JP2556556B2 - Method of measuring roughness of metal surface - Google Patents

Method of measuring roughness of metal surface

Info

Publication number
JP2556556B2
JP2556556B2 JP18425788A JP18425788A JP2556556B2 JP 2556556 B2 JP2556556 B2 JP 2556556B2 JP 18425788 A JP18425788 A JP 18425788A JP 18425788 A JP18425788 A JP 18425788A JP 2556556 B2 JP2556556 B2 JP 2556556B2
Authority
JP
Japan
Prior art keywords
measured
radiometer
radiant energy
reflectance
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18425788A
Other languages
Japanese (ja)
Other versions
JPH0232207A (en
Inventor
清己 筒井
敦之 中園
照久 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18425788A priority Critical patent/JP2556556B2/en
Publication of JPH0232207A publication Critical patent/JPH0232207A/en
Application granted granted Critical
Publication of JP2556556B2 publication Critical patent/JP2556556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼板等の金属表面の粗度を非接触で測定す
る方法に関する。
The present invention relates to a method for measuring the roughness of a metal surface of a steel sheet or the like in a non-contact manner.

〔従来の技術〕 金属表面の粗度を非接触で測定する方法として、レー
ザ光を用いる測定方法があり、たとえば特開昭52−1295
45号公報に示されている。このレーザ光を用いる測定方
法は、レーザ光を金属表面に照射し、その正反射散乱光
の強度分布により金属表面の粗度を測定する方法であ
る。
[Prior Art] As a method for measuring the roughness of a metal surface in a non-contact manner, there is a measuring method using a laser beam.
No. 45 publication. The measuring method using this laser light is a method of irradiating the metal surface with laser light and measuring the roughness of the metal surface by the intensity distribution of the specularly reflected scattered light.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、正反射散乱光の強度分布を測定する方
式の従来のレーザ光を用いる表面粗度測定方法は、測定
精度は充分なものではなかった。なぜならば、測定対象
物に光を照射したとき、測定対象物の材質や表面性状に
よって正反射率と拡散反射率の関係が異なり、正反射散
乱光の強度変化があること、及び周囲温度によって正反
射散乱光の強度が影響を受けることが考慮されていない
からである。
However, the measurement accuracy of the conventional surface roughness measuring method using the laser beam of the method of measuring the intensity distribution of the specularly scattered light is not sufficient. This is because when the measurement target is irradiated with light, the relationship between the specular reflectance and the diffuse reflectance differs depending on the material and surface properties of the measurement target, and there is a change in the intensity of the specularly scattered light, and the normal temperature depends on the ambient temperature. This is because it is not considered that the intensity of the reflected and scattered light is affected.

本発明は、上記に鑑み、測定対象物の材質や表面性状
及び周囲温度の影響を受けることなく表面粗度を精度良
く測定することを目的とする。
In view of the above, it is an object of the present invention to accurately measure the surface roughness without being affected by the material and surface properties of the measurement target and the ambient temperature.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の金属表面の粗度測定方法は、その目的を達成
するために、測定対象物に光を照射したときの正反射光
の光路中及び複数方向の拡散反射光の光路中に放射計を
設置し、これら放射計で測定した放射エネルギー値及び
放射計の設置位置に相当した位置の環境温度測定値に対
応する放射エネルギー値を用いて測定対象物の正反射率
と複数方向の拡散反射率を求め、これら正反射率と拡散
反射率とから予め定めた関係式により測定対象物の表面
粗度を算出することを特徴とする。
The metal surface roughness measuring method of the present invention, in order to achieve the object, a radiometer in the optical path of specular reflection light when irradiating the measurement object with light and in the optical paths of diffuse reflection light in a plurality of directions. The specular reflectance and diffuse reflectance in multiple directions of the object to be measured by using the radiant energy value measured by these radiometers and the radiant energy value corresponding to the environmental temperature measurement value at the position corresponding to the radiometer installation position. Is calculated, and the surface roughness of the measuring object is calculated from the regular reflectance and the diffuse reflectance by a predetermined relational expression.

