phase content and 1 to 25mum average particle diameter (Db). The weight ratio of (A)/(B) is controlled to 1 to 100 and (Db)/(Da) is controlled to 2 to 50.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度、高靱性かつ高
信頼性の焼結体を製造することができる窒化珪素粉末に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride powder capable of producing a sintered body having high strength, high toughness and high reliability.

【0002】[0002]

【従来の技術】窒化珪素焼結体は、強度、硬度、靱性、
耐熱性、耐蝕性、耐熱衝撃性等に優れた材料であること
から、各種産業機構部品、自動車部品、ガスタービン部
品等の利用が進められている。
2. Description of the Related Art A silicon nitride sintered body has strength, hardness, toughness,
Since it is a material having excellent heat resistance, corrosion resistance, thermal shock resistance, etc., it is being used for various industrial mechanical parts, automobile parts, gas turbine parts and the like.

【0003】窒化珪素粉末の製造方法としては、金属珪
素直接窒化法、シリカ還元法、ハロゲン化珪素法が工業
化されている。これらの製法で得られた粉末は、それぞ
れ異なった粉体特性を有し、焼結性と焼結体特性に大き
く影響している。一般的には、高比表面積、高α相含有
率、高純度で粒度分布のシャープなものがよいとされて
おり、このような観点にたって従来より盛んに研究が行
われている。
As a method for producing silicon nitride powder, a metal silicon direct nitriding method, a silica reduction method, and a silicon halide method have been industrialized. The powders obtained by these manufacturing methods have different powder characteristics, which greatly influence the sinterability and the characteristics of the sintered body. Generally, it is said that a material having a high specific surface area, a high α phase content, a high purity and a sharp particle size distribution is preferable, and from this viewpoint, much research has been conducted.

【0004】しかしながら、β型窒化珪素粉末について
は、低純度で粗粒品しか市販されておらず、粒度分布の
面から検討を加えて焼結体特性を改善しようとする試み
は未だない。
However, with respect to the β-type silicon nitride powder, only low-purity and coarse-grained products are available on the market, and no attempt has been made to improve the properties of the sintered body by further considering the particle size distribution.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、β型
窒化珪素粉末の粒度特性を規定することによって、強
度、靱性及び信頼性等の特性に優れた窒化珪素焼結体を
製造することができる窒化珪素粉末を提供することにあ
る。
An object of the present invention is to produce a silicon nitride sintered body having excellent characteristics such as strength, toughness and reliability by defining the particle size characteristics of β-type silicon nitride powder. It is to provide a silicon nitride powder capable of achieving the above.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、β
相含有率が50%以上で平均粒径Da が5μm以下であ
る窒化珪素粉末Aとβ相含有率が50%以上で平均粒径
b が1〜25μmである窒化珪素粉末Bとの混合粉末
からなり、A/Bの重量比が1〜1000でD b /Da
が2〜50であることを特徴とする窒化珪素粉末であ
る。
That is, the present invention is based on β
Average particle size D with phase content of 50% or moreaIs less than 5 μm
With silicon nitride powder A and β phase content of 50% or more
DbPowder having a silicon nitride powder B of 1 to 25 μm
The weight ratio of A / B is 1-1000, and D b/ Da
Is a silicon nitride powder.
It

【0007】以下、さらに詳しく本発明について説明す
る。
The present invention will be described in more detail below.

【0008】まず、本発明で使用される窒化珪素粉末A
及び窒化珪素粉末Bのいずれもは、α相の割合が50%
未満でβ相の割合が50%以上、好ましくはα相の割合
が20%未満でβ相の割合が80%以上であることが必
要である。α相の割合が50%以上であると、α相の粒
界において溶解析出反応が起こり、β相に相転移する際
の柱状晶の成長が活発になりすぎて、焼結体の強度が低
下したりばらついたりする。これまでに、α相からβ相
への転移反応によってアスペクト比の高いβ粒子が得ら
れ、それによって高強度かつ高靱性の焼結体が得られた
のは、このβ粒子の粒成長を制御できたからであると考
えられているが、この制御は非常に困難であった。
First, the silicon nitride powder A used in the present invention.
And both of the silicon nitride powder B have an α phase ratio of 50%.
It is necessary that the proportion of the β phase is less than 50%, preferably the proportion of the α phase is less than 20% and the proportion of the β phase is 80% or more. When the proportion of α phase is 50% or more, the dissolution precipitation reaction occurs at the α phase grain boundary, and the growth of columnar crystals during the phase transition to β phase becomes too active, resulting in a decrease in the strength of the sintered body. It does or disperses. Up to now, β particles with a high aspect ratio have been obtained by the transition reaction from α phase to β phase, and as a result, a sintered body with high strength and high toughness was obtained because the grain growth of these β particles was controlled. It is thought that this was done, but this control was extremely difficult.

