JPH0663685B2 - snow gun - Google Patents

snow gun

Info

Publication number
JPH0663685B2
JPH0663685B2 JP2907690A JP2907690A JPH0663685B2 JP H0663685 B2 JPH0663685 B2 JP H0663685B2 JP 2907690 A JP2907690 A JP 2907690A JP 2907690 A JP2907690 A JP 2907690A JP H0663685 B2 JPH0663685 B2 JP H0663685B2
Authority
JP
Japan
Prior art keywords
compressed air
pressure water
snow gun
water
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2907690A
Other languages
Japanese (ja)
Other versions
JPH03233272A (en
Inventor
尚次 一色
益人 高橋
直 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2907690A priority Critical patent/JPH0663685B2/en
Publication of JPH03233272A publication Critical patent/JPH03233272A/en
Publication of JPH0663685B2 publication Critical patent/JPH0663685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C3/00Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow
    • F25C3/04Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow for sledging or ski trails; Producing artificial snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2303/00Special arrangements or features for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Special arrangements or features for producing artificial snow
    • F25C2303/048Snow making by using means for spraying water
    • F25C2303/0481Snow making by using means for spraying water with the use of compressed air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、スキー場に供給する人工雪を大量に造雪する
スノーガンに関する。
Description: TECHNICAL FIELD The present invention relates to a snow gun for producing a large amount of artificial snow supplied to a ski resort.

[従来の技術] スキー場に供給する人工雪を造雪するスノーガンとし
て、例えば、特公昭59−11835号公報に開示されている
構造のものが既に知られている。
[Prior Art] As a snow gun for making artificial snow to be supplied to a ski resort, for example, one having a structure disclosed in Japanese Patent Publication No. 59-11835 is already known.

この種のスノーガンは、第4図に示すように、実線矢印
で示すうず巻き状に流れる高圧水と、破線矢印で示す直
線状に流れる圧縮空気流とを衝突させて霧を生成し、圧
縮空気噴射管Aの前方に開口している霧ノズル出口aか
ら噴出させ、低温外気の冷却作用によって造雪するよう
に構成されている。
As shown in FIG. 4, this type of snow gun collides high-pressure water flowing in a spiral shape with a solid arrow with compressed air flow flowing in a straight line with a dashed arrow to generate mist, and to inject compressed air. It is configured such that it is ejected from a fog nozzle outlet a that is open in front of the pipe A, and snow is produced by the cooling action of low temperature outside air.

[発明が解決しようとする課題] ところで、造雪効率を向上させるためには、霧化効率を
向上させる必要があり、霧化効率の向上は空気と水の衝
突による霧の生成を良好にし、かつ霧径をできるだけ小
径にすることが要請される。そして、良好な霧の生成と
霧径の小径化は、空気と水が混合される場合の接触面積
の増大および気水衝突時の相対速度の大きさに依存する
とされている。
[Problems to be Solved by the Invention] By the way, in order to improve the snowmaking efficiency, it is necessary to improve the atomization efficiency, and the improvement of the atomization efficiency improves the generation of fog due to the collision of air and water, And it is required to make the fog diameter as small as possible. Further, it is said that good generation of mist and reduction of mist diameter depend on increase of contact area when air and water are mixed and relative velocity at the time of air-water collision.

しかし、前記従来のスノーガンでは、圧縮空気噴射管A
から直線状に噴射した圧縮空気流に対して、うず巻き状
の高圧水流を衝突させてるようにしているだけのもので
あるから、水と空気との接触面積を大きき確保すること
が困難であり、かつ圧縮空気も増速させることなく、単
に圧縮空気噴射管Aから直線状に噴射させているのに過
ぎないため、大きい相対速度によって気水衝突を行なう
ことが期待できない。したがって、良好な気水衝突状態
および霧径の小径化の点に関しては、いささか不十分で
あり、霧化効率と造雪効率に劣る問題点を有している。
However, in the conventional snow gun, the compressed air injection pipe A
It is difficult to secure a large contact area between water and air because the spiral high-pressure water flow is made to collide with the compressed air flow that is linearly ejected from In addition, the compressed air is not linearly accelerated but is simply injected linearly from the compressed air injecting pipe A, so that it is not possible to expect the air-water collision at a large relative speed. Therefore, there is a problem in that the atomization efficiency and the snowmaking efficiency are inferior in terms of a good air-water collision state and a reduction in the fog diameter.