〔実施例〕〔Example〕

以下、図面を参照しながら、実施例により本発明の特
徴を具体的に説明する。
Hereinafter, the features of the present invention will be specifically described by way of examples with reference to the drawings.

第1図は、本発明における正反射率と拡散反射率の測
定原理を示す模式図である。同図に示すように、測定対
象物体P表面上の点Oに立てた法線に対し角度θの方向
に放射計Dを設置したとき、この放射計Dでは、同放射
計Dと鏡面対称の位置からの放射線と、点Oの複数の
拡散反射方向の位置からの放射線(ただし図では1方
向のみ示した)と、点Oから放射計Dに向かう放射線
の合わされたものが測定される。
FIG. 1 is a schematic diagram showing the principle of measurement of regular reflectance and diffuse reflectance in the present invention. As shown in the figure, when the radiometer D is installed in the direction of an angle θ with respect to the normal line standing at the point O on the surface of the measurement object P, the radiometer D is mirror-symmetrical to the radiometer D. A combination of the radiation from the position, the radiation from the plurality of diffuse reflection directions of the point O (however, only one direction is shown in the drawing), and the radiation from the point O toward the radiometer D are measured.

この模式図を基にすると、放射強度測定の基本式は ここで a:対象物Pの正反射率 si:対象物体Pの複数(n)方向の各々の拡散反射率 e:対象物Pの放射率 E:放射計Dで測定された放射エネルギー Eo:対象物Pの放射エネルギー Er:対象物P表面に対して放射計Dと共役方向の環境の
放射エネルギー Ei:対象物P表面に対して複数(n)の拡散方向の各々
の環境の放射エネルギー で表される。
Based on this schematic diagram, the basic formula for radiant intensity measurement is Where a: regular reflectance of the object P s i : diffuse reflectance of the object P in each of a plurality of (n) directions e: emissivity of the object P E: radiant energy Eo measured by the radiometer D Eo: Radiant energy of the object P Er: Radiant energy of the environment in the conjugate direction with the radiometer D with respect to the surface of the object P E i : Radiant energy of each environment in a plurality (n) of diffusion directions with respect to the surface of the object P It is represented by.

第2図は、本発明の実施例における装置構成を示す図
である。
FIG. 2 is a diagram showing a device configuration in the embodiment of the present invention.

まず、前記(1)式の定数a及びsiを求めるため、対
象物である鋼板Pに対して、鋼板P表面の法線とのなす
角度θの位置に配置した光源1から放射計の測定波長と
同一の波長を含む光、例えばレーザ光線あるいは灰色熱
放射線を照射し、その正反射光量Aと、複数の拡散方向
位置における拡散反射光量Bi(図の例ではB1,B2,B3)を
測定する。
First, in order to obtain the constants a and s i of the equation (1), measurement of a radiometer from a light source 1 arranged at a position of an angle θ formed by the normal line of the surface of the steel plate P with respect to the steel plate P as an object. A light having the same wavelength as the wavelength, for example, a laser beam or gray heat radiation is irradiated, and the specular reflection light amount A and the diffuse reflection light amounts B i at a plurality of diffusion direction positions (B 1 , B 2 , B in the example of the figure) 3 ) Measure.

すなわち光源1からの光が鋼板P表面に角度θで照射
される。正反射光量Aは光源1と共役方向に設けた放射
計3で検出され、また複数方向の拡散反射光量B1,B2,B3
は鋼板Pの照射点を中心とした球面上に配置された複数
の放射計4,5,6でそれぞれ検出される。
That is, the light from the light source 1 is applied to the surface of the steel plate P at an angle θ. The regular reflection light amount A is detected by the radiometer 3 provided in the conjugate direction with the light source 1, and the diffuse reflection light amounts B 1 , B 2 , B 3 in a plurality of directions are also detected.
Is detected by a plurality of radiometers 4, 5 and 6 arranged on a spherical surface centered on the irradiation point of the steel plate P.