【0009】本発明では、このような制御の困難さをな
くするために、窒化珪素粉末のβ相の割合を50%以上
としたものである。本発明のような窒化珪素粉末を用い
ると、α相の粒界における溶解析出反応がなくなり、原
料窒化珪素粉末の粒度分布に沿った焼結体組織となるの
で、原料の粒度分布を制御することにより、強度、靱性
等のばらつきの少ない均質な焼結体となる。また、従来
のα相含有率の高い窒化珪素粉末を製造するには、精密
な温度調節と長時間の反応が必要となるので、本発明の
窒化珪素粉末に比べて製造コストが高いものであった。
In the present invention, in order to eliminate such control difficulties, the proportion of β phase in the silicon nitride powder is set to 50% or more. When the silicon nitride powder as in the present invention is used, the dissolution and precipitation reaction at the α phase grain boundary is eliminated, and the sintered body structure follows the grain size distribution of the raw material silicon nitride powder. Therefore, the grain size distribution of the raw material should be controlled. As a result, a homogeneous sintered body with little variation in strength, toughness, etc. is obtained. Further, in order to manufacture the conventional silicon nitride powder having a high α-phase content, precise temperature control and long-time reaction are required, and therefore the manufacturing cost is higher than that of the silicon nitride powder of the present invention. It was

【0010】本発明において、β相含有率は、X線回折
法における回折ピークの強度比から次式によって求める
ことができる。 β相含有率(%)={(Iβ101 +Iβ210 )/(Iα
102 +Iα201 +Iβ101 +Iβ210 )}×100 Iβ101 :β窒化珪素の(101)面の回折ピーク強度 Iβ210 :β窒化珪素の(210)面の回折ピーク強度 Iα102 :α窒化珪素の(102)面の回折ピーク強度 Iα201 :α窒化珪素の(201)面の回折ピーク強度
In the present invention, the β phase content can be obtained from the intensity ratio of diffraction peaks in the X-ray diffraction method by the following equation. β phase content rate (%) = {(Iβ 101 + Iβ 210 ) / (Iα
102 + Iα 201 + Iβ 101 + Iβ 210 )} × 100 Iβ 101 : β Silica Nitride (101) Diffraction Peak Intensity Iβ 210 : β Silicon Nitride (210) Diffraction Peak Intensity Iα 102 : α Silicon Nitride (102 ) -Plane diffraction peak intensity Iα 201 : α-silicon nitride (201) plane diffraction peak intensity

【0011】本発明の大きな特徴は、窒化珪素粉末の粒
度構成を規定することである。一般に、窒化珪素焼結体
の強度と破壊靱性が、アルミナや炭化珪素のそれに比べ
て高いのは、窒化珪素焼結体の微構造が特異なβ柱状晶
からなっていることによるものである。このβ柱状晶の
サイズ、分布及びアスペクト比と焼結体特性との関係に
ついては、アスペクト比が大きく微細であるほど高強度
であり、また、粗大なβ柱状晶が焼結体組織に均一に分
布しているほど破壊靱性が高くなる傾向がある。
A major feature of the present invention is that it defines the grain size composition of the silicon nitride powder. In general, the strength and fracture toughness of a silicon nitride sintered body are higher than those of alumina or silicon carbide because the microstructure of the silicon nitride sintered body is a unique β columnar crystal. Regarding the relationship between the size, distribution and aspect ratio of the β columnar crystal and the characteristics of the sintered body, the larger the aspect ratio, the higher the strength, and the coarser β columnar crystal is evenly distributed in the sintered body structure. The more distributed it is, the higher the fracture toughness tends to be.