本発明は、このような事情に鑑みなされたもので、良好
な気水衝突状態および霧径の小径化の達成により、霧化
効率と造雪効率の向上を実現できるスノーガンの提供を
目的としている。
The present invention has been made in view of such circumstances, and an object thereof is to provide a snow gun capable of improving atomization efficiency and snowmaking efficiency by achieving a favorable air-water collision state and a reduction in fog diameter. .

[課題を解決するための手段] 前記目的を達成するために、本発明に係るスノーガン
は、スノーガン本体部の縦軸線から偏心した位置に取付
けられ高圧水をスノーガン本体部内で旋回させるように
導入する高圧水導入管と、スノーガン本体部内に形成さ
れて前記導入管から流出した高圧水流を旋回させる旋回
室と、この旋回室の前側に連通形成されて旋回室から流
出した高圧水流を絞りながら旋回移動させる先細截頭円
錐形の空間によって形成されたスノーガン本体部の縦軸
線と同心の絞り室と、この絞り室の前端部に同心に形成
され気水衝突部に開口する水ノズル出口とからなる高圧
水移動系を有し、スノーガン本体部の縦軸線から偏心し
た位置に取付けられ圧縮空気をスノーガン本体部内で高
速でかつ高圧水流の旋回方向の反対方向に旋回させるよ
うに導入する圧縮空気導入管と、この圧縮空気導入管か
ら流出した圧縮空気流を前記気水衝突部に向けて徐々に
絞りながら旋回移動させるスノーガン本体部の縦軸線と
同心の環状の絞り通路とからなる旋回成分の圧縮空気移
動系を備え、前記気水衝突部で生成された霧に軸方向成
分の圧縮空気流を噴射混合させる軸方向成分の圧縮空気
移動系を具備するとともに、スノーガン本体部の前端部
縦軸線上に前記霧を噴霧させる霧ノズル出口が形成され
ているものである。
[Means for Solving the Problems] In order to achieve the above object, a snow gun according to the present invention is installed at a position eccentric from a vertical axis of a snow gun body so that high-pressure water is swirled in the snow gun body. A high-pressure water introduction pipe, a swirl chamber formed in the snow gun body for swirling the high-pressure water flow that has flowed out of the introduction pipe, and a swirl movement that is formed in communication with the front side of the swirl chamber and that constricts the high-pressure water flow that has flowed out of the swirl chamber. A high pressure consisting of a throttle chamber formed by a tapered frustoconical space and concentric with the longitudinal axis of the snow gun body, and a water nozzle outlet formed concentrically at the front end of this throttle chamber and opening at the steam-water collision portion. It has a water movement system and is installed at a position eccentric from the vertical axis of the snow gun body to rotate compressed air in the snow gun body at high speed and in the direction opposite to the swirling direction of the high pressure water flow. A compressed air introduction pipe that is introduced so as to rotate, and a compressed air flow that has flowed out from this compressed air introduction pipe is squeezed toward the steam-water collision portion while being swirled while being concentric with the vertical axis of the snow gun body. A compressed air moving system of a swirling component consisting of a throttle passage is provided, and a compressed air moving system of an axial component for injecting and mixing a compressed air flow of the axial component with the mist generated in the steam-water collision section is provided. A mist nozzle outlet for spraying the mist is formed on the longitudinal axis of the front end of the snow gun body.

[作用] 本発明によれば、高圧水移動系の高圧水導入管からスノ
ーガン本体部の内部に導入された高圧水流は、旋回室内
において、例えば右まわりに旋回する。
[Operation] According to the present invention, the high-pressure water flow introduced from the high-pressure water introducing pipe of the high-pressure water moving system into the snow gun body swirls, for example, clockwise in the swirling chamber.

旋回室から絞り室に流下した高圧水流は、絞られること
によって流速を高められながら旋回し、水ノズル出口か
ら気水衝突部に噴射される。
The high-pressure water flow that has flowed down from the swirl chamber to the throttle chamber swirls while being increased in flow velocity by being throttled, and is jetted from the water nozzle outlet to the steam-water collision portion.

水ノズル出口から気水衝突部に噴射された高圧水流は、
遠心力によって旋回半径を拡大され、この拡大された旋
回軌道に沿って、薄い水膜状になって旋回する。
The high-pressure water flow injected from the water nozzle outlet to the steam-water collision part is
The turning radius is enlarged by the centrifugal force, and a thin water film is turned along the enlarged turning trajectory.