ここで、各反射光には外乱の影響並びに鋼板Pからの
放射も含まれているので、シャッター2を使って、光源
1からの光が照射されているときと照射されていないと
きの各反射光量を求めて両者の差をとることにより、外
乱や鋼板Pからの放射の影響を消去することができる。
Here, since each reflected light includes the influence of the disturbance and the radiation from the steel plate P, each reflection when the light from the light source 1 is irradiated and when the light is not irradiated is used by the shutter 2. By obtaining the amount of light and taking the difference between the two, it is possible to eliminate the effects of disturbance and radiation from the steel plate P.

放射計3で測定される放射エネルギーは、シャッター
閉時には となり、シャッター開時には ここで、 Ep:鋼板Pからの放射エネルギー Er:放射計3と共役方向の環境からの放射エネルギー Ei:複数の拡散方向の環境からの放射エネルギー El:光源1からの放射エネルギー E3:放射計3で測定された放射エネルギー(添字cはシ
ャッター閉,oは開を示す) で表される。
The radiant energy measured by the radiometer 3 is And when the shutter opens Here, Ep: radiant energy from the steel plate P Er: radiant energy from the environment in the conjugate direction with the radiometer 3 E i : radiant energy from the environment in a plurality of diffusion directions El: radiant energy from the light source 1 E 3 : radiant It is expressed by the radiant energy measured by a total of 3 (subscript c indicates shutter closed, o indicates open).

前記(2),(3)式より正反射率aは、次式により
求められる。
The regular reflectance a is obtained from the equations (2) and (3) by the following equation.

また、放射計4,5及び6で測定される放射エネルギー
は、シャッター閉時には Ejc=ej・Epj+aj+Erj+sj・Erj ……(5) となり、シャッター開時には Ejo=ej・Epj+ai+Erj+sj・Elj ……(6) ここで添字jは放射計4,5及び6を識別する符号 で表される。
The radiant energy measured by the radiometers 4, 5 and 6 is E jc = e j · Ep j + a j + Er j + s j · Er j (5) when the shutter is closed, and E jo = when the shutter is open. e j · Ep j + a i + Er j + s j · El j (6) Here, the subscript j is represented by a code for identifying the radiometers 4, 5 and 6.

前記(5),(6)式より拡散反射率sjは、次式によ
り求められる。
The diffuse reflectance s j is obtained from the equations (5) and (6) by the following equation.

前記(4)式及び(7)式において、Elは光源からの
放射エネルギーであるから既知の値であり、Er及びEj
共役方向及びそれぞれの拡散方向の環境からの放射エネ
ルギーであるから、それぞれの環境の温度を別に設けた
温度計で測温し、該測温値を放射エネルギーに換算する
ことによりその値を知ることができる。そして、この各
方向について求めた拡散反射率sjの平均値sを求める。
In the expressions (4) and (7), El is a known value because it is the radiant energy from the light source, and Er and E j are radiant energy from the environment in the conjugate direction and the respective diffusion directions, By measuring the temperature of each environment with a thermometer provided separately and converting the measured temperature into radiant energy, the value can be known. Then, the average value s of the diffuse reflectances s j obtained for each direction is obtained.

上記のようにして求めた正反射率aと拡散反射率sと
の割合を次式 で表したとき、この指標Xと鋼板Pの表面粗度とが最も
強い相関関係にあることを本発明者等は実験により確認
した。
The ratio between the regular reflectance a and the diffuse reflectance s obtained as described above is calculated by the following equation. The present inventors have confirmed by experiments that the index X and the surface roughness of the steel sheet P have the strongest correlation when expressed by.