【0012】本発明は、β相含有率50%以上の窒化珪
素粉末を原料とし、その粒度分布を以下のように規定す
ることによって、焼結体の微構造を制御し焼結体特性を
向上させたものである。
In the present invention, silicon nitride powder having a β phase content of 50% or more is used as a raw material, and the particle size distribution thereof is defined as follows, whereby the microstructure of the sintered body is controlled and the characteristics of the sintered body are improved. It was made.

【0013】すなわち、平均粒径Da が5μm以下でβ
相含有率50%以上の窒化珪素粉末Aと平均粒径Db
1〜25μmでβ相含有率50%以上の窒化珪素粉末B
とを、A/Bの重量比が1〜1000でDb /Da が2
〜50となるように混合したものである。
That is, when the average particle diameter D a is 5 μm or less, β
Phase content of 50% or more of silicon nitride powder A mean particle diameter D b is silicon nitride powder of β phase content of 50% or more by 1 to 25 m B
And A / B weight ratio is 1 to 1000 and D b / D a is 2
It is a mixture of about 50.

【0014】本発明で使用される窒化珪素粉末Aの平均
粒径Da を5μm以下に限定したのは、β相の多い窒化
珪素粉末はα相の多いそれに比べて緻密化しやすい傾向
にあるが、平均粒径Da が5μmをこえると緻密化度が
低下するからである。平均粒径Da の下限については特
に制限はなく、極端にカサ高となって成形ができなくな
らなければよい。
The average particle diameter D a of the silicon nitride powder A used in the present invention is limited to 5 μm or less, although silicon nitride powder having a large amount of β phase tends to be densified as compared with that having a large amount of α phase. When the average particle diameter D a exceeds 5 μm, the degree of densification decreases. The lower limit of the average particle diameter D a is not particularly limited as long as it becomes extremely dry and cannot be molded.

【0015】一方、本発明で使用される窒化珪素粉末B
の平均粒径Db は1〜25μmである。1μm未満で
は、焼結体中のβ柱状晶のサイズが微細になりすぎて破
壊靱性の向上が認められなくなり、また、25μmをこ
えると、焼結障害を起こして緻密化度が低下するととも
に、焼結体に欠陥が存在し強度が低下したりばらついた
りするようになる。
On the other hand, the silicon nitride powder B used in the present invention
Has an average particle diameter D b of 1 to 25 μm. If it is less than 1 μm, the size of β columnar crystals in the sintered body becomes too fine, and improvement in fracture toughness cannot be recognized. If it exceeds 25 μm, sintering failure occurs and the densification degree decreases, and Defects are present in the sintered body, and the strength decreases or varies.

【0016】本発明において、窒化珪素粉末A/窒化珪
素粉末Bの重量比が、1未満では、窒化珪素粉末の粗粒
が多くなり過ぎて焼結体組織が粗いβ柱状晶となり、強
度特性が低下する。一方、該比が1000をこえると、
逆に粗粒の窒化珪素粉末が少なくなってβ柱状晶が不足
し、破壊靱性の向上がなくなる。
In the present invention, when the weight ratio of the silicon nitride powder A / silicon nitride powder B is less than 1, the coarse particles of the silicon nitride powder are excessively large and the sintered body structure becomes a coarse β columnar crystal, and the strength characteristics are improved. descend. On the other hand, if the ratio exceeds 1000,
On the contrary, the coarse-grained silicon nitride powder is reduced, the β columnar crystals are insufficient, and the fracture toughness is not improved.

【0017】また、平均粒径の比Db /Da が2未満で
は、得られた焼結体のβ柱状晶のサイズの分布幅が小さ
くなって破壊靱性が向上しなくなり、一方、50をこえ
ると、逆にその分布幅が広くなり過ぎて異常に成長した
β柱状晶が欠陥となって強度特性が低下したり、ばらつ
いたりしたりするようになる。
When the ratio D b / D a of the average particle diameters is less than 2, the size distribution width of β columnar crystals of the obtained sintered body becomes small and the fracture toughness is not improved. On the contrary, if the distribution width becomes too wide, the abnormally grown β-columnar crystal becomes a defect and the strength characteristics are deteriorated or varied.