一方、旋回成分の圧縮空気移動系における圧縮空気導入
管から、スノーガン本体部の内部に導入された圧縮空気
流は、前記高圧水流の反対方向(左まわり)に旋回しな
がら環状の絞り通路を流下することによって絞られ、か
つ流速が高められる。
On the other hand, the compressed air flow introduced into the inside of the snow gun body from the compressed air introduction pipe in the compressed air moving system of the swirling component flows down the annular throttle passage while swirling in the opposite direction (counterclockwise) to the high pressure water flow. By doing so, the flow rate is increased and the flow velocity is increased.

環状の絞り通路は、圧縮空気流を徐々に絞りながら旋回
移動させることができるように形成されているから、圧
縮空気流を層流もしくは層流に近い流れに整流して気水
衝突部に導くことができる。
The annular throttle passage is formed so that the compressed air flow can be swirled while being gradually throttled. Therefore, the compressed air flow is rectified into a laminar flow or a flow close to the laminar flow and guided to the steam-water collision section. be able to.

気水衝突部では、整流されて高速で旋回する圧縮空気流
が前述の薄い水膜状になって旋回している高圧水流に衝
突する。この場合、高圧水流と圧縮空気流とは、互いに
反対方向に旋回しているため、大きい相対速度で衝突す
ることになる。つまり、整流されて高速で旋回している
圧縮空気流を薄い水膜状になって反対方向に旋回してい
る高圧水流に大きい相対速度で衝突させることによっ
て、気水衝突状態が良好になり、霧径を小径化できる。
In the steam-water collision unit, the compressed air flow that is rectified and swirls at high speed collides with the swirling high-pressure water flow in the form of the thin water film. In this case, the high-pressure water flow and the compressed air flow are swirling in opposite directions, and thus collide with each other at a high relative velocity. In other words, the compressed air flow that is rectified and swirling at high speed collides with the high-pressure water flow that swirls in the opposite direction in the form of a thin water film at a large relative velocity, thereby improving the steam-water collision state, The fog diameter can be reduced.

気水衝突部において霧化された気水衝突流体に対して、
軸方向成分の圧縮空気移動系から高速の圧縮空気流が噴
射されて衝突し、霧径をさらに小径化して霧ノズル出口
から大きい飛距離で噴霧させる。
For the air-water collision fluid atomized in the air-water collision section,
A high-speed compressed air flow is jetted from the compressed air moving system of the axial component and collides with it, further reducing the mist diameter and spraying it at a large flight distance from the mist nozzle outlet.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は上半部の正面図、第2図は上半部の縦側面断
面、第3図は上半部の背面図を示し、これらの図におい
て、スノーガン本体部1は筒状の基部1Aと、この筒状の
基部1Aの前端面に環状のスペーサ1Bを介して固着される
フランジ状の前体部1Dおよび筒状の基部1Aの後端面に固
着されるフランジ状の後体部1Eとから構成され、高圧水
移動系Xと旋回成分の圧縮空気移動系Yおよび軸方向成
分の圧縮空気移動系Zとを具備している。
FIG. 1 is a front view of the upper half, FIG. 2 is a longitudinal side view of the upper half, and FIG. 3 is a rear view of the upper half. In these figures, the snow gun body 1 is a cylindrical base. 1A, a flange-shaped front body portion 1D fixed to the front end surface of the cylindrical base portion 1A via an annular spacer 1B and a flange-shaped rear body portion 1E fixed to the rear end surface of the cylindrical base portion 1A. And a high pressure water moving system X, a swirling component compressed air moving system Y, and an axial component compressed air moving system Z.

フランジ状の後体部1Eの後面に高圧水移動系Xの高圧水
導入管3が取付けられている。この高圧水導入管3は、
ポンプによってなる高圧水供給源2から管路2Aを経て供
給される高圧水をスノーガン本体部1内で旋回させるよ
うに導入するためのもので、スノーガン本体部1の縦軸
線Cから側方に偏心した位置に、前下りに傾斜して取付
けられ、旋回室4に開口している。したがって、高圧水
導入管3から流出した高圧水流は、旋回室4内におい
て、正面側から見て右まわりに旋回する。
The high-pressure water introduction pipe 3 of the high-pressure water transfer system X is attached to the rear surface of the flange-shaped rear body 1E. This high pressure water inlet pipe 3
It is for introducing high-pressure water supplied from a high-pressure water supply source 2 formed of a pump through a pipe line 2A so as to swirl in the snow gun body 1, and is eccentric to the side from the vertical axis C of the snow gun body 1. It is attached to the above position inclining forward and downward and opens to the swirl chamber 4. Therefore, the high-pressure water flow that has flowed out from the high-pressure water introduction pipe 3 swirls clockwise in the swirl chamber 4 when viewed from the front side.

