JPH0663848B2 - How to measure the surface temperature of an object - Google Patents

How to measure the surface temperature of an object

Info

Publication number
JPH0663848B2
JPH0663848B2 JP15103986A JP15103986A JPH0663848B2 JP H0663848 B2 JPH0663848 B2 JP H0663848B2 JP 15103986 A JP15103986 A JP 15103986A JP 15103986 A JP15103986 A JP 15103986A JP H0663848 B2 JPH0663848 B2 JP H0663848B2
Authority
JP
Japan
Prior art keywords
temperature
radiant energy
measured
radiometer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15103986A
Other languages
Japanese (ja)
Other versions
JPS636428A (en
Inventor
敦之 中園
昇 庵原
清己 筒井
泰彦 藤原
照久 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15103986A priority Critical patent/JPH0663848B2/en
Publication of JPS636428A publication Critical patent/JPS636428A/en
Publication of JPH0663848B2 publication Critical patent/JPH0663848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は物体の表面温度測定方法に関し、とくに物体の
放射率と温度を同時に測定する放射温度測定方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for measuring the surface temperature of an object, and more particularly to a method for measuring the radiation temperature for simultaneously measuring the emissivity and temperature of an object.

〔従来の技術〕[Conventional technology]

放射率と温度を同時に測定する方法としては、従来から
種々の方法が提案され、実用されている。
Various methods have been proposed and put to practical use as methods for simultaneously measuring emissivity and temperature.

この従来の方法として、たとえば特開昭57−19629号公
報や計測自動制御学会論文集第19巻(1983)11号、81〜
83頁の論文「変調放射源を用いた対象物の放射率・温度
推定法」に記載の方法がある。
As this conventional method, for example, JP-A-57-19629 and the Institute of Instrument and Control Engineers, Vol. 19, (1983) No. 11, 81-
There is a method described in the article “Estimation Method of Emissivity / Temperature of Object Using Modulated Radiation Source” on page 83.

前者の方法は、放射計と反射鏡を、該反射鏡からの反射
放射線が測定対象物体の表面で鏡面反射して放射計に入
力するように設置し、対象物体からの放射線を該反射鏡
で反射させた場合とこれを遮蔽した場合の該放射計に入
力する各放射エネルギーを測定し、その測定値から対象
物体の放射率と温度を求める方法である。
In the former method, a radiometer and a reflecting mirror are installed so that the reflected radiation from the reflecting mirror is specularly reflected on the surface of the object to be measured and input to the radiometer, and the radiation from the target object is reflected by the reflecting mirror. This is a method in which each radiant energy input to the radiometer when it is reflected and when it is shielded is measured, and the emissivity and temperature of the target object are obtained from the measured values.

後者の方法は、放射計に入力する放射エネルギーが、対
象物体からの放射エネルギーと、放射計と共役方向に位
置する物体または雰囲気からの放射エネルギーと、放射
計に対する拡散方向からの放射エネルギーとからなると
して、対象物体の放射率と温度を測定する方法であり、
この方法は前記論文にも示されている下記の式によつて
いる。
In the latter method, the radiant energy input to the radiometer is the radiant energy from the target object, the radiant energy from the object or atmosphere located in the conjugate direction with the radiometer, and the radiant energy from the diffusion direction with respect to the radiometer. Then, it is a method to measure the emissivity and temperature of the target object,
This method is based on the following equation shown in the above-mentioned paper.