【0018】本発明で使用される窒化珪素粉末Aと窒化
珪素粉末Bは、種々の方法で製造することができる。例
えば、金属珪素直接窒化法、シリカ還元法、ハロゲン化
珪素法により、β相含有率50%以上の窒化珪素を製造
し粉砕後分級することによって製造することができる。
金属珪素直接窒化法によってβ相含有率50%以上の窒
化珪素を製造するには、金属珪素粉末のカサ密度1.5
g/cm3 以下程度の成形体を窒素及び/又はアンモニ
アを含む雰囲気中、温度1300〜1500℃で加熱窒
化することによって容易に製造することができる。
The silicon nitride powder A and the silicon nitride powder B used in the present invention can be manufactured by various methods. For example, it can be produced by producing silicon nitride having a β phase content of 50% or more by a metal silicon direct nitriding method, a silica reduction method, or a silicon halide method, pulverizing and then classifying.
To produce silicon nitride having a β-phase content of 50% or more by the metal silicon direct nitriding method, the bulk density of the metal silicon powder is 1.5.
It can be easily manufactured by heating and nitriding a molded body of about g / cm 3 or less at a temperature of 1300 to 1500 ° C. in an atmosphere containing nitrogen and / or ammonia.

【0019】[0019]

【実施例】以下、実施例と比較例をあげてさらに具体的
に本発明を説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0020】実施例1〜10 比較例1〜11 比表面積2m2/gの金属珪素粉末をカサ密度1g/cm
3 の100×100×25mmの成形体に成形した。そ
れを電気炉に入れ、窒素雰囲気中、窒化温度を1200
〜1500℃の範囲で種々変化させてβ相含有率の異な
る窒化珪素を製造した。
Examples 1 to 10 Comparative Examples 1 to 11 Metallic silicon powder having a specific surface area of 2 m 2 / g was used and the bulk density was 1 g / cm.
3 was molded into a 100 × 100 × 25 mm molded body. Put it in an electric furnace and nitriding temperature is 1200 in nitrogen atmosphere.
Silicon nitrides having different β-phase contents were manufactured by variously changing the temperature in the range of up to 1500 ° C.

【0021】得られた窒化珪素インゴットを粗砕・中砕
後さらに乾式粉砕と湿式粉砕を行い精製して、表1に示
すように、種々のβ相含有率、平均粒径Da とDb を有
する窒化珪素粉末Aと窒化珪素粉末Bを製造した。
The obtained silicon nitride ingot was coarsely crushed / medium crushed and then further pulverized by dry pulverization and wet pulverization to be purified, and as shown in Table 1, various β-phase contents and average particle diameters D a and D b were obtained. A silicon nitride powder A and a silicon nitride powder B were manufactured.

【0022】乾式粉砕は、アルミナ製ボールを用いたボ
ールミルにより、また、湿式粉砕は鉄製ボールを用い水
を媒体として行った。精製は、塩酸とフッ酸溶液により
行った。
Dry pulverization was performed by a ball mill using alumina balls, and wet pulverization was performed by using iron balls with water as a medium. Purification was performed with a hydrochloric acid and hydrofluoric acid solution.

【0023】窒化珪素粉末Aと窒化珪素粉末Bとを表1
の割合で配合し、窒化珪素製ボールを用いたボールミル
により乾式混合を行い混合粉末を調整した。
Table 1 shows the silicon nitride powder A and the silicon nitride powder B.
Was mixed in the following ratio, and dry mixed by a ball mill using silicon nitride balls to prepare mixed powder.