高圧水移動系Xの旋回室4はフランジ状の後体部1Eの前
部に凹設されたスノーガン本体部1の縦軸線Cと同心の
環状溝4Aと、スノーガン本体部1内において縦軸線Cと
同心にフランジ状の後体部1Eに対向して取付けられたす
り鉢状部材5の外周縁部5Aの後面とで囲まれた環状空間
によって形成されており、該旋回室4の前側に前記すり
鉢状部材5の周壁部で囲まれた、先細截頭円錐形の空間
によってなる絞り室6が連通形成され、この絞り室6の
前側にスノーガン本体部1の縦軸線Cと同心の水ノズル
出口5Bが形成され、該水ノズル出口5Bは気水衝突部8Xに
開口している。
The swirl chamber 4 of the high-pressure water transfer system X has an annular groove 4A which is concentric with the longitudinal axis C of the snow gun body 1 which is provided in the front of the flange-shaped rear body 1E, and the longitudinal axis C in the snow gun body 1. Is formed by an annular space surrounded by the rear surface of the outer peripheral edge portion 5A of the mortar-shaped member 5 mounted concentrically with and facing the flange-shaped rear body portion 1E, and the mortar is provided on the front side of the swirl chamber 4. A throttle chamber 6 which is surrounded by a peripheral wall portion of the member 5 and is formed by a tapered frustoconical space is formed in communication with the water nozzle outlet 5B concentric with the longitudinal axis C of the snow gun body 1 on the front side of the throttle chamber 6. Is formed, and the water nozzle outlet 5B is open to the steam / water collision section 8X.

筒状の基部1Aの上端部に旋回成分の圧縮空気移動系Yの
圧縮空気導入管7が取付けられている。この圧縮空気導
入管7は、エアコンプレッサーによってなる圧縮空気供
給源7Aから管路7Bを経て供給される圧縮空気をスノーガ
ン本体部1内で前記高圧水流よりも高速かつ高圧水流の
反対方向に旋回させるように導入するためのもので、ス
ノーガン本体部1の上端部から接線方向に延出して取付
けられ、筒状の基部1Aの内部に開口している。したがっ
て、圧縮空気導入管7から流出した圧縮空気流は、筒状
の基部1A内において正面側から見て左まわりに旋回す
る。
The compressed air introducing pipe 7 of the compressed air moving system Y of the swirling component is attached to the upper end of the cylindrical base 1A. The compressed air introducing pipe 7 swirls compressed air supplied from a compressed air supply source 7A composed of an air compressor through the pipe line 7B in the snow gun body 1 at a speed higher than the high pressure water flow and in a direction opposite to the high pressure water flow. As described above, the snow gun body 1 is attached so as to extend tangentially from the upper end of the snow gun body 1 and open inside the cylindrical base 1A. Therefore, the compressed air flow that has flowed out from the compressed air introduction pipe 7 swirls counterclockwise as viewed from the front side in the cylindrical base portion 1A.

旋回成分の圧縮空気移動系Yの環状の絞り通路8は、圧
縮空気導入管7から筒状の基部1A内に流出した圧縮空気
流を前記気水衝突部8Xに向けて徐々に絞りながら旋回移
動させるためのもので、すり鉢状部材5の前面に形成さ
れた略く字状を呈する後面8Aとこの後面8Aの前側に対向
配置された円弧状に膨出する前面8Bおよび筒状の基部1A
の内面によって囲まれた環状空間によって形成されてお
り、径外部後方より径内部前方にかけて通路断面積が徐
々に縮小されるように構成されている。そして、該環状
の絞り通路8の前端部にスノーガン本体部1の縦軸線C
と同心の霧ノズル出口9が形成されている。
The annular throttle passage 8 of the compressed air moving system Y of the swirling component swirls the compressed air flow that has flowed out of the compressed air introducing pipe 7 into the cylindrical base portion 1A while gradually narrowing it toward the steam-water collision portion 8X. The rear surface 8A is formed in the front surface of the mortar-shaped member 5 and has a substantially doglegged shape, the front surface 8B and the cylindrical base portion 1A which are arranged opposite to the front surface of the rear surface 8A and bulge in an arc shape.
Is formed by an annular space surrounded by the inner surface of the inner wall of the inner wall of the inner wall of the inner wall of the inner wall of the inner wall, and the passage cross-sectional area is gradually reduced from the rear portion of the outer diameter to the front portion of the inner diameter. The longitudinal axis C of the snow gun body 1 is attached to the front end of the annular throttle passage 8.
A fog nozzle outlet 9 concentric with is formed.