L=e・L+(1−e){q・L+(1−q)
} ……(1) ここで L:放射計で測定される放射エネルギー L:対象物体からの放射エネルギー L:放射計と共役の位置に設けた放射源からの放射 エネルギー L:周囲環境からの放射エネルギー e:対象物体の放射率 q:寄与率(放射源の位置において放射計の視野に占 める放射源の割合) 前記(1)式において、(1−e)q・Lは放射計に対
して共役方向に位置する放射源からの対象物体を介した
反射量であり、(1−e)(1−q)Lは放射計に対
して拡散方向にある周囲環境からの対象物体を介した反
射量である。
L = e * Lt + (1-e) {q * Lr + (1-q)
L R } (1) where L: radiant energy measured by the radiometer L t : radiant energy from the target object L r : radiant energy from a radiant source provided at a position conjugate with the radiometer LR : Radiant energy from the surrounding environment e: Emissivity of the target object q: Contribution rate (ratio of the radiation source occupied in the field of view of the radiometer at the position of the radiation source) In equation (1) above, (1-e) q L r is the amount of reflection through the object from the radiation source located in the conjugate direction relative radiometer, around in the spreading direction relative to (1-e) (1- q) L R is radiometer It is the amount of reflection from the environment through the target object.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし上記従来の方法にはつぎのような問題点がある。
すなわち前者の方法は、放射計に対する共役方向からの
反射放射線のみを考慮しており、他の方向からの放射線
を考慮していないための誤差を有している。また後者の
方法では、光学系の機器とその配置によつて一定となる
寄与率qを用いているが、この寄与率qを一定とすれば
正反射量(L)と拡散反射量(L)は一定の比例関
係となり、これでは現実の状態に適合しない。何故なら
ば、対象物体に入射した放射線が対象物体の表面で反射
あるいは吸収される際に、正反射量と拡散反射量の関係
は対象物体の表面の傾きや粗さによつて異なり、一義的
に定まるものではないからである。
However, the above conventional methods have the following problems.
That is, the former method has an error because it considers only reflected radiation from the conjugate direction with respect to the radiometer and does not consider radiation from other directions. Further, in the latter method, the contribution rate q which is constant depending on the equipment of the optical system and the arrangement thereof is used. However, if the contribution rate q is constant, the regular reflection amount (L r ) and the diffuse reflection amount (L r ) are used. R ) has a constant proportional relationship, which does not match the actual state. The reason is that when the radiation incident on the target object is reflected or absorbed by the surface of the target object, the relationship between the specular reflection amount and the diffuse reflection amount differs depending on the inclination and roughness of the surface of the target object, and is unique. This is because it is not determined by

つまり放射率eと正反射率aと拡散反射率sの関係は、
いわゆる光に関するキルヒホツフの法則から 1=a+s+e ……(2) ここでa:正反射率 s:拡散反射率 e:放射率 となり、ここで放射率eが減少すれば正反射率aと拡散
反射率sの合計値が増大するが、この増大の傾向は、正
反射率aと拡散反射率が同一比率で変化するのか、ある
いは正反射率aが増大して拡散反射率sが減少するの
か、一義的には定まらない。本発明者等の実測において
も、第1表に示すように変動した結果が得られた。第1
表で、材料1〜4はそれぞれ異なる材質と表面粗度の鋼
板である。
That is, the relationship between the emissivity e, the regular reflectance a, and the diffuse reflectance s is
From the so-called Kirchhoff's law of light, 1 = a + s + e (2) where a: specular reflectance s: diffuse reflectance e: emissivity, where e is the specular reflectance a and diffuse reflectance Although the total value of s increases, the tendency of this increase is whether the regular reflectance a and the diffuse reflectance change at the same ratio, or whether the regular reflectance a increases and the diffuse reflectance s decreases. Is not fixed. Even in the actual measurement by the present inventors, the varied results were obtained as shown in Table 1. First
In the table, materials 1 to 4 are steel plates having different materials and surface roughnesses.

なお拡散反射率(拡散反射光の全エネルギー/入射光の
エネルギー)sは として実測した。
The diffuse reflectance (total energy of diffuse reflected light / energy of incident light) is Was actually measured.

〔問題点を解決するための手段〕 本発明は上記に鑑み、正反射放射線と拡散反射放射線の
両者を考慮したうえで、さらにこの拡散反射に関して複
数の拡散方向の反射放射エネルギーを求めることによ
り、精度の高い温度測定を行うようにしたものである。
[Means for Solving the Problems] In view of the above, the present invention considers both specular reflection radiation and diffuse reflection radiation, and further obtains reflected radiant energy in a plurality of diffusion directions regarding this diffuse reflection, It is designed to perform highly accurate temperature measurement.

すなわち本発明の物体の表面温度測定方法は、放射率の
測定波長と同一の波長を含む光を測定対象物体に照射し
たときの正反射光量と複数方向の拡散反射光量を検出し
て該検出光量から測定対象物体の正反射率と前記拡散方
向の拡散反射率を求め、一方前記各反射光量検出位置に
相当する位置の環境温度を検出して該検出温度に対応す
る放射エネルギーを求め、これら各放射エネルギーと前
記正反射率と拡散反射率および放射計で測定した放射エ
ネルギーとを用いて測定対象物体の表面温度を求めるこ
とを特徴とするものである。
That is, the surface temperature measuring method of the object of the present invention, the detection light amount by detecting the specular reflection light amount and the diffuse reflection light amount in a plurality of directions when the measurement target object is irradiated with light including the same wavelength as the emissivity measurement wavelength. From the specular reflectance of the object to be measured and the diffuse reflectance in the diffusion direction from the meanwhile, on the other hand, the radiant energy corresponding to the detected temperature is obtained by detecting the environmental temperature at the position corresponding to each of the reflected light amount detection positions. It is characterized in that the surface temperature of the object to be measured is obtained using the radiant energy, the regular reflectance, the diffuse reflectance and the radiant energy measured by a radiometer.

〔作用〕[Action]

本発明における温度測定の基本的な考え方を説明する。
第2図は本発明の測温原理を示す模式図であり、この模
式図をもとにすると、温度測定の基本式は、 ここで a:対象物体の正反射率 s:対象物体の複数(n)方向の拡散反射率 e:対象物体の放射率 E:放射計で測定された放射エネルギー E:対象物体の放射エネルギー E:対象物体表面に対して放射計と共役方向の環境 の放射エネルギー E:対象物体表面に対して複数(n)の拡散方向の各 々の環境の放射エネルギー で表わされる。なお第2図において、Pは測定対象物
体、Dは放射計であり、矢印(イ)は対象物体P表面上
の点0に立てた法線に対し角度θで放射計Dと鏡面対称
の位置からの放射線、矢印(ロ)は点0の拡散反射方向
のうちのある1つの位置からの放射線を示し、矢印
(ハ)は点0から放射計Dに向かう放射線を示す。
The basic idea of temperature measurement in the present invention will be described.
FIG. 2 is a schematic diagram showing the principle of temperature measurement of the present invention. Based on this schematic diagram, the basic equation for temperature measurement is Where a: specular reflectance of the target object s i : diffuse reflectance of the target object in multiple (n) directions e: emissivity of the target object E: radiant energy measured by a radiometer E 0 : radiant energy of the target object E r : Radiant energy of environment in conjugate direction with respect to target object surface E i : Radiant energy of each environment in plural (n) diffusion directions with respect to target object surface. In FIG. 2, P is a measurement target object, D is a radiometer, and an arrow (a) is a position on the surface of the target object P that is mirror-symmetrical to the radiometer D at an angle θ with respect to a normal line set at a point 0. , The arrow (b) shows the radiation from one position of the diffuse reflection direction of the point 0, and the arrow (c) shows the radiation from the point 0 to the radiometer D.

対象物体Pの放射エネルギーEは、前記(3)式を変形
した下式 と前記(2)式から として表わすことができる。
The radiant energy E 0 of the target object P is expressed by the following equation which is a modification of the equation (3). And from equation (2) above Can be expressed as

上記測温原理にもとづいた具体的な測温要領を、移動す
る鋼板の表面温度の測定を例にとり第3図をもとに説明
する。まづ定数a,s,eを求める。このため鋼板(対象
物体)Pの移動方向(矢印M)上流側において、鋼板表
面の法線とのなす角度θの位置に配置した光源Iから放
射計Dの測定波長と同一の波長を含む光、たとえばレー
ザー光線、灰色熱放射線を照射し、その正反射光量A
と、複数の拡散方向位置における拡散反射光量Si(図の
例ではS,S,S)を測定し、既知の鋼板表面入射光
との光量比から正反射率aと拡散反射率s(s,
s,s)を求め、そして前記(2)式から鋼板の放射率e
を求める。一方鋼板の下流側において、放射計Dと共役
の位置にある環境の温度Tr、複数の拡散方向の環境温度
,T,Tを測定し、予め求めてある環境温度と放射
エネルギーの関係式を用いて各位置の環境温度T,
T,Tに対応する放射エネルギーE,E,Eを求
め、前記(5)式から鋼板の放射エネルギーEを求め
る。鋼板の温度Tは放射エネルギーEから求められ
る。第1図は本発明の実施例における装置構成を示す図
である。
A specific temperature measurement procedure based on the above temperature measurement principle will be described with reference to FIG. 3 by taking the measurement of the surface temperature of a moving steel sheet as an example. First, the constants a, s i , e are obtained. Therefore, on the upstream side of the moving direction (arrow M) of the steel plate (target object), the light including the same wavelength as the measurement wavelength of the radiometer D from the light source I arranged at the angle θ formed by the normal line of the steel plate surface. , For example, by irradiating a laser beam or gray heat radiation, and the amount A of specular reflection
And the diffuse reflection light amount Si (S 1 , S 2 , S 3 in the example of the figure) at a plurality of positions in the diffusion direction is measured, and the regular reflectance a and the diffuse reflectance s are calculated from the light amount ratio with the known steel plate surface incident light. i (s 1 ,
s 2 , s 3 ) is obtained, and the emissivity e of the steel plate is calculated from the equation (2).
Ask for. On the other hand, on the downstream side of the steel plate, the temperature Tr of the environment at a position conjugate with the radiometer D and the environmental temperatures T 1 , T 2 , T 3 in a plurality of diffusion directions are measured, and the environmental temperature and radiant energy Using the relational expression, the environmental temperature T 1 at each position,
The radiant energies E 1 , E 2 and E 3 corresponding to T 2 and T 3 are obtained, and the radiant energy E 0 of the steel sheet is obtained from the above equation (5). The temperature T 0 of the steel plate is obtained from the radiant energy E 0 . FIG. 1 is a diagram showing a device configuration in an embodiment of the present invention.

光発生器1からの光が光源2に導かれて、鋼板P表面に
角度θで照射される。この正反射光量Aが光量検出器3
で検出される。また複数方向の拡散反射光量S,S,S
が鋼板Pの照射点を中心とした球面上に配置された複
数の光量検出器4,5,6でそれぞれ検出される。各反射光
量A,S,S,Sは演算器7に導かれ、正反射率aと拡
散反射率s,s,sが求められる。これから放射率e
が求められる。各反射光には外乱の影響ならびに鋼板か
らの放射も含まれているが、これは光源からの光を照射
しない状態での各反射光量を求めておき、これを照射後
の各反射光量から差引くことにより消去することができ
る。
The light from the light generator 1 is guided to the light source 2 and irradiated on the surface of the steel plate P at an angle θ. This regular reflection light amount A is the light amount detector 3
Detected in. In addition, the diffuse reflection light amounts S 1 , S 2 , S in a plurality of directions
3 is detected by a plurality of light amount detectors 4, 5 and 6 arranged on a spherical surface centered on the irradiation point of the steel plate P. The respective reflected light amounts A, S 1 , S 2 , S 3 are guided to the computing unit 7, and the regular reflectance a and the diffuse reflectances s 1 , s 2 , s 3 are obtained. Emissivity e
Is required. Each reflected light includes the effect of disturbance and radiation from the steel plate.This is calculated by calculating the amount of each reflected light when the light from the light source is not radiated and calculating the difference from each reflected light amount after irradiation. It can be erased by pulling.

一方、放射計8により鋼板P方向からの放射エネルギー
Eが測定され、また放射計8の共役方向の温度測定器9
と複数の拡散方向の温度測定器10,11,12により、それぞ
れの環境温度Tr,T,T,Tが測定される。環境温度測
定のためには、雰囲気温度または炉内物体の測温の場合
には所定の角度に位置する炉内壁面の温度が測定され
る。ここで、拡散方向の温度測定器10,11,12の鋼板Pに
対してなす角度は、拡散反射光量検出器4,5,6の鋼板P
に対してなす角度に等しくとる。各温度測定値Tr,T,T
,Tは演算器13へ導かれ、放射エネルギーEr,E,
E,Eに換算される。さらに前記したようにして鋼板
の温度Tが求められる。演算結果は表示器14で表示さ
れる。
On the other hand, the radiant energy E from the steel plate P direction is measured by the radiometer 8 and the temperature measuring device 9 in the conjugate direction of the radiometer 8 is also measured.
The ambient temperature Tr, T 1 , T 2 and T 3 are measured by the temperature measuring devices 10, 11 and 12 in the diffusion directions. In order to measure the environmental temperature, the ambient temperature or the temperature of the wall surface inside the furnace located at a predetermined angle is measured in the case of measuring the temperature of the object inside the furnace. Here, the angle formed by the temperature measuring devices 10, 11, 12 in the diffusion direction with respect to the steel plate P is the steel plate P of the diffuse reflection light amount detectors 4, 5, 6.
Equal to the angle you make with. Each temperature measurement value Tr, T 1 , T
2 and T 3 are guided to the computing unit 13 and the radiant energy Er, E 1 ,
Converted to E 2 and E 3 . Further, the temperature T 0 of the steel plate is obtained as described above. The calculation result is displayed on the display unit 14.

〔発明の効果〕〔The invention's effect〕

本発明による測温方法は以上のように、放射計に対する
共役方向からの反射放射線とともに複数の拡散方向から
の反射放射線の影響も考慮した測温方法であるから、測
定中に測定対象物体の放射率や環境温度の変動がある場
合でも対象物体の温度を正確に測定できるというすぐれ
た効果がある。
As described above, the temperature measuring method according to the present invention is a temperature measuring method in which the influence of reflected radiation from a plurality of diffusion directions together with the reflected radiation from the conjugate direction with respect to the radiometer is taken into consideration. It has an excellent effect that the temperature of the target object can be accurately measured even when the rate or the environmental temperature fluctuates.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例における装置構成を示す図、第
2図は本発明の測温原理を示す模式図、第3図は本発明
の測温要領を説明するための図である。 1:光発生器、2:光源、3〜6:光量検出器、7,13:演算
器、8:放射計、9〜12:温度測定器、14:表示器
FIG. 1 is a diagram showing a device configuration in an embodiment of the present invention, FIG. 2 is a schematic diagram showing a temperature measuring principle of the present invention, and FIG. 3 is a diagram for explaining a temperature measuring procedure of the present invention. 1: Light generator, 2: Light source, 3 to 6: Light intensity detector, 7, 13: Computing device, 8: Radiometer, 9 to 12: Temperature measuring device, 14: Display device

フロントページの続き (72)発明者 藤原 泰彦 福岡県北九州市八幡東区枝光1−1−1 新日本製鐵株式会社八幡製鐵所内 (72)発明者 小森 照久 福岡県北九州市八幡東区枝光1−1−1 新日本製鐵株式会社八幡製鐵所内 (56)参考文献 特公 昭60−45738(JP,B2)Front page continuation (72) Inventor Yasuhiko Fujiwara 1-1-1 Emitsu, Hachimanto-ku, Kitakyushu, Fukuoka Prefecture (72) Inside the Yawata Works, Nippon Steel Co., Ltd. (72) Teruhisa Komori, Emitsu 1, Hachiman-ku, Kitakyushu, Fukuoka -1-1 Inside the Yawata Works, Nippon Steel Corporation (56) References Japanese Patent Publication Sho 60-45738 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】放射率の測定波長と同一の波長を含む光を
測定対象物体に照射したときの正反射光量と複数方向の
拡散反射光量を検出して該検出光量から測定対象物体の
正反射率と前記拡散方向の拡散反射率を求め、一方前記
各反射光量検出位置に相当する位置の環境温度を検出し
て該検出温度に対応する放射エネルギーを求め、これら
各放射エネルギーと前記正反射率と拡散反射率および放
射計で測定した放射エネルギーとを用いて測定対象物体
の表面温度を求めることを特徴とする物体の表面温度測
定方法。
1. A specular reflection of an object to be measured is detected from the amount of specular reflection when the object to be measured is irradiated with light having the same wavelength as the emissivity measurement wavelength and the amount of diffuse reflection light in a plurality of directions. Rate and the diffuse reflectance in the diffusion direction, on the other hand, the ambient temperature at the position corresponding to each reflected light amount detection position is detected to obtain the radiant energy corresponding to the detected temperature, and the radiant energy and the regular reflectance A method for measuring the surface temperature of an object, characterized in that the surface temperature of the object to be measured is obtained using the diffuse reflectance and the radiant energy measured by a radiometer.
JP15103986A 1986-06-27 1986-06-27 How to measure the surface temperature of an object Expired - Lifetime JPH0663848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15103986A JPH0663848B2 (en) 1986-06-27 1986-06-27 How to measure the surface temperature of an object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15103986A JPH0663848B2 (en) 1986-06-27 1986-06-27 How to measure the surface temperature of an object

Publications (2)

Publication Number Publication Date
JPS636428A JPS636428A (en) 1988-01-12
JPH0663848B2 true JPH0663848B2 (en) 1994-08-22

Family

ID=15509963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15103986A Expired - Lifetime JPH0663848B2 (en) 1986-06-27 1986-06-27 How to measure the surface temperature of an object

Country Status (1)

Country Link
JP (1) JPH0663848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229925A (en) * 2011-04-25 2012-11-22 Panasonic Corp Emissivity measuring method, emissivity measuring device, inspection method, and inspection device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4114671A1 (en) * 1991-05-06 1992-11-12 Hoechst Ag METHOD AND MEASURING ARRANGEMENT FOR CONTACTLESS ON-LINE MEASUREMENT
JP2737554B2 (en) * 1992-07-06 1998-04-08 住友金属工業株式会社 Method and apparatus for measuring emissivity and surface temperature
US6741326B2 (en) 2002-10-11 2004-05-25 Eastman Kodak Company Methods, apparatus, and systems for detecting partial-shading encodement filtering
US7092628B2 (en) 2002-10-11 2006-08-15 Eastman Kodak Company Photography systems and methods utilizing filter-encoded images
US6728483B1 (en) 2002-10-11 2004-04-27 Eastman Kodak Company Cameras, methods, and systems with partial-shading encodements
JP7062339B2 (en) * 2018-08-30 2022-05-06 株式会社チノー Temperature measuring method and temperature measuring device
MX2023004382A (en) * 2020-10-27 2023-05-04 Jfe Steel Corp Surface temperature measurement method, surface temperature measurement device, method for manufacturing hot-dip galvanized steel sheet, and facility for manufacturing hot-dip galvanized steel sheet.
JP7396328B2 (en) * 2021-05-14 2023-12-12 Jfeスチール株式会社 Temperature measurement method, temperature measurement device, and manufacturing method for zinc-based hot-dip coated steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229925A (en) * 2011-04-25 2012-11-22 Panasonic Corp Emissivity measuring method, emissivity measuring device, inspection method, and inspection device

Also Published As

Publication number Publication date
JPS636428A (en) 1988-01-12

Similar Documents

Publication Publication Date Title
DE3108153C2 (en)
US4846578A (en) Surface characteristic measurement
Bedoya et al. Measurement of in-plane thermal diffusivity of solids moving at constant velocity using laser spot infrared thermography
CN105606222A (en) Flame three-dimensional temperature field measurement imaging device, measuring device and measuring method
JPH0663848B2 (en) How to measure the surface temperature of an object
JPH1082620A (en) Method and apparatus for photothermal inspection of surface of workpiece
KR950703139A (en) ONLINE TOMOGRAPHIC GAUGING OF SHEET METAL
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
JP2556556B2 (en) Method of measuring roughness of metal surface
JPS6186621A (en) Method and apparatus for simultaneously measuring emissivity and temperature
Dunn et al. Ellipsoidal mirror reflectometer
US20040008753A1 (en) Emissivity distribution measuring method and apparatus
JP3259815B2 (en) Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source
JP2013092502A (en) Temperature measuring apparatus and emissivity measuring device
JP3570488B2 (en) Measurement method of alloying degree of galvanized steel sheet using laser beam
JP3291781B2 (en) Method and apparatus for measuring temperature of steel sheet
JPS6385309A (en) Method and apparatus for measuring thickness of liquid film on plate-like material
OGASAWARA et al. Image Processing for Reduction of Background Reflection from Thermal Image
JPS60142204A (en) Dimension measuring method of object
JPH01245125A (en) Method and device for measuring simultaneously emissivity and temperature
JPH08122155A (en) Radiation temperature measurement method for temperature object surface
JP2737554B2 (en) Method and apparatus for measuring emissivity and surface temperature
JP3296224B2 (en) Object emissivity measurement method and temperature measurement device
JP2932829B2 (en) Wavelength fluctuation measurement device
GB2134252A (en) Method for continuously measuring surface temperature of heated steel strip