【0024】[0024]

【表1】 [Table 1]

【0025】得られた窒化珪素の混合粉末92重量部、
平均粒径1.5μmのY23 粉末5重量部及び平均粒
径0.8μmのAl23 粉末3重量部を配合し、1,
1,1−トリクロロエタン中で4時間ボールミルで湿式
粉砕し乾燥した後、圧力100kg/cm2 で6×10
×60mmの成形体を成形し、それを圧力2700kg
/cm2 でCIP成形した。
92 parts by weight of the obtained mixed powder of silicon nitride,
5 parts by weight of Y 2 O 3 powder having an average particle size of 1.5 μm and 3 parts by weight of Al 2 O 3 powder having an average particle size of 0.8 μm were mixed,
Wet-milled in 1,1-trichloroethane for 4 hours in a ball mill and dried, then 6 × 10 at a pressure of 100 kg / cm 2.
A molded body of × 60 mm is molded and the pressure is 2700 kg.
CIP molding was performed at / cm 2 .

【0026】このCIP成形体をカーボンルツボにセッ
トし、圧力10kg/cm2 の窒素ガス雰囲気中、温度
1900℃で4時間焼成して焼結体を製造した。それを
3×4×40mmに研削加工し、相対密度、破壊靱性、
室温における4点曲げ強度及びn=30におけるワイブ
ル係数を測定した。それらの結果を表2に示す。
This CIP compact was set in a carbon crucible and fired at a temperature of 1900 ° C. for 4 hours in a nitrogen gas atmosphere at a pressure of 10 kg / cm 2 to produce a sintered compact. Grinding it to 3 × 4 × 40 mm, the relative density, fracture toughness,
The 4-point bending strength at room temperature and the Weibull coefficient at n = 30 were measured. The results are shown in Table 2.

【0027】なお、測定は以下の方法によった。 (1)平均粒径:粒度分布計(レーザ回折法、N&L社
製マイクロトラックSPA)による。 (2)相対密度:アルキメデス法による。 (3)破壊靱性:IF法による。 (4)曲げ強度:島津製作所社製「オートグラフAG−
2000A」による。
The measurement was carried out by the following method. (1) Average particle size: By a particle size distribution meter (laser diffraction method, Microtrack SPA manufactured by N & L). (2) Relative density: According to Archimedes method. (3) Fracture toughness: According to IF method. (4) Bending strength: "Autograph AG-" manufactured by Shimadzu Corporation
2000A ".

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】本発明の窒化珪素粉末によれば、焼結性
に優れ、高強度、高靱性かつ高信頼性のある窒化珪素焼
結体を製造することができる。
According to the silicon nitride powder of the present invention, it is possible to manufacture a silicon nitride sintered body having excellent sinterability, high strength, high toughness and high reliability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加賀 鉄夫 福岡県大牟田市新開町1 電気化学工業株 式会社大牟田工場内 (72)発明者 下平 博 福岡県大牟田市新開町1 電気化学工業株 式会社大牟田工場内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Tetsuo Kaga 1 Shinkai-cho, Omuta-shi, Fukuoka Electric Chemical Industry Co., Ltd. Omuta Plant (72) Inventor Hiroshi Shimohira 1 Shinkai-cho, Omuta-shi, Fukuoka Electrochemical Industry Co., Ltd. Omuta Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 β相含有率が50%以上で平均粒径Da
が5μm以下である窒化珪素粉末Aとβ相含有率が50
%以上で平均粒径Db が1〜25μmである窒化珪素粉
末Bとの混合粉末からなり、A/Bの重量比が1〜10
00でDb /D a が2〜50であることを特徴とする窒
化珪素粉末。
1. The average particle size D when the β-phase content is 50% or more.a
Nitride powder A having a particle size of 5 μm or less and a β phase content of 50
% Or more and average particle size DbNitride powder having a particle size of 1 to 25 μm
It consists of powder mixed with powder B, and the weight ratio of A / B is 1-10.
00 for Db/ D aIs 2 to 50
Silicon oxide powder.
JP22303692A 1992-08-21 1992-08-21 Method for producing silicon nitride powder Expired - Fee Related JP3268020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22303692A JP3268020B2 (en) 1992-08-21 1992-08-21 Method for producing silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22303692A JP3268020B2 (en) 1992-08-21 1992-08-21 Method for producing silicon nitride powder

Publications (2)

Publication Number Publication Date
JPH0664906A true JPH0664906A (en) 1994-03-08
JP3268020B2 JP3268020B2 (en) 2002-03-25