即ち、円弧状に膨出する前面8Aはフランジ状の前体部1D
の後部に形成され、霧ノズル出口9はフランジ状の前体
部1Dの中心部を貫通して形成されている。
That is, the front surface 8A that bulges in an arc shape is a flange-shaped front body portion 1D.
The mist nozzle outlet 9 is formed in the rear part of the flange body and penetrates the center of the flange-shaped front body part 1D.

軸方向成分の圧縮空気移動系zは、スノーガン本体部1
の縦軸線C上に沿って軸方向成分の圧縮空気流を霧ノズ
ル出口9に向けてから噴射させるためのもので、フラン
ジ状の後体部1Eおよび水ノズル出口5Eを貫通して霧ノズ
ル出口9の後部付近にまで延びる、ドラバルノズル10
と、このドラバルノズル10にエアコンプレッサーによっ
てなる圧縮空気供給源10Aから圧縮空気を供給する管路1
0Bによって構成されている。
The compressed air moving system z for the axial component is the snow gun body 1
For injecting a compressed air flow of an axial component toward the mist nozzle outlet 9 along the vertical axis C of the above, passing through the flange-shaped rear body portion 1E and the water nozzle outlet 5E, and the mist nozzle outlet De Laval nozzle 10 extending to near the rear of 9
And a pipeline 1 for supplying compressed air from a compressed air supply source 10A composed of an air compressor to this de Laval nozzle 10.
It is composed of 0B.

つぎに、前記構成の作用について説明する。Next, the operation of the above configuration will be described.

高圧水移動系Xの高圧水導入管3からスノーガン本体部
1の内部に導入された高圧水流は、旋回室4内におい
て、例えば右まわりに旋回する。
The high-pressure water flow introduced from the high-pressure water introduction pipe 3 of the high-pressure water moving system X into the snow gun body 1 swirls clockwise in the swirl chamber 4, for example.

旋回室4から絞り室6に流下した高圧水流は、絞られる
ことによって流速を高められながら旋回し、水ノズル出
口5Bから気水衝突部8Xに噴射される。
The high-pressure water flow that has flowed from the swirl chamber 4 to the throttle chamber 6 swirls while being increased in flow velocity by being throttled, and is jetted from the water nozzle outlet 5B to the steam / water collision unit 8X.

水ノズル出口5Bから気水衝突部8Xに噴射された高圧水流
は、遠心力によって旋回半径を拡大され、この拡大され
た旋回軌道に沿って、薄い水膜状になって旋回する。
The high-pressure water flow injected from the water nozzle outlet 5B to the steam-water collision section 8X has a swirling radius enlarged by centrifugal force, and swirls in a thin water film shape along this swirling orbit.

一方、旋回成分の圧縮空気移動系Yの圧縮空気導入管7
からスノーガン本体部1の内部に導入された圧縮空気流
は、前記高圧水流の反対方向(左まわり)に旋回しなが
ら環状の絞り通路8を流下することによって絞られ、か
つ流速が高められる。
On the other hand, the compressed air introducing pipe 7 of the compressed air moving system Y for the swirling component
The compressed air flow introduced from the inside into the snow gun body 1 is throttled by flowing down the annular throttle passage 8 while swirling in the opposite direction (counterclockwise) of the high-pressure water flow, and the flow velocity is increased.

環状の絞り通路8は、圧縮空気流を徐々に絞りながら旋
回移動させることができるように形成されているから、
圧縮空気流を層流もしくは層流に近い流れに整流して気
水衝突部8Xに導くことができる。
Since the annular throttle passage 8 is formed so as to be able to swirl while gradually reducing the compressed air flow,
The compressed air flow can be rectified into a laminar flow or a flow close to the laminar flow and can be guided to the steam-water collision unit 8X.

気水衝突部8Xでは、整流されて高速で旋回する圧縮空気
流が前述の薄い水膜状になって旋回している高圧水流に
衝突する。この場合、高圧水流と圧縮空気流とは、互い
に反対方向に旋回しているため、大きい相対速度で衝突
することになる。つまり、整流されて高速で旋回してい
る圧縮空気流が薄い水膜状になって反対方向に旋回して
いる高圧水流に大きい相対速度で衝突することになる。
その結果、気水衝突状態が良好になり、霧径を小径化で
き、霧化効率が大幅に向上し、造雪効率を向上させるこ
とができる。
In the steam / water collision unit 8X, the compressed air flow that is rectified and swirls at high speed collides with the swirling high-pressure water flow in the form of the thin water film described above. In this case, the high-pressure water flow and the compressed air flow are swirling in opposite directions, and thus collide with each other at a high relative velocity. That is, the compressed air flow that is rectified and swirling at a high speed becomes a thin water film and collides with the high-pressure water flow swirling in the opposite direction at a large relative velocity.
As a result, the water-water collision state is improved, the fog diameter can be reduced, the atomization efficiency is significantly improved, and the snowmaking efficiency can be improved.

圧縮空気流の流速および流量を高圧水流の流速および流
速よりも大きく設定しておくことで、高圧水流と圧縮空
気流の気水衝突流体は、圧縮空気流の旋回方向(左まわ
り)に旋回することになる。
By setting the flow velocity and flow rate of the compressed air flow higher than the flow velocity and flow velocity of the high pressure water flow, the gas-water collision fluid of the high pressure water flow and the compressed air flow swirl in the swirling direction (counterclockwise) of the compressed air flow. It will be.

気水衝突部8Xにおいて霧化された霧に対して、軸方向成
分の圧縮空気移動系Zのドラバルノズル10から高速(超
音波)の圧縮空気流が噴射されて衝突する。その結果、
前述の旋回圧縮空気流と旋回している高圧水流との衝突
によって得られた霧径がさらに小径化され、霧化効率が
向上する。
A high-speed (ultrasonic) compressed air flow is jetted from the de Laval nozzle 10 of the compressed air moving system Z of the axial component to collide with the mist atomized in the air-water collision unit 8X. as a result,
The mist diameter obtained by the collision between the swirling compressed air flow and the swirling high-pressure water flow is further reduced, and the atomization efficiency is improved.

また、ドラバルノズル10内での空気の断熱膨張により、
ドラバルノズル10から噴射される空気流の温度がきわめ
て低くなるので、雪の核(氷核)が生成される。したが
って、造雪効率をより一層向上させることができる。し
かも、ドラバルノズル10から高速噴射される軸方向成分
の圧縮空気流によって、霧ノズル出口9からの飛距離を
大幅に増大させることができる。
Also, due to the adiabatic expansion of air in the de Laval nozzle 10,
Since the temperature of the air flow ejected from the de Laval nozzle 10 becomes extremely low, snow nuclei (ice nuclei) are generated. Therefore, the snowmaking efficiency can be further improved. Moreover, the flight distance from the mist nozzle outlet 9 can be greatly increased by the compressed air flow of the axial component that is jetted at high speed from the de Laval nozzle 10.

なお、本発明に係るスノーガンによって生成された霧径
は、従来のスノーガンで生成された霧径の約50%に縮小
されたことが実験により確認できた。
It was confirmed by experiments that the fog diameter produced by the snow gun according to the present invention was reduced to about 50% of the fog diameter produced by the conventional snow gun.

またドラバルノズル10の長さは前記実施例で説明したも
のに限定されず任意に設定でき、例えば先端を水ノズル
出口5Bの内側に位置させた構成としてもよい。
Further, the length of the de Laval nozzle 10 is not limited to that described in the above embodiment, and may be set arbitrarily, and for example, the tip may be located inside the water nozzle outlet 5B.

[発明の効果] 本発明は、前述のように構成されているので、以下に記
載されるような効果を奏する。
[Advantages of the Invention] Since the present invention is configured as described above, it has the effects described below.

即ち、水ノズル出口から気水衝突部に噴射され、遠心力
によって拡大された旋回軌道に沿って、薄い水膜状にな
って旋回する高圧水流に対して、環状の絞り通路を流下
することにより絞られ、かつ流速が高められた反対方向
の旋回圧縮空気流を大きい相対速度で衝突させることが
できるので、気水衝突状態が良好になり、霧径を小径化
できる。しかも、気水衝突部において霧化された霧に対
して、軸方向成分の圧縮空気移動系から高速の圧縮空気
流を噴射させて衝突させるので、前述の旋回圧縮空気流
と旋回している高圧水流との衝突によって得られた霧径
がさらに小径化され、霧化効率が向上する。
That is, the high-pressure water flow, which is ejected from the water nozzle outlet to the air-water collision part and swirls in the form of a thin water film along the swirling trajectory expanded by the centrifugal force, flows down through the annular throttle passage. Since the swirling compressed air flow in the opposite direction, which is narrowed and the flow velocity is increased, can be made to collide with a large relative velocity, the water-water collision state is improved and the fog diameter can be reduced. Moreover, since a high-speed compressed air flow is injected from the compressed air moving system of the axial component to collide with the mist atomized in the air-water collision part, the high pressure swirling with the swirling compressed air flow described above. The atomization diameter obtained by the collision with the water stream is further reduced, and the atomization efficiency is improved.

また、軸方向成分の圧縮空気移動系内での空気の断熱膨
張により、ここから噴射される空気流の温度がきわめて
低くなるので、雪の核(氷核)が生成される。したがっ
て、造雪効率をより一層向上させることができる。しか
も、軸方向成分の圧縮空気移動系から高速噴射される軸
方向成分の圧縮空気流によって、霧ノズル出口からの飛
距離を大幅に増大させることができる。
In addition, the temperature of the air flow injected from this is extremely low due to the adiabatic expansion of air in the compressed air moving system of the axial component, so that a snow nucleus (ice nucleus) is generated. Therefore, the snowmaking efficiency can be further improved. Moreover, the flight distance from the mist nozzle outlet can be greatly increased by the compressed air flow of the axial component that is jetted at high speed from the compressed air moving system of the axial component.

さらに、環状の絞り通路によって、圧縮空気流が徐々に
絞られながら旋回移動するので、圧縮空気流を層流もし
くは層流に近い流れに整流して気水衝突部に導くことが
できるため、振動および騒音の大幅な低減を達成でき
る。
Furthermore, since the compressed air flow swirls while being gradually throttled by the annular throttle passage, the compressed air flow can be rectified into a laminar flow or a flow close to the laminar flow and can be guided to the steam-water collision portion. And a significant reduction in noise can be achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第3図は本発明の実施例を示し、第1図は
上半部の正面図、第2図は上半部の縦断側面図、第3図
は上半部の背面図であり、第4図は従来例の概略説明図
である。 1……スノーガン本体部 3……高圧水導入管 4……水旋回室 5B……水ノズル出口 6……絞り室 7……圧縮空気導入管 8……環状の絞り通路 8X……気水衝突部 9……フランジ状の前体部 C……スノーガン本体部の縦軸線 X……高圧水移動系 Y……旋回成分の圧縮空気移動系 Z……軸方向成分の圧縮空気移動系
1 to 3 show an embodiment of the present invention, FIG. 1 is a front view of the upper half, FIG. 2 is a vertical side view of the upper half, and FIG. 3 is a rear view of the upper half. Yes, FIG. 4 is a schematic explanatory view of a conventional example. 1 …… Snow gun body 3 …… High-pressure water inlet pipe 4 …… Water swirl chamber 5B …… Water nozzle outlet 6 …… Throttle chamber 7 …… Compressed air inlet pipe 8 …… Annular throttle passage 8X …… Air-water collision Portion 9 ... Flange-shaped front body C ... Vertical axis of snow gun body X ... High-pressure water moving system Y ... Compressed air moving system for swirling component Z ... Compressed air moving system for axial component

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】スノーガン本体部の縦軸線から偏心した位
置に取付けられ高圧水をスノーガン本体部内で旋回させ
るように導入する高圧水導入管と、スノーガン本体部内
に形成されて前記導入管から流出した高圧水流を旋回さ
せる旋回室と、この旋回室の前側に連通形成されて旋回
室から流出した高圧水流を絞りながら旋回移動させる先
細截頭円錐形の空間によって形成されたスノーガン本体
部の縦軸線と同心の絞り室と、この絞り室の前端部に同
心に形成され気水衝突部に開口する水ノズル出口とから
なる高圧水移動系を有し、スノーガン本体部の縦軸線か
ら偏心した位置に取付けられ圧縮空気をスノーガン本体
部内で高速でかつ高圧水流の旋回方向の反対方向に旋回
させるように導入する圧縮空気導入管と、この圧縮空気
導入管から流出した圧縮空気流を前記気水衝突部に向け
て徐々に絞りながら旋回移動させるスノーガン本体部の
縦軸線と同心の環状の絞り通路とからなる旋回成分の圧
縮空気移動系を備え、前記気水衝突部で生成された霧に
軸方向成分の圧縮空気流を噴射混合させる軸方向成分の
圧縮空気移動系を具備するとともに、スノーガン本体部
の前端部縦軸線上に前記霧を噴霧させる霧ノズル出口が
形成されていることを特徴とするスノーガン。
1. A high-pressure water introducing pipe which is installed at a position eccentric from the vertical axis of the snow gun main body and introduces high-pressure water so as to swirl in the snow gun main body, and a high-pressure water introducing pipe formed in the snow gun main body and flowing out from the introducing pipe. A swirl chamber that swirls a high-pressure water stream, and a vertical axis of a snow gun body formed by a tapered frustoconical space that is formed in communication with the front side of the swirl chamber and swirls while moving the high-pressure water stream that has flowed out of the swirl chamber. It has a high-pressure water moving system consisting of a concentric throttle chamber and a water nozzle outlet that is concentrically formed at the front end of this throttle chamber and opens to the air-water collision section, and is mounted at a position eccentric from the vertical axis of the snow gun body. And a compressed air introduction pipe for introducing compressed air so as to swirl in the body of the snow gun at a high speed and in the direction opposite to the swirling direction of the high-pressure water flow, and the compressed air introduction pipe The compressed air flow includes a compressed air moving system of a swirl component composed of an annular throttle passage that is concentric with the longitudinal axis of the snow gun body that swivels while gradually reducing the compressed air flow toward the steam-collision part. It is equipped with an axial component compressed air moving system for injecting and mixing an axial component compressed air flow into the mist generated in 1., and a mist nozzle outlet for spraying the mist is formed on the vertical axis of the front end of the snow gun body. Snow gun that is characterized by being.
JP2907690A 1990-02-08 1990-02-08 snow gun Expired - Lifetime JPH0663685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2907690A JPH0663685B2 (en) 1990-02-08 1990-02-08 snow gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2907690A JPH0663685B2 (en) 1990-02-08 1990-02-08 snow gun

Publications (2)

Publication Number Publication Date
JPH03233272A JPH03233272A (en) 1991-10-17
JPH0663685B2 true JPH0663685B2 (en) 1994-08-22

Family

ID=12266259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2907690A Expired - Lifetime JPH0663685B2 (en) 1990-02-08 1990-02-08 snow gun

Country Status (1)

Country Link
JP (1) JPH0663685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109253565A (en) * 2018-08-21 2019-01-22 珠海格力电器股份有限公司 Snowfall simulation system and snowfall control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109253565A (en) * 2018-08-21 2019-01-22 珠海格力电器股份有限公司 Snowfall simulation system and snowfall control method

Also Published As

Publication number Publication date
JPH03233272A (en) 1991-10-17

Similar Documents

Publication Publication Date Title
EP1166883B1 (en) Cleaning nozzle and cleaning apparatus
RU2128087C1 (en) Mixing device
JP3773975B2 (en) High efficiency nozzle for fluid catalytic cracking
US5090619A (en) Snow gun having optimized mixing of compressed air and water flows
EP0041645B1 (en) Radiant flat flame burner
KR100319431B1 (en) Atomizer
JP5854186B2 (en) Shower equipment
EP3356052A1 (en) Pressurized air assisted full cone spray nozzle assembly
CN111097611A (en) Water-gas mixing atomizing nozzle and atomizing device
WO2005097345A1 (en) Liquid atomizer
US5295628A (en) Discharge nozzle for media
CN211801733U (en) Water-gas mixing atomizing nozzle and atomizing device
CN108480345A (en) A kind of spiral vessel surface washer jet
JPH0663685B2 (en) snow gun
US3215351A (en) Oil burner nozzle
CN2611045Y (en) Two phrase flow sprinkler head of ambient smoke spray machine
JPH03233271A (en) Snow gun
JPH03233273A (en) Snow gun
JP3079794B2 (en) Electromagnetic fuel injection valve, fuel swivel member for electromagnetic fuel injection valve, and fuel injection device using this valve
CN113798076A (en) Double-fluid nozzle
JPH11101429A (en) Soot blower
RU2360182C2 (en) Spraying method of liquid fuel and device for realisation thereof
JPH1057844A (en) Pressure fluid nozzle
CN212468538U (en) Nozzle capable of realizing synergistic atomization of bubbles
CN114856767B (en) Atomization structure and ejector