第3図は、触針式粗度計によって測定した粗度と前記
(8)式の指標Xの関係を示す実験データの一例であ
り、冷間圧延鋼板の表面の平均粗さRaが3μm以下の範
囲において Ra=1.004X+0.01 ……(9) の関係が得られた。
FIG. 3 is an example of experimental data showing the relationship between the roughness measured by a stylus roughness meter and the index X of the formula (8), and the average roughness Ra of the surface of the cold-rolled steel sheet is 3 μm or less. The relation of Ra = 1.004X + 0.01 (9) was obtained in the range of.

第2図に示した実施例装置では、演算器7で前記
(4)式及び(7)式により正反射率a及び拡散反射率
sjを算出する。そして演算器8で(8)式により指標X
を算出し、この指標Xから(9)式により平均粗さRaを
算出して表示器8に表示する。
In the apparatus of the embodiment shown in FIG. 2, the calculator 7 calculates the regular reflectance a and the diffuse reflectance by the equations (4) and (7).
Calculate s j . Then, in the calculator 8, the index X is calculated by the equation (8).
Is calculated, and the average roughness Ra is calculated from the index X by the formula (9) and displayed on the display 8.

〔発明の効果〕〔The invention's effect〕

以上に説明したように、本発明においては、測定対象
物に入射した放射線が対象物の表面で反射あるいは吸収
される際の、正反射率と複数方向の拡散反射率を求め、
これら正反射率と拡散反射率とから予め定めた関係式に
より表面粗度を測定する。従って本発明によれば、測定
対象物である金属の材質や表面性状及び周囲温度の変化
に影響されることなく、精度よく表面粗度を測定するこ
とができる。
As described above, in the present invention, when the radiation incident on the measurement object is reflected or absorbed on the surface of the object, the specular reflectance and the diffuse reflectance in a plurality of directions are obtained,
The surface roughness is measured by a predetermined relational expression from the regular reflectance and the diffuse reflectance. Therefore, according to the present invention, the surface roughness can be accurately measured without being influenced by the material and surface properties of the metal, which is the measurement object, and changes in the ambient temperature.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明における正反射率と拡散反射率の測定原
理を示す模式図、第2図は本発明実施例における装置構
成を示す図、第3図は本発明実施例における指標Xと表
面粗度の相関関係の例を示す図である。 1:光源、2:シャッター 3,4,5,6:放射計、7,8:演算器 9:表示器、D:放射計 P:測定対象物(鋼板)
FIG. 1 is a schematic diagram showing the principle of measurement of specular reflectance and diffuse reflectance in the present invention, FIG. 2 is a diagram showing an apparatus configuration in an embodiment of the present invention, and FIG. 3 is an index X and a surface in an embodiment of the present invention. It is a figure which shows the example of correlation of roughness. 1: Light source, 2: Shutter 3,4,5,6: Radiometer, 7,8: Calculator 9: Display, D: Radiometer P: Object to be measured (steel plate)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小森 照久 福岡県北九州市八幡東区枝光1丁目1番 1号 新日本製鐵株式會社設備技術本部 内 (56)参考文献 特開 昭62−2111(JP,A) 特開 昭61−264209(JP,A) 特開 昭52−129545(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Teruhisa Komori, 1-1 1-1 Edamitsu, Hachiman-to-ku, Kitakyushu, Kitakyushu, Fukuoka (56) Reference: JP 62-2111 JP, A) JP 61-264209 (JP, A) JP 52-129545 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】測定対象物に光を照射したときの正反射光
の光路中及び複数方向の拡散反射光の光路中に放射計を
設置し、これら放射計で測定した放射エネルギー値及び
放射計の設置位置に相当した位置の環境温度測定値に対
応する放射エネルギー値を用いて測定対象物の正反射率
と複数方向の拡散反射率を求め、これら正反射率と拡散
反射率とから予め定めた関係式により測定対象物の表面
粗度を算出することを特徴とする金属表面の粗度測定方
法。
1. A radiometer is installed in the optical path of specularly reflected light when the object to be measured is irradiated with light and in the optical paths of diffusely reflected light in a plurality of directions, and the radiant energy value and the radiometer measured by these radiometers. Using the radiant energy value corresponding to the environmental temperature measurement value at the position corresponding to the installation position, the specular reflectance and diffuse reflectance in multiple directions of the object to be measured are obtained, and predetermined from these specular reflectance and diffuse reflectance. A method for measuring the roughness of a metal surface, characterized in that the surface roughness of a measurement object is calculated by the relational expression.
JP18425788A 1988-07-22 1988-07-22 Method of measuring roughness of metal surface Expired - Lifetime JP2556556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18425788A JP2556556B2 (en) 1988-07-22 1988-07-22 Method of measuring roughness of metal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18425788A JP2556556B2 (en) 1988-07-22 1988-07-22 Method of measuring roughness of metal surface

Publications (2)

Publication Number Publication Date
JPH0232207A JPH0232207A (en) 1990-02-02
JP2556556B2 true JP2556556B2 (en) 1996-11-20

Family

ID=16150146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18425788A Expired - Lifetime JP2556556B2 (en) 1988-07-22 1988-07-22 Method of measuring roughness of metal surface

Country Status (1)

Country Link
JP (1) JP2556556B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352692B1 (en) 2018-02-20 2019-07-16 Papalab Co., Ltd. Surface roughness determination apparatus using a white light source and determination method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100409204B1 (en) * 1999-12-23 2003-12-11 재단법인 포항산업과학연구원 Apparatus and method for measuring diffusion coefficient of metal surface
KR20030053077A (en) * 2001-12-22 2003-06-28 재단법인 포항산업과학연구원 Measurement of the surface roughness of a steel palte roiied by EDT roll
KR100795543B1 (en) * 2006-03-02 2008-01-21 한국표준과학연구원 Three demensional surface illumination measuring apparatus for Micro optical element array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352692B1 (en) 2018-02-20 2019-07-16 Papalab Co., Ltd. Surface roughness determination apparatus using a white light source and determination method

Also Published As

Publication number Publication date
JPH0232207A (en) 1990-02-02

Similar Documents

Publication Publication Date Title
KR970077431A (en) Method and apparatus for substrate temperature measurement
US4172383A (en) Method and an apparatus for simultaneous measurement of both temperature and emissivity of a heated material
Bedoya et al. Measurement of in-plane thermal diffusivity of solids moving at constant velocity using laser spot infrared thermography
JP2020034430A (en) Temperature measurement method, and temperature measurement device
JP2556556B2 (en) Method of measuring roughness of metal surface
JPH0663848B2 (en) How to measure the surface temperature of an object
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
JPS5940250B2 (en) How to measure temperature and emissivity simultaneously
Sárosi et al. Evaluation of reflectivity of metal parts by a thermo-camera
OGASAWARA et al. Image Processing for Reduction of Background Reflection from Thermal Image
JP2013092502A (en) Temperature measuring apparatus and emissivity measuring device
JP3259815B2 (en) Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source
JP3291781B2 (en) Method and apparatus for measuring temperature of steel sheet
US4553854A (en) Method for continuously measuring surface temperature of heated steel strip
JP6765327B2 (en) Radiation temperature measuring device and radiation temperature measuring method
Fontani et al. Control of crankshaft finish by scattering technique
JPS6184528A (en) Temperature measuring instrument
JPH0626935A (en) Method and device for measuring emissivity and surface temperature
JP6292609B2 (en) Non-contact temperature measuring method and measuring apparatus
KR100584130B1 (en) Emissivity measuer of moving hot steel
JPH01245125A (en) Method and device for measuring simultaneously emissivity and temperature
JPS6049852B2 (en) How to measure object surface temperature
JPS60107533A (en) Temperature measuring method of body to be heated
KR100328089B1 (en) Method for measuring surface roughness of plated steel plate
JP2004301604A (en) Radiation temperature measuring apparatus and optical measuring apparatus