Family

ID=16791840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22303692A Expired - Fee Related JP3268020B2 (en) 1992-08-21 1992-08-21 Method for producing silicon nitride powder

Country Status (1)

Country Link
JP (1) JP3268020B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176430A (en) * 2004-12-22 2006-07-06 Saitama Daiichi Seiyaku Kk Pilzicainide plaster
JP2014009111A (en) * 2012-06-28 2014-01-20 Denki Kagaku Kogyo Kk Silicon nitride powder for mold-releasing agent
HRP20060381C1 (en) * 2006-11-03 2017-08-11 Jadran-Galenski Laboratorij D.D. Cosmetic active composition comprising ingredients from sea
WO2023210649A1 (en) * 2022-04-27 2023-11-02 株式会社燃焼合成 COLUMNAR PARTICLES OF β-SILICON NITRIDE, COMPOSITE PARTICLES, SINTERED SUBSTRATE FOR HEAT RADIATION, RESIN COMPOSITE, INORGANIC COMPOSITE, METHOD FOR PRODUCING COLUMNAR PARTICLES OF β-SILICON NITRIDE, AND METHOD FOR PRODUCING COMPOSITE PARTICLES

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176430A (en) * 2004-12-22 2006-07-06 Saitama Daiichi Seiyaku Kk Pilzicainide plaster
HRP20060381C1 (en) * 2006-11-03 2017-08-11 Jadran-Galenski Laboratorij D.D. Cosmetic active composition comprising ingredients from sea
JP2014009111A (en) * 2012-06-28 2014-01-20 Denki Kagaku Kogyo Kk Silicon nitride powder for mold-releasing agent
WO2023210649A1 (en) * 2022-04-27 2023-11-02 株式会社燃焼合成 COLUMNAR PARTICLES OF β-SILICON NITRIDE, COMPOSITE PARTICLES, SINTERED SUBSTRATE FOR HEAT RADIATION, RESIN COMPOSITE, INORGANIC COMPOSITE, METHOD FOR PRODUCING COLUMNAR PARTICLES OF β-SILICON NITRIDE, AND METHOD FOR PRODUCING COMPOSITE PARTICLES

Also Published As

Publication number Publication date
JP3268020B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
US5591685A (en) Superplastic silicon carbide sintered body
JP2001080964A (en) POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME
US4467043A (en) Dense shaped articles of polycrystalline α-silicon carbide and process for the manufacture thereof by hot-pressing
JPH01230478A (en) Homogeneous sintered silicon nitride and production thereof
JPH0664906A (en) Powdery silicon nitride
JP3438928B2 (en) Method for producing silicon nitride powder
KR102555662B1 (en) Method for Preparing Silicon Nitride Sintered Body and The Silicon Nitride Sintered Body Prepared by The Same
JP3194494B2 (en) Method for producing silicon nitride powder
JP3255302B2 (en) Method for producing silicon nitride powder
JP3285621B2 (en) Method for producing silicon nitride powder
EP0825162B1 (en) Silicon nitride sintered material and process for production thereof
JPH03177307A (en) Silicon nitride powder
JPH01145380A (en) Production of silicon nitride sintered form
JP3979680B2 (en) Silicon nitride powder for silicon nitride sintered body, silicon nitride sintered body and method for producing the same
JP3618211B2 (en) Method for producing hexagonal boron nitride sintered body
JP2985519B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JPH06263410A (en) Method for increasing beta-fraction of powdery silicon nitride
JP2890849B2 (en) Method for producing silicon nitride sintered body
JP3250677B2 (en) Silicon nitride powder
JP2004091243A (en) Method for manufacturing sintered compact of silicon nitride, and sintered compact of silicon nitride
JP2510251B2 (en) Method for manufacturing silicon carbide sintered body
JP2778732B2 (en) Boron nitride-aluminum nitride based composite sintered body and method for producing the same
JP2661743B2 (en) Method for producing silicon nitride ingot and silicon nitride powder
JP3653533B2 (en) Silicon nitride composite material and method for producing the same
JP2949936B2 (en) Method for producing silicon nitride sintered body